
Groundtruthing Next-Gen Sequencing for Microbial
Ecology–Biases and Errors in Community Structure
Estimates from PCR Amplicon Pyrosequencing
Charles K. Lee1., Craig W. Herbold1., Shawn W. Polson2,3,4, K. Eric Wommack4,5,6,

Shannon J. Williamson7, Ian R. McDonald1, S. Craig Cary1,6*

1 Department of Biological Sciences, University of Waikato, Hamilton, New Zealand, 2 Center for Bioinformatics and Computational Biology, Delaware Biotechnology

Institute, University of Delaware, Newark, Delaware, United States of America, 3 Department of Computer and Information Sciences, University of Delaware, Newark,

Delaware, United States of America, 4 Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America, 5 Department of Plant and

Soil Sciences, University of Delaware, Newark, Delaware, United States of America, 6 College of Earth, Ocean, and Environment, University of Delaware, Lewes, Delaware,

United States of America, 7 J. Craig Venter Institute, San Diego, California, United States of America

Abstract

Analysis of microbial communities by high-throughput pyrosequencing of SSU rRNA gene PCR amplicons has transformed
microbial ecology research and led to the observation that many communities contain a diverse assortment of rare taxa–a
phenomenon termed the Rare Biosphere. Multiple studies have investigated the effect of pyrosequencing read quality on
operational taxonomic unit (OTU) richness for contrived communities, yet there is limited information on the fidelity of
community structure estimates obtained through this approach. Given that PCR biases are widely recognized, and further
unknown biases may arise from the sequencing process itself, a priori assumptions about the neutrality of the data
generation process are at best unvalidated. Furthermore, post-sequencing quality control algorithms have not been
explicitly evaluated for the accuracy of recovered representative sequences and its impact on downstream analyses,
reducing useful discussion on pyrosequencing reads to their diversity and abundances. Here we report on community
structures and sequences recovered for in vitro-simulated communities consisting of twenty 16S rRNA gene clones tiered at
known proportions. PCR amplicon libraries of the V3–V4 and V6 hypervariable regions from the in vitro-simulated
communities were sequenced using the Roche 454 GS FLX Titanium platform. Commonly used quality control protocols
resulted in the formation of OTUs with .1% abundance composed entirely of erroneous sequences, while over-aggressive
clustering approaches obfuscated real, expected OTUs. The pyrosequencing process itself did not appear to impose
significant biases on overall community structure estimates, although the detection limit for rare taxa may be affected by
PCR amplicon size and quality control approach employed. Meanwhile, PCR biases associated with the initial amplicon
generation may impose greater distortions in the observed community structure.
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Introduction

High-throughput pyrosequencing of PCR amplicons has

emerged as a valuable technique in microbial ecology and

revealed, in unprecedented detail, the microbial diversities found

in various marine and terrestrial environments [1–9] and the

human microbiome [10–13]. The power of this approach lies in

the read depth achieved, where tens to hundreds of thousands of

individual sequencing reads are simultaneously generated and

used to estimate the composition and abundance of microbial

operational taxonomic units (OTUs) in a given community.

However, this high read depth comes at a cost of relatively high

error rates for individual reads obtained using commonly

employed sequencing technology (i.e., Roche 454 GS FLX with

Titanium chemistry, 454-Ti) [14]. In the context of genomic (re-)

sequencing, low consensus error rates are achieved through

sequence assembly; however, for PCR amplicons, redundancy is

indistinguishable from abundance, and the high error rates

associated with individual reads therefore contribute to over-

estimation of diversity since erroneous reads manifest themselves

as less abundant but closely related OTUs [15].

A number of attempts have been made to assess and address the

impact of 454 single read errors on the estimation of community

richness. These efforts have primarily addressed the accuracy of

OTU diversity estimates, with special attention paid to enumer-

ation of OTUs within the Rare Biosphere [6,15–17]. One consistent

finding has been that standard techniques for processing amplicon

pyrosequencing data can result in the detection of several hundred
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‘‘false’’ OTUs, mostly at low abundance, even from a single test

organism [15]. Those findings have raised concerns that species

abundance can be overestimated for amplicon pyrosequencing

data. Subsequently, more stringent approaches have been

developed that allow the abundances of error-containing reads

to be counted toward those of the more abundant, supposedly

error-free, reads from which they arose [16–21].

Computational strategies employed by these newly developed

‘‘de-noising’’ methods fall into three categories: 1) identity-based

clustering, where de-noising is achieved by aligning and clustering

nucleotide sequences (e.g., single-linkage pre-clustering, SLP [17];

CD-HIT-OTU, http://weizhong-lab.ucsd.edu/cd-hit-otu; and

‘‘otupipe’’, http://drive5.com/otupipe/); 2) non-alignment clus-

tering, which utilizes K-mer clustering rather than alignment-

based distance calculations to de-noise reads [22] or even directly

assign reads to OTUs [20]; 3) flowgram-based clustering, where

information obtained by clustering pyrosequencing flowgrams is

incorporated into the de-noising pipeline [18,19,21,23]. All these

methods also use quality filters perceived to be correlated with low

read accuracy, such as abnormal read length, mismatch to

barcode and/or PCR primer, and low quality score. To examine

and compare the performance of these different approaches in

accurately recovering community structures, we chose three

published methods, SLP [17], PyroTagger [20], and Amplion-

Noise [19], to represent the three categories, respectively.

