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Abstract

Age-related variations in resting state connectivity of the human brain were examined from young adulthood through
middle age. A voxel-based network measure, degree, was used to assess age-related differences in tissue connectivity
throughout the brain. Increases in connectivity with age were found in paralimbic cortical and subcortical regions.
Decreases in connectivity were found in cortical regions, including visual areas and the default mode network. These
findings differ from those of recent developmental studies examining earlier growth trajectories, and are consistent with
known changes in cognitive function and emotional processing during mature aging. The results support and extend
previous findings that relied on a priori definitions of regions of interest for their analyses. This approach of applying a
voxel-based measure to examine the functional connectivity of individual tissue elements over time, without the need for a
priori region of interest definitions, provides an important new tool in brain science.
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Introduction

Human aging throughout the lifespan is associated with many

changes including improvements in emotion regulation [1] and

declines in sensory and cognitive function across a variety of

domains [2,3,4,5]. Identifying the neurobiological bases of these

changes is important not only for aging research, but for cognitive

neuroscience more generally, as it provides clues into the neural

basis of those mental functions that are changing with age.

A common approach in aging research is to contrast young and

old adults, without including a middle age cohort [6,7,8].

However, those studies that have examined changes in brain

function throughout the lifespan have typically reported gradual

and continuous changes that begin in early adulthood and extend

throughout middle age and senescence [3,9]. Therefore, a

complete understanding of the aging process requires the

characterization of changes occurring in young and middle aged

adults. Here we examine age-related differences in the intrinsic

connectivity patterns of healthy adults in this age range.

Brain imaging studies of healthy human aging have reported

changes in structure, activation, and/or connectivity patterns

associated with aging in many different regions of the brain,

including, but not limited to, fronto-striatal circuits [10] and the

so-called ‘‘default mode network’’ [7,8,9]. More specifically,

frontal cortices have been reported to have age-related decreases

in volume [11] and resting cerebral blood flow [12], and age-

related increases in task activation [13,14]. The default mode

network has been reported to have age-related decreases in task

deactivation [9], grey matter volume [8], and resting state

connectivity [7,8]. Imaging studies have also implicated many

other areas of the brain in aging. For example, studies have shown

decreased activation in occipital regions [13,14] and both

increased activation [13] and decreased volume [15] in parietal

regions. The distributed and complex nature of these changes

highlights the need for network level analyses of the aging human

brain.

An emerging approach for studying human brain networks

involves the application of graph theory [16]. Studies of this

nature, examining age-related changes in structural and functional

brain networks, have reported decreases in whole-brain efficiency

[6], decreases in cortical connectivity and local efficiency [17], and

changes in the modularity structure of the brain of older adults

[18]. However, one of the challenges inherent in applying graph

theory to functional imaging data is the definition of network

nodes. A variety of approaches can be used to define network

nodes, including parcellations based on functional similarity

metrics [19] or anatomy [20], or the definition of a specified set

of regions of interest based on prior literature [21]. Unfortunately,

assumptions incorporated into node definition can have tremen-

dous impacts on the resulting conclusions. For example, if a region

is defined spanning functional areas with very different patterns of

temporal activity, the timecourse of activity in the region will be an

average of the timecourses from the functional areas comprising it.

Although each of the functional areas may have strong correla-

tions with other brain areas, those connections are unlikely to be
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identified when correlating to this averaged time course. To the

extent that age-related brain changes involve alterations in the

spatial extent of specific functional areas, this can result in different

estimates of connectivity with age that are unrelated to connec-

tivity per se. This problem tends to be more pronounced when

larger regions are used as network nodes, because the regions are

more likely to span functionally disparate brain areas.

Here we adopt an approach that minimizes this problem: each

voxel is defined as a network node. Although computationally

expensive, this approach allows unbiased exploration of the

network properties of the human brain. It has revealed that the

human brain has a small-world, scale-free functional architecture

[22]. Voxel-wise network analyses have been used successfully to

identify hubs in the human brain [23,24,25], to highlight regions

of the brain where network efficiency is related to cognitive

function [26], to study how exercise affects brain function in older

adults [27] and to investigate the impact of anesthetic agents on

the brain [28]. In this work we apply this approach to investigate

the changes in network connectivity patterns associated with

healthy aging.

When applying graph theory to study human functional brain

networks, the functional imaging data must first be translated into

either a weighted or unweighted graph, after which one or more

network properties of interest can be computed. Most prior studies

have modeled functional human brain networks using unweighted

graphs [6,23,26,27,29]. However, this approach discards poten-

tially valuable information regarding the strength of each

connection in a graph. An alternative made possible by recent

developments in weighted graph theory is to maintain information

regarding the strength of each existent connection and to use that

information in computing network measures. Here we explored

both approaches. Using an approach similar to that shown by

Buckner et al. [23], we computed the unweighted network

measure of degree in a voxel-wise manner and examined the

relationship between this network measure and age. In this voxel

based approach the intensity of each voxel reflects the number of

connections that voxel has (with correlations r.0.25) to the rest of

the voxels in the gray matter. As such, a high degree measure

implies that that tissue element is highly connected to the rest of

the brain while a low measure of degree implies fewer connections

to other brain tissue. Second, we computed the weighted graph

measure of vertex strength: for each node (or vertex) in the graph,

this is a summary measure of the strength of all connections to that

node [30]. Thus, it is an extension of the network measure of

degree to a weighted graph context.