All de-noising pipelines assign the abundance of a ‘‘true’’

amplicon sequence as the sum of its own abundance and those of

‘‘noise’’ reads that arose from it, removing ‘‘noise’’ reads from the

dataset in the process. However, different strategies are employed

by each de-noising pipeline to determine the sequence identity of

the ‘‘true’’ read (i.e., picking the representative sequence of each

OTU). Ultimately, the fidelity of representative sequences is

important for accurate taxonomic assignment and phylogenetic

analysis. Moreover, over-aggressive removal of noise through

clustering inevitably leads to incorrect clustering of genuine but

closely related sequences that may correspond to highly distinct

ecotypes [24].

A wide array of factors affects the determination of microbial

community structure from 16S rRNA gene amplicons. PCR

amplicon size has been suggested to impact observable diversity

[25], ostensibly due to lower amplification/cloning efficiency for

longer amplicons; although PCR amplicon size and primer choice

are inevitably linked, and their effects are difficult to separate

[26,27]. Additional PCR biases, including primer mismatch

[28,29], differential amplification efficiency [30,31], and differen-

tial annealing efficiency [29], can also affect observed diversity and

structure. These issues, when combined with the high error rates

discussed above, can distort estimates of community taxonomic

richness and abundance.

The de-noising strategies outlined above have not been

examined in regards to sensitivity for genuinely rare taxa or

accuracy of estimated community structure. For comparative

studies in particular, it is essential that the recovered read

frequencies can be reliably interpreted as evidence of population

abundances. Furthermore, ensuring that rare reads truly indicate

rare taxa is important since they constitute the philosophical basis

of the modern Rare Biosphere concept [6]. Therefore, the potential

influence of the post-PCR pyrosequencing workflow on observed

microbial community structure and diversity remains under-

examined. A thorough investigation of this topic requires a priori

knowledge of community composition and structure.

In this study, we utilized six different in vitro-simulated

communities (iv-SCs) of 16S rRNA gene PCR amplicons to

characterize biases associated with microbial community structure

reconstruction using pyrosequencing data. To achieve this,

potential skews in observed community structure, the practical

detection limit for rare taxa, and the effects of PCR bias in the

initial PCR step were all examined and assessed for their

implications on the application of this technique for microbial

ecology research.

Results

Community Diversity and Structure from PCR-Neutral
Communities

PCR-independent in vitro-simulated communities (iv-SCs)

V3V4P and V6P tested the neutrality of 454-Ti pyrosequencing

as they were constructed using individually generated amplicons

pooled at known abundances (Table 1). Of the 20 original

sequences present in each dataset, 19 (95%) were recovered for

V6P (36,394 reads), but only 15 (75%) were recovered for V3V4P

(9,787 reads, Table S1). The frequency of each known sequence

within these iv-SCs was recovered based on the numbers of

corresponding error-free reads (i.e., sequences generated by the

454 base-calling software with default parameters that perfectly

matched known sequences) (Table S2). The sole sequence missing

from V6P was clone LMMI-24 in the lowest frequency tier

(0.001%). Clone sequences absent from the V3V4P iv-SCs

included all three sequences at 0.001% frequency, one sequence

at 0.1%, and one of the three sequences expected at 1%. However,

the higher number of sequences recovered from V6P was likely

due to its higher accurate read count. Of the sequences recovered

from iv-SCs V3V4P and V6P, observed relative abundances were

generally in agreement with expected frequencies, although

deviations exceeding 10-fold did occur at low expected frequencies

(Figure 1). The correlation between observed and expected

frequencies was consistent for both the V3V4P and V6P (PCR-

controlled) communities (Table 2), with V6P resampled to match

the number of error-free reads for V3V4P.

Effects of PCR Biases
To examine the degree to which PCR biases are sufficient to

induce a non-uniform community structure into a uniform

community of template DNA, an iv-SC set was constructed with

twenty plasmids at equal abundances (Table 1). This set of iv-SC

(V3V4E & V6E) was generated using two separate PCR assays,

targeting the V3–V4 and V6 regions of 16S rRNA gene,

respectively. Analysis of error-free reads from these iv-SCs revealed

non-uniform frequency distributions of sequences (Figure 2). The

observed bias does not appear to have been caused by

quantification error, as the bias observed for sequence 1216C in

V3V4E was so extreme that it accounted for 83% of the total

dataset. Meanwhile, this clone was significantly under-represented

in V6E, accounting for only 0.14% of the reads.

The influence of PCR biases on a tiered community structure

was also examined using iv-SCs V3V4T and V6T. These

amplicons were generated using twenty plasmids, pooled at tiered

abundances, as PCR template (Table 1). In general, observed

clone frequencies were similar to expected ones (Figure 1 &

Table 2). However, as seen in iv-SC V3V4E, the preferential

amplification of the V3–V4 region of clone 1216C was severe in

V3V4T and resulted in this single sequence comprising nearly half

of the total reads obtained (Figure 1A and Table S2). Overall, the

observed bias in favor of a single sequence depressed the observed

frequencies for other sequences and thus skewed the observed

community structure. This resulted in a significantly worse

correlation between the observed and expected relative abun-

dances for the longer V3V4T amplicon community than either the

PCR Amplicon Pyrosequencing for Microbial Ecology
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V6T community (Table 2) or the PCR-controlled V3V4P

community (Table 2). This difference in correlation was amelio-

rated by removing sequence 1216C from the analysis (Table 3).

Impact of PCR Primer Mismatch on Observed Relative
Abundances

The original sequences of all 20 clones (obtained using bi-

directional Sanger sequencing) were examined for PCR primer

mismatches that may have contributed to observed frequency

biases (Table S3). Seventeen clones exactly matched both V6

primers (968F & 1046R, Table 4), with single nucleotide

mismatches in the remaining three clones (Table S3). Conversely,

only one clone (1216C) exactly matched both V3–V4 primers

(338F & 806R, Table 4). The remaining 19 clones had mismatches

of up to 5 nucleotides (Table S3). For iv-SCs V3V4E and V3V4T,

the number of PCR primer mismatches was significantly and

negatively correlated with observed/expected ratios (nonparamet-

ric Spearman correlation analysis excluding clones 19-3 and 6-1;

V3V4E: p = 0.007; V3V4T: p = 0.015;). The same was true for

V6E (nonparametric Mann-Whitney test; p = 0.0081), but not

V6T (p = 0.0626).

Overview of Pyrosequencing De-noising Strategies
Three recently published algorithms for de-noising 16S rRNA

gene PCR amplicon pyrosequencing libraries, SLP [17], Pyr-

oTagger [20], and AmpliconNoise [19], were examined for their

ability to accurately reconstruct community structure and diversity

using the PCR-independent iv-SCs (V3V4P & V6P). Unique reads

determined by these de-noising pipelines typically represent

multiple error-free and error-containing reads, the latter presum-

ably derived from the former. Each algorithm identifies a set of

presumably error-free (‘‘true’’) reads, which determine the

eventual accuracy of identified OTUs.

Community Structure Estimated in the Presence of Error-
Containing Reads

To understand the behavior of each de-noising algorithm and

workflow, we devised a classification scheme for OTUs comprised

of read predictions. An OTU containing at least one unique read

prediction (predicted by de-noising algorithm) that correctly

matched one of the twenty reference clone sequences was

designated a ‘‘true’’ OTU. An OTU containing raw reads that

correctly mapped to one of the 20 reference clone sequences but

whose read predictions all contained at least one error was

designated as a ‘‘miscalled’’ OTU. An OTU comprised entirely of

reads that did not match any of the 20 reference sequences was

designated a ‘‘false-derived’’ OTU. Other designations included

‘‘near-match’’ OTUs, which contained sequences matching closely

to a reference sequence not found in any ‘‘true’’ or ‘‘miscalled’’

OTUs; ‘‘contamination’’ OTUs, which generally represented

E. coli vector contamination; and ‘‘chimeric’’ OTUs, which

contained chimeric sequences not identified by the chimera-check

algorithm. OTUs classified in this manner for iv-SCs V3V4P and

V6P are summarized in Table 5 (details in Table S4). Since

recommended clustering procedures differ for each de-noising

pipeline, the 20 known sequences were clustered using each

procedure in a ‘‘clustering control’’ (Table 5). Based on the

number of OTUs obtained from the clustering controls, it was

clear that the PyroTagger clustering algorithm was overly

aggressive since only 12 OTUs were obtained from the 20 V3–

V4 reference sequences, considerably fewer than were found by

the SLP (16 OTUs) or AmpliconNoise (17 OTUs) clustering

procedures (Table 5). The number of OTUs obtained from the V6

clustering controls was the same for all three pipelines.

The ability of de-noising algorithms to identify true OTUs was

better for the shorter V6 region than for the longer V3–V4 regions

(Table 5). However, a better estimate of the actual number of

OTUs was obtained through analysis of the V3––V4 regions (14–

23 observed OTUs vs. 22–35 observed OTUs for iv-SC V6P,

Table 5). All three de-noising algorithms appear to function

similarly well for analysis of the V6 region. For the V3V4P iv-SC,

PyroTagger and SLP appear better at predicting true OTUs (10

and 8 OTUs, respectively) than AmpliconNoise (4 OTUs).

However, it should be noted that several OTUs were missing

completely from the community reconstructions performed with

SLP and PyroTagger (7 and 3 OTUs, respectively), whereas

AmpliconNoise produced the highest number of relevant (i.e., true

+ miscalled + near-match) OTUs (Table 5). A closer examination

of OTUs missing from SLP reconstruction revealed that reads that

should comprise these missing OTUs were present in the original

quality-screened dataset and that the SLP de-noising algorithm

itself had over-clustered these reads into a single read prediction

represented by a true sequence (Table S4). This behavior was only

observed for SLP de-noising of the V3V4P iv-SC, and it performed

well for V6P iv-SC.

Rank-frequency plots of OTU types generated from the V6P iv-

SC (Figure 3) compare observed and expected frequencies for a

given clone sequence. Chimeric and false-derived OTUs made up

a significant portion of the rare OTUs identified by each de-

noising algorithm, and these were indistinguishable from true

Table 1. Expected relative abundances of each 16S rRNA
gene-containing plasmid (E and T) or amplicon (P) in the in
vitro-simulated communities (iv-SCs).

Community

16S rRNA gene
clone Equal (E) Tiered (T)

Tiered PCR Product
(P)

4–3Okaro10{ 0.05 0.18 0.18

SC8-3{ 0.05 0.18 0.18

SC7-1{ 0.05 0.15 0.15

LMM1-5{ 0.05 0.15 0.15

SC1-5{ 0.05 0.1 0.1

3-9{ 0.05 0.1 0.1

23-7{ 0.05 0.05 0.05

30-1{ 0.05 0.05 0.05

19-3{ 0.05 0.01 0.01

16-1{ 0.05 0.01 0.01

1216C** 0.05 0.01 0.01

SC5-2{ 0.05 0.001 0.001

29-2{ 0.05 0.001 0.001

Forsyth-N6{ 0.05 0.001 0.001

Waahi-22{ 0.05 0.0001 0.0001

SC4-1{ 0.05 0.0001 0.0001

3-1{ 0.05 0.0001 0.0001

6-1{ 0.05 0.00001 0.00001

EF222209{ 0.05 0.00001 0.00001

LMM1-24{ 0.05 0.00001 0.00001

{Rueckert et al. 2007.
{Rueckert Personal Communication.
**Banks et al. 2009.
doi:10.1371/journal.pone.0044224.t001
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OTUs at similarly low abundances. False-derived OTUs were

observed at .1% relative abundance with SLP, suggesting that

even relatively abundant OTUs may be attributable to method-

ological artifact and that the frequencies of these false-derived

OTUs can number as high as 12–13% of the true OTUs from

which they are derived (Table S4). The frequencies of false-derived

OTUs detected using PyroTagger and AmpliconNoise were

notably lower (,0.1%, see Figure 3 and Table S4), but similarly,

some of the rare false-derived OTUs had rather high relative

abundances to the true OTUs from which they are derived

(.27%).