In summary, we present here an exploratory examination of

age-related differences in intrinsic connectivity patterns of healthy

young to middle-aged adults. Voxel-wise network measures are

used, allowing an approach that is unbiased by a-priori

expectations regarding regions of interest.

Methods

Ethics Statement
All subjects provided a written informed consent in accordance

with a protocol approved by the Human Research Protection

Program of Yale University.

Subjects
Ninety-one healthy right-handed subjects aged 18 to 65

participated in the study, all of who reported no history of

psychiatric or neurological illness. Of these, 3 were removed due to

excessive head motion, 3 were removed due to brain abnormalities

(as determined by a radiologist) and 85 were included in the

analyses. The analyses included 41 females (mean age 35) and 44

males (mean age 35). Figure 1 shows the age distribution of

subjects.

Imaging Protocol
Subjects were scanned on 3T Siemens Trio scanners. Of the 85

subjects, 59 were scanned on one scanner (referred to here as Trio

A) with a 12 channel head coil. The remaining 26 were scanned

on a second Trio (referred to here as Trio B) with a 32 channel

head coil. There was no significant difference in age for the

subjects scanned on the two scanners (Trio A mean: 35.85, std:

10.74, Trio B mean: 32.27, std: 12.51).

Each session began with a localizing scan, followed by a low-

resolution sagittal scan for slice alignment, and the collection of 25

6 mm thick axial-oblique T1-weighted slices aligned with the AC-

PC such that the top slice was at the top of the brain. Resting state

functional data was collected at the same slice locations as the T1-

weighted anatomical data, using a T2*-sensitive gradient-recalled

single shot echo-planar pulse sequence (TR = 1550 ms,

TE = 30 ms, flip angle = 80 degrees, FOV = 2202 mm, 642matrix).

Subjects were instructed to rest with their eyes open, not to think of

anything in particular and not to fall asleep. There were eight

functional runs, each comprised of 240 volumes, the first six

volumes were discarded to allow the signal to reach a steady-state.

Finally, a high-resolution anatomical image was collected using an

MPRAGE sequence (TR = 2530 ms, TE = 2.77 ms, TI = 1100 ms,

flip angle = 7 degrees, resolution = 1 mm*1 mm*1 mm).

Data Analysis
Data were analyzed as described in previous studies that

computed degree on a voxel-wise basis [23,31]. Analyses were

conducted in the BioImage Suite software package (www.

bioimagesuite.org) except in a few instances where modules from

other programs were used. In these cases, the software that was

used is noted in the text.

Preprocessing. All data were first adjusted for different slice

acquisition times using sinc interpolation in Matlab (www.

mathworks.com) and then motion corrected using the SPM5

algorithm (http://www.fil.ion.ucl.ac.uk/spm/software/spm5/).

To remove the potential influence of spurious or spatially

nonspecific sources of correlation, the time-courses of several

variables of no interest were removed by regression. These

included the six motion parameter time-courses, the average signal

in the white matter, the average signal in the cerebrospinal fluid,

and the whole-brain time-course. Finally, data were temporally

smoothed using a Gaussian filter with a cutoff frequency of 0.1 Hz.

Figure 1. Age distribution of subjects.
doi:10.1371/journal.pone.0044067.g001
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Computation of degree maps. The time course for each

voxel i was used as a reference time-course and correlated with the

time course of every other voxel in the grey matter of the brain,

resulting in a seed map of correlations to voxel i. This map was

converted to a binary map of connectivity to the seed region, by

thresholding at r = 0.25, setting all connections below that

threshold to zero, and setting all remaining connections to 1.

The sum of all the connections in this binary map was computed

to yield Di, the degree of connectivity of voxel i. This process was

repeated for each voxel in the brain to yield a whole-brain map of

the network measure degree.

For each subject, the whole brain maps of degree were then

standardized to z-score maps as described in Buckner et al (2009)

using the equation Zj = (Dj2mD)/sD for each voxel j where mD is

the mean degree across all voxels and sD is the standard deviation

of degree across all voxels. This ensured that the maps of degree

for all subjects had a similar scale.

To investigate whether this normalization could introduce age-

related effects, we correlated each of the two parameters of the

normalization (m and s), and the ratio between these two

parameters, with age.