Correlations between observed and expected OTU frequencies

were examined using true, miscalled, and near-match (i.e.,

relevant) OTUs (Table 6). For the relevant OTUs, community

structure estimates based on de-noised reads were not significantly

different from those based on error-free reads. It should be noted

that the community reconstructed using AmpliconNoise was in

marginally better agreement with the expected structure for both

the V3V4P and V6P iv-SCs than that from error-free reads. SLP

performed similarly well for the V6P iv-SC, but not for V3V4P

(Table 6).

Pyrosequencing-Specific Chimera Identification
Unique among the pipelines evaluated, AmpliconNoise explic-

itly integrated a chimera removal algorithm, Perseus, into its

analysis pipeline [19]. Perseus was also applied to de-noised reads

from SLP and PyroTagger. Examination of datasets inclusive of

chimeric reads revealed that although chimeric reads represent a

small portion of the overall iv-SC (,1%) (Table 7), they can

contribute significantly to overall estimates of OTU richness.

Inclusion of chimeric reads increased the number of V3V4P iv-SC

OTUs reconstructed using both AmpliconNoise and PyroTagger.

A close examination of V3V4P iv-SC OTUs reconstructed with

SLP revealed that 128 of the 345 chimeric sequences in the dataset

de-noised using AmpliconNoise were also found in the SLP

dataset, but these chimeric reads had been ‘‘absorbed’’ into a true

OTU by aggressive clustering in the SLP algorithm. Similarly, 20

of these 345 chimeric reads had been ‘‘absorbed’’ into non-

chimeric predicted reads by PyroTagger. Perseus did not identify

any chimeric reads in the V6P iv-SC, regardless of the de-noising

pipeline used. Despite these efforts, several OTUs composed of

chimeric reads that had evaded Perseus were manually identified

in V3V4P and V6P iv-SCs, and they typically comprised ,15% of

the observed OTUs (Table 5).

Figure 1. The relative abundances of recovered reads in V3V4P and V3V4T iv-SCs (Figure 1A) and V6P and V6T iv-SCs (Figure 1B)
are plotted against their respective theoretical relative abundances. The solid lines represent the ideal 1:1 scenario (i.e., observed matching
expected perfectly).
doi:10.1371/journal.pone.0044224.g001

Table 2. Spearman rank (r) and log-log transformed Pearson
(r) correlation coefficients of error-free sequences with their
respective theoretical frequencies.

Community Spearman r Pearson r

V3V4 V3V4P 0.941 0.943

V3V4T 0.596 0.669

V6 V6P 0.928 {0.899, 0.950} 0.961 {0.923, 0.986}

V6T 0.923 {0.887, 0.952} 0.911 {0.855, 0.967}

The pools of error-free sequences for V6P and V6T (33,804 and 39,978 reads
respectively) were resampled 10,000 times with replacement to match the
numbers of V3V4P and V3V4T error-free sequences (5,424 and 6,607 reads
respectively). The correlation coefficients for each bootstrap were calculated
and presented as means and 95% confidence intervals. The bootstrapping p
values (testing the V6x correlation coefficients as higher than the V3V4x
equivalents) were 0.814 (r) and 0.152 (r) for resampled V6P vs. V3V4P and
,0.001 (r and r) for resampled V6T vs. V3V4T.
doi:10.1371/journal.pone.0044224.t002
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Discussion

The use of Roche 454 GS FLX next generation sequencing has

played an instrumental role in introducing the concept of a Rare

Biosphere, with this long tail of rare taxa being reported for nearly

every community characterized using 454 pyrosequencing

[2,4,7,9,32–36]. Although the presence of rare taxa in various

environments has been shown using a variety of independent

methods [37–42], the true frequencies of these taxa, particularly as

characterized using pyrosequencing data, remain in question

[15,17]. Moreover, little is known about the accuracy of

community structural information derived from the frequency

distribution of 16S rRNA gene amplicons within 454 pyrose-

quencing libraries obtained using the newer Titanium chemistry

with longer read lengths.

Overall, our findings show that the 454-Ti sequencing platform

provides useful information about microbial community structure

since observed and expected frequencies of error-free reads

exhibited good correlations (Table 2). Effects of pyrosequencing-

specific biases (based on ‘‘P’’ iv-SCs) were exceeded by the impact

of PCR biases in mixed template samples (‘‘T’’ and ‘‘E’’ iv-SCs).

For example, nearly half of the error-free reads in V3V4T

originated from a single sequence (1216C) at only 1% relative

abundance within the template DNA (Table S2), and the positive

PCR bias for this sequence in the V3–V4 regions resulted in a

significant skew in recovered community structure information

(Table 2 and Table 3). Therefore, the presence of one or a few

sequences prone to PCR bias can drastically skew observed

relative abundances, but the rank frequency distribution of other

sequences appears to be preserved (Table 3). Meanwhile, the V6

iv-SCs did not appear to have been subject to significant PCR bias.