The threshold used to compute degree in this study was chosen

to be consistent with Martuzzi et al (2010) [31] and Buckner et al

(2009) [23]. Threshold-free approaches have recently been

introduced, however, they tend to have less power than this

threshold-based approach [31,32] although very recent work [32]

appears to overcome the sensitivity problem. To investigate

sensitivity to threshold we varied it from 0.15 to 0.5 and found that

the qualitative pattern of results was stable.

Computation of vertex strength maps. This was identical

to the computation of degree maps, except when the map of

connectivity to a given voxel i was thresholded, connections

surviving the threshold maintained their value. Vertex strength for

voxel i was computed by summing all the connections in the map.

Vertex strength was also standardized using a z-score conversion

as described for degree.

Group-level maps of changes in network measures with

age. Maps from individual subjects were transformed to the

coordinate space of the Colin brain [33] via a concatenation of

three registrations: (i) a linear rigid transformation of the

functional data to the axial-oblique anatomical data collected in

the same scanning session (ii) a linear rigid transformation of the

axial-oblique anatomical data to that subject’s MPRAGE image

and (iii) a nonlinear registration of that subject’s MPRAGE image

[34] to the Colin brain. All registrations were inspected visually to

ensure accuracy.

Once the data were in common space, group level analyses from

the 85 subjects were conducted in AFNI (http://afni.nimh.nih.

gov/afni). The AFNI program 3dLME was used to compute a

voxel-wise map of the main effects of age (continuous variable),

controlling for the effects of scanner (categorical variable). To

avoid effects related to the order of the variables in the model,

marginal sum-of-squares was selected. To correct for multiple

comparisons, the t-value map for age was cluster corrected

(p,0.05 voxel-wise threshold and 2911 mm3 cluster-extent

threshold to yield a p,0.05 whole-brain cluster-corrected

threshold) using a Monte Carlo simulation within the AFNI

program AlphaSim. Talairach coordinates for the center-of-mass

of each region were then calculated using the method of Lacadie,

et al. [35].

In addition, the data from the 59 subjects scanned on the Trio A

were analyzed for comparison purposes. In this case, there was no

scanner effect to control for, and a simple map of correlations to

age was computed using BioImage Suite.

Addressing potential confounds related to head

motion. First, estimates of total head motion were computed

for each subject. Previous studies used an estimate of total

displacement at a specific location in the brain [36,37], but that

approach is sensitive to the location chosen. An alternative

approach was used here, where net displacements were computed

for every voxel in the brain and averaged across all voxels, yielding

estimates of total displacement that don’t depend upon an

arbitrary reference point. In computing total displacement of a

voxel in a given run, two different approaches were used: (1)

‘‘frame-to-frame’’: the displacement of the voxel from one frame to

the next was averaged across all frames (2) ‘‘frame-to-reference’’:

displacement of each voxel from it’s location in the reference

frame to which all other frames were motion corrected was

averaged across all frames. The latter measure places greater

emphasis on gradual movements that shift the head from one

position to another over an extended time, while the former

measure emphasizes ‘‘shaky’’ movements where the head moves

back and forth but doesn’t move far from where it started.

To investigate whether head motion could be responsible for the

age-related changes in connectivity, correlations between age and

our two measures of head motion were computed. Neither

measure was significantly correlated with age, but the frame-to-

frame measure had a correlation with age that was approaching

significance (p = 0.09). The frame-to-reference measure was not at

all correlated (p = 0.9). Given that the frame-to-frame measure was

approaching significance, further analyses were needed to ensure

our results were not confounded by motion.

Two additional analyses were performed to control for head

motion. First, the estimates of frame-to-frame head motion were

included as a regressor in the group level analysis. The resulting

map of age effects was very similar to that computed without the

regressor. However, this approach is limited to removing linear

effects. Therefore, a second analysis was conducted in which we

threw out two runs of data for each subject. These runs were

selected so as to minimize the correlation between age and head

motion. After discarding these runs, we still had six runs of data for

every subject and neither frame-to-frame nor frame-to-reference

motion was significantly correlated with age in this subset of the

data (p = 0.5 for both). The group level maps of changes in degree

with age were then computed on this subset of the data in exactly

the same manner as they had been computed on the full data set.

Secondary analyses exploring changes in seed region

connectivity. The primary analyses of this study examined

intrinsic connectivity changes with age. This identifies regions of

the brain that change their degree of connectivity with age,

however, it does not provide information about which connections

are changing. To explore this, secondary seed-region analyses

were conducted. We selected two key regions for follow-up seed

bases analyses, the one with the greatest increase in intrinsic

connectivity with age and the one with the greatest decrease in

intrinsic connectivity with age. These were the medial temporal

cortex and the anterior cingulate cortex, respectively.

The medial temporal cortical region of interest (ROI) was

defined to include all significantly positive voxels in this region (in

both hemispheres) in the cluster-corrected group-level map of

changes in degree with age (i.e., Figure 2). This ROI