Error-containing reads comprised a significant portion of the

total reads for all iv-SCs. However, this was not due to quality

issues with the sequencing process, as the observed proportions are

in fact consistent with a high per-base accuracy (.99.5%, Table

S1). Therefore, it would have been impossible to systematically

isolate the error-containing reads without a priori knowledge of the

community. To resolve this issue, ‘‘de-noising’’ algorithms that

employ clustering techniques were used to assign error-containing

sequences to the true sequences from which they arose [17–23].

Our findings showed that these approaches occasionally infer the

wrong ‘‘true’’ sequence from clusters of mixed error-free and

error-containing reads, and invariably produced low-abundance

false OTUs that are indistinguishable from real ones. These false

OTUs can lead to an overestimation of the total number of OTUs

in the iv-SCs. In some cases, over-clustering by the de-noising

algorithm compensated, albeit incorrectly, for this OTU inflation.

Nevertheless, these de-noising algorithms represent a marked

improvement over simple, arbitrary quality filters [6,16] in that

they effectively reduce the number of unique error-containing

reads that can be mistaken for real sequences.

Although these de-noising pipelines were evaluated in their

respective primary publications for the accuracy of recovered

richness [17] and relative abundances [19–21], this study provides

the first independent, explicitly quantitative assessment of their

performance using carefully constructed and well quantified in

Figure 2. The observed relative abundances of all error-free sequence in the equal-abundance iv-SCs (V3V4E: red; V6E: blue). The
pool of error-free sequences for V6E (14,761 reads) was resampled 10,000 times with replacement to match the number of V3V4E error-free
sequences (4,609 reads) and used to calculate 95% confidence intervals for V6E.
doi:10.1371/journal.pone.0044224.g002

Table 3. Spearman rank (r) and log-log transformed Pearson
(r) correlation coefficients of relative abundances of
corresponding sequences in P and T iv-SCs.

Comparison N Spearman r Pearson r

V6P vs. V6T 16 0.973 0.953

V3V4P vs. V3V4T 12 0.748 0.794

V3V4P vs. V3V4T (Excluding
1216C)

11 0.936 0.936

doi:10.1371/journal.pone.0044224.t003

PCR Amplicon Pyrosequencing for Microbial Ecology
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vitro-simulated communities. Given that researchers interpreting

results from these pipelines inevitably treat them as quantitatively

representative of the biological communities, the results presented

here provide a useful assessment of information obtained and

disseminated using such methodology. A step-by-step comparison

between the three de-noising algorithms was unfeasible due to

their integrated pipeline design.

The process of clustering sequencing reads into OTUs

traditionally involves three distinct steps: quality filtering, align-

ment, and clustering. The SLP and AmpliconNoise de-noising step

constitutes an independent procedure that occurs after quality

filtering but before alignment [17,19]. PyroTagger instead

combines de-noising, alignment and clustering into a single, final

step [20]. It should be noted that PyroTagger’s authors pointed

out that it may not be suitable for 454-Ti data due to supposedly

lower read quality, but given that 454-Ti has become the de facto

technology for amplicon sequencing, we felt that an assessment of

the unique approach employed by PyroTagger needed to be

included. AmpliconNoise was chosen over alternative flowgram-

based clustering algorithms for several reasons: 1) it incorporates a

number of significant performance improvements over PyroNoise

[21]; 2) its implementation allows it to be run on a computer

cluster to speed up analysis; 3) it does not incorporate a greedy/

heuristic step and thus has better reproducibility (vs. Qiime

Denoiser [23], Figure S1). We note that the two central

components of AmpliconNoise, PyroNoise and SeqNoise [19],

have recently been re-implemented in Mothur as the Shhh.flows

command, which was shown to perform comparably to Ampli-

conNoise under similar circumstances [18].

Correlations between OTU frequencies calculated from de-

noised reads and expected OTU relative abundances were similar

to those calculated from error-free reads, indicating that these

methods can effectively recover error-containing reads while

maintaining approximate community structure. All three de-

noising approaches identified similar numbers of OTUs that

reflected real iv-SC taxa (i.e., true, miscalled and near-known

OTUs), but differed in the numbers of false OTUs detected, with

PyroTagger outperforming both SLP and AmpliconNoise (Figure 3

and Table 5). However, PyroTagger produced the poorest

correlation between observed and expected relative abundances

(Table 6) and incorrectly merged reference V3–V4 sequences,

indicating a tendency to over-cluster. The stringent quality-based

filtering used by PyroTagger also discarded a greater number of

raw sequencing reads (data not shown), resulting in the absence of

several expected low-abundance taxa from the de-noised dataset

(Figure 3 and Table 5).

SLP performed similarly to PyroTagger in predicting species

richness within the V3V4P community, but did so by an over-

aggressive de-noising procedure that resulted in several real taxa

being erroneously grouped into one OTU. This occurred at the

de-noising step and was not related to post de-noising clustering

procedures (data not shown). Moreover, SLP inferred abundant

(.1%) OTUs comprised entirely of error-containing reads in the

reconstruction of the V6P iv-SC. Compared to SLP, false-derived

OTUs were observed at much lower frequencies (,0.1%) for the

V6P iv-SC reconstructed using either PyroTagger or Amplicon-

Noise. Although more computationally intensive, AmpliconNoise

models the distribution of pyrosequencing errors at the flowgram

level and is able to robustly assign error-containing reads to their

parent error-free reads. AmpliconNoise appears to be free from

the over-clustering effect observed with both PyroTagger and SLP,

and therefore tends to overestimate OTU richness (Table 5).

However, it incorrectly identified the highest number of OTU

representative sequences with the V3V4P iv-SC, which may have

ramifications for downstream analyses that rely on precise

phylogenetic resolution.

Because AmpliconNoise includes a built-in chimera checker,

Perseus, it bypasses the need for multiple sequence alignment

(MSA) [43] or reference sequences, as recommended for

PyroTagger [20]. For typical pyrosequencing amplicon datasets

containing thousands of unique sequences, MSA is impractical, as

are the use of reference sequences and a priori assumptions about

the identity of environmental sequences. The outcome of our

analyses shows that AmpliconNoise is the de-noising algorithm

least likely to allow chimeric reads to be ‘‘absorbed’’ into read

predictions (Table 7), thus affecting abundance estimates. This

may partially explain why the correlation between the expected

and the observed frequencies of relevant OTUs was highest for the

AmpliconNoise pipeline (Table 6).

Rather than using mixtures of genomic DNA preparations,

plasmids containing cloned 16S rRNA genes were used for this

study. This approach avoided the issues of inter-genomic

variations in rrn operon copy numbers, intra-genomic variation

in rrn operon sequences, and quantification inaccuracies due to

genome size differences [44], thus allowing greater quantitative

accuracy. We limited the richness of the iv-SCs to twenty

sequences to allow reliable quantification of libraries using both

mixed plasmids and PCR products. Given the high proportion of

artifactual rare OTUs recovered by all three de-noising pipelines

with these relatively simple communities, it is unlikely that a more

complex simulated community would have improved their

performance. Nineteen of the twenty clones included in the study

Table 4. Unidirectional hybrid PCR primers; 454 adapter sequence in italic, MID sequence in brackets.

Primer Name Primer Sequence

V3V4E_Forward CCATCTCATCCCTGCGTGTCTCCGACTCAG[ACACGTACAG]ACTCCTACGGGAGGCAGCAG

V3V4T_Forward CCATCTCATCCCTGCGTGTCTCCGACTCAG[ACACACGTCG]ACTCCTACGGGAGGCAGCAG

V3V4P_Forward CCATCTCATCCCTGCGTGTCTCCGACTCAG[ACACGTCTCG]ACTCCTACGGGAGGCAGCAG

V3V4_Reverse CCTATCCCCTGTGTGCCTTGGCAGTCTCAGGGACTACCAGGGTATCTAAT

V6E_Forward CCATCTCATCCCTGCGTGTCTCCGACTCAG[ACAGTACGCG]AACGCGAAGAACCTTACC

V6T_Forward CCATCTCATCCCTGCGTGTCTCCGACTCAG[ACACTACGAC]AACGCGAAGAACCTTACC

V6P_Forward CCATCTCATCCCTGCGTGTCTCCGACTCAG[ACGACACTAG]AACGCGAAGAACCTTACC

V6_Reverse CCTATCCCCTGTGTGCCTTGGCAGTCTCAGCGACAGCCATGCANCACCT

The V3V4 and V6 forward and reverse primers were based on 338F, 806R, 968F, and 1046R, respectively [27,28,45].
doi:10.1371/journal.pone.0044224.t004
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were from Cyanobacteria isolated from similar environments and are

therefore comparatively similar in sequence. This resulted in some

of the reference sequences being clustered together, even by the

most lenient clustering approach (Table 5), but it also exposed

PyroTagger’s tendency to over-cluster and mask genuine diversity

(Table 5). The inclusion of one Actinobacteria clone (1216C) allowed

us to explore the effects of primer bias on different phylogenetic

groups.

Although we had a priori knowledge of the iv-SC sequences, we

elected not to customize PCR primers to account for known

mismatches and performed the experiment using ‘‘universal’’

primers commonly used for microbial community analyses

[25,27,28,45]. Thus, our analyses were subject to the same biases

common to any study utilizing these common universal primers

against environmental DNA. We also avoided using primers with

degenerate bases since primer degeneracy can reduce specificity,

lead to exhaustion of effective primers as the reaction progresses

[31,46], and impose biases of its own [47]. Recently, an alternative

of using a mixture of non-degenerate primers has been proposed

[46], which may significantly increase ‘‘universality’’ while

avoiding the pitfalls of degenerate primers.

Numerous mechanisms can contribute to PCR bias, including

polymerase error [48], formation of chimeric and heteroduplex

molecules [49–51], and differential amplification efficiency

[30,31,52]. Our study incorporated many of the wet bench

techniques known to be effective toward reducing these biases

[30,31,48,49,52], including low cycle numbers (30 cycles), pooling

multiple reactions (3630 ml), high template concentration (.4 ng

of 16S rRNA gene clones), and the use of a proofreading DNA

polymerase. Differential primer annealing efficiency provides

another mechanism for PCR bias, and although factors such as

annealing temperature and primer GC content can influence the

outcome of PCR [29,46,47], primer mismatch may have the

greatest impact for PCR studies of 16S rRNA gene diversity.

The lack of a truly ‘‘universal’’ pair of 16S rRNA gene PCR

primers has long been acknowledged [28,29,45,46,53]. Although

some have suggested that the number of taxa recovered is not

necessarily linked to the taxonomic specificity (i.e., universality) of

a primer set [25], our findings suggest that mispriming is a major,

if not the main, factor leading to errors in the observation

frequency of taxa within a community (Table S3). Mispriming

near the 59 end of the priming region is thought to have little effect

on PCR since extension occurs from the 39 end [54]. However, it

has been reported that 454 Fusion primers containing the 454

adapter sequence at the 59 end may be more susceptible to the

effects of mispriming, resulting in the over-representation of

templates that are not misprimed [20]. The adoption of a two-step

PCR for amplicon pyrosequencing may ameliorate this issue [55].

Moreover, our findings highlight the complications associated with

comparing community structures obtained using different primer

sets.

Certain aspects of our experimental protocol may have

exacerbated effects of PCR primer mismatch. For example,

preferential amplification of perfectly matching template would be

expected since the annealing temperature in our PCR protocol

started high and decreased with each cycle (see Information S1)

rather than starting at a lower temperature [28,29]. Our modified

PCR protocol was chosen because it resulted in an increased DNA

yield and thus enabled accurate quantification of PCR amplicons

(a prerequisite of pyrosequencing of PCR amplicons). This

limitation can be addressed by new instruments that enable small

quantities of DNA to be precisely characterized (e.g., Agilent 2100

Bioanalyzer, Agilent Technologies), fractionated (e.g., LabChip

XT, Caliper Life Sciences), and quantified (e.g., Kapa Library
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Quant Kits, Kapa Biosystems). Although these methods were not

available for this study, we recommend that they be adopted for

the preparation of 16S rRNA gene amplicon libraries for 454-Ti

sequencing in addition to adopting PCR conditions such as very

low Tm [29] and low (,25) PCR cycles (in conjunction with higher

template quantity where possible) [48,49].

Our results have shown that while de-noising methods for

pyrosequencing data need further development, they are an

essential processing step for the recovery of usable community

structure information. Overall, the largest hurdle to accurate

estimation of microbial community structure appears to be PCR

bias, which is independent of sequencing technology. Although a

variety of measures may be taken to reduce the impact of PCR

bias, it cannot be eliminated outright, and our findings highlight

the need to better characterize this phenomenon using simulated

communities. Another source of error also arises from PCR in the

form of chimeric sequences, which are difficult to eliminate. Even

though Perseus was able to effectively remove a large portion of

chimeric sequences, a small portion of chimeric sequences

contributed disproportionately to the number of OTUs observed,

especially the infrequent (i.e., rare) OTUs (Figure 3 and Table S4).

Therefore, chimeras can significantly inflate OTU estimates, even

with short PCR amplicons generated from presumably ‘‘immune’’

Figure 3. Rank-frequency plots of V6P OTUs generated by SLP, AmpliconNoise, and PyroTagger. Abundances are shown in log scale.
True OTUs (green): OTUs with a reference sequence as its representative; Miscalled OTUs (blue): OTUs containing a reference sequence, but not as its
representative; False-Derived OTUs (red): OTUs composed entirely of erroneous reads that are not chimeric, contamination, or closely matching a
reference sequence not found in any True or Miscalled OTUs; Near-Match OTUs (orange): OTUs containing sequence(s) that closely match a reference
sequence not found in any True or Miscalled OTUs; Contamination/E. coli (dark gray): OTUs composed of sequences affiliated with E. coli (cloning
host); Contamination/Other (light gray): OTUs composed of sequences affiliated with potential contaminants; Chimeric OTUs (yellow): OTUs
composed of manually identified chimeric sequences; Theoretical (white): expected OTUs.
doi:10.1371/journal.pone.0044224.g003

Table 6. Spearman rank (r) and log-log transformed Pearson
(r) correlation coefficients of true and miscalled OTUs
identified by de-noising algorithms with their respective
expected frequencies.

Community
De-noising
approach

Relevant
OTUs Spearman r Pearson r

V3V4P None
(from Table 3)

15 0.941 0.943

SLP 8 0.752 0.880

AmpliconNoise 14 0.967 0.977

PyroTagger 11 0.711 0.827

V6P None
(from Table 3)

19 0.929 0.945

SLP 18 0.929 0.969

AmpliconNoise 17 0.935 0.969

PyroTagger 15 0.864 0.928

doi:10.1371/journal.pone.0044224.t006
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16S regions such as the V6 hypervariable region [17] (Table S4).

These realities, combined with the observed prevalence of

artifactual rare OTUs (Figure 3), caution against singular

interpretations of community structure, especially those that

involve within-sample relative OTU frequencies or estimations

of Rare Biosphere diversity. Instead, the strength of the 454-Ti

platform more likely lies in comparative studies and identifying the

presence of specific rare taxa. Lastly, our findings highlight the

dangers in quickly adopting technological advances without

statistically robust validation, given that substantial portions of

the Rare Biosphere identified using up-to-date de-noising algorithm

are still artifacts. The impressively high microbial diversities

reported by some past studies [3,5,9,33,56] based on less

developed pyrosequencing quality filters should therefore be re-

examined.

Materials and Methods

Preparation of 16S rRNA Gene PCR Clones
Twenty bacterial 16S rRNA gene PCR clones were obtained

from two previous studies: 19 taken from fresh water habitats in

New Zealand [57], and one from Adelie penguin fecal swab

samples taken from Antarctica [58]. The primers used to generate

initial PCR products (338F/modified 23S30R and EubB/

ITSReub) and PCR cloning procedures were as described

previously [57,58]. Briefly, PCR products were gel-purified and

cloned using the TOPO TA Cloning Kit (Invitrogen Corp.,

Carlsbad, CA) following the manufacturer’s instructions. The

resulting clones were screened, isolated, and sequenced bi-

directionally on an ABI 37306l DNA Analyzer (Applied

Biosystems, Foster City, CA). All 20 plasmids were verified to

contain a unique and known insert of the 16S rRNA gene

including the V3–V4 and V6 hypervariable regions. All clones

except one (1216C: unclassified Clostridia) affiliate with members of

Cyanobacteria.

Generation of in vitro-Simulated Communities and
Pyrosequencing

Plasmid preparations were quantified using a NanoDrop ND-

1000 UV-Vis spectrophotometer (NanoDrop Technologies, Wil-

mington, DE) and the QuBit dsDNA HS fluorometric kit

(Invitrogen); both methods were repeated in triplicate. Purified

plasmid preparations were pooled at known abundances to

construct two in vitro-simulated communities (iv-SCs): uniformly

equal (E) and tiered (T) (Table 1). The pooled plasmid DNA

sample was treated with Plasmid-Safe ATP-Dependent DNase

(EPICENTRE Biotechnologies, Madison, WI) to remove contam-

inating genomic DNA from cloning hosts (i.e., E. coli). PCR

amplicon libraries of the V3–V4 (iv-SCs: V3V4E & V3V4T) and

V6 (iv-SCs: V6E & V6T) hypervariable regions were generated

using these mixed plasmid communities as templates (454 Fusion

PCR primers listed in Table 4). See Information S1 for PCR

components and conditions, and quality control for PCR

amplicons. An additional set of PCR-neutral iv-SCs (P) was

constructed using PCR products individually amplified from each

plasmid and subsequently pooled in tiered compositions (iv-SCs:

V3V4P & V6P) after gel extraction and quantification as described

in Information S1. The resulting iv-SCs were shipped frozen to the

J. Craig Venter Institute, where emPCR was performed separately

on pooled V3–V4 and V6 iv-SCs. The iv-SCs were pooled at the

following ratios: ‘‘T’’, 40%; ‘‘E’’, 20%; and ‘‘P’’, 40%. The two

emPCR libraries were pooled together and sequenced from the A

adapter using the Roche GS FLX with Titanium chemistry using

one of two regions on a GS FLX Titanium PicoTiterPlate.
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Original pyrosequencing flowgram files are available from

Sequence Read Archive (http://www.ebi.ac.uk/ena/data/view/

ERP001633).

Identification of Error-Free Reads
Read sequences and corresponding quality files were generated

using standard Roche software. Reads were compared to the

expected amplicon products from V3–V4 and V6 regions of

known clone sequences to determine the numbers of error-free

reads corresponding to each target. Reads were required to match

known sequences exactly over the amplified region, excluding

primer sequences. Sequences with a perfect match to the known

plasmid insert sequence and spanning the entire V3–V4 or V6

region were used in frequency calculations. In the case of the

longer V3–V4 amplicons, sequences were also allowed to

terminate prematurely if they were at least 216 nt in length (post

primer trim), the minimum needed for each known sequence to be

unequivocally identified.

Sequence Processing and OTU Determination
Prior to workflow-specific quality filtering and de-noising

procedures, read sequences and corresponding quality files were

generated using standard Roche software. Reads that did not

perfectly match the expected primer and MID sequences were

discarded. Among the remaining reads, primer and MID

sequences were trimmed after reads were separated into individual

files by iv-SCs.
Single-linkage preclustering (SLP) [17]. Reads with one

or more ambiguous bases (N, quality score = 0) were removed.

Average quality score was then calculated for every remaining

read: those with an average quality score of less than 30 were

discarded. Reads shorter than a specified length (50 nt) were also

discarded. The SLP Perl script was used to assign low-frequency

reads to higher frequency reads (http://vamps.mbl.edu/

resources/software.php, downloaded in May 2011). Pairwise

distances were calculated using Esprit [59]. For pre-clustering, a

width of 0.02 was used, and an OTU size of 10 sequences was used

for iterative clustering. The resulting datasets were screened for

chimeras using Perseus (a= 27.5, b= 0.5) [19]. Esprit was used to

calculate pairwise distances for unique sequences, which were then

clustered into OTUs using Mothur 1.17.0 [60] at an average

neighbor distance of 0.03, as recommended by the SLP authors

[17].
PyroTagger [20]. Reads were length-trimmed to a specific

length (60 nt for V6 amplicons and 216 nt for V3–V4 amplicons)

after removal of primer sequences. All remaining reads with $3%

bases having Q-scores #27 were removed from the dataset.

PyroTagger, with the pyroclust option, was used to assign quality-

filtered reads directly into OTUs without an alignment-based

distance calculation step. To do this, sequences were first sorted by

abundance and de-replicated. Chimeras were removed using

Perseus (a= 27.5, b= 0.5) [19]. Unique reads were then clustered

to form OTUs at 97% sequence identity using pyroclust’s default

parameters.
AmpliconNoise [19]. Raw flowgrams (.sff files) were filtered

based on primer and MID sequences match, and the occurrence

of the first noisy cycle (i.e., 0.5–0.7 or no signal in all four

nucleotide flows). For V6 amplicon reads, flowgrams were

truncated at the first noisy cycle, whereas V3–V4 amplicon reads

were dropped if the first noisy cycle occurred before cycle 360.

The flowgrams were then de-noised using PyroNoise (cluster

size = 60, initial cutoff = 0.01), and the resulting sequences were

truncated at 400 nt for V3–V4 amplicons and 200 nt for V6

(although no V6 actually exceeded this length). In the final de-

noising step, SeqNoise (cluster size = 30, initial cutoff = 0.08) was

used. MID and primer sequences were trimmed from the resulting

sequence predictions. Chimeras were removed using Perseus

(a= 27.5, b= 0.5) [19]. The resulting de-noised, unique reads

were aligned using mafft [61,62], and the alignment was imported

into Mothur [60] to construct a pairwise distance matrix using the

dist.seqs function, ignoring terminal gaps. Sequences were then

clustered into OTUs with an average neighbor clustering distance

of 0.03.
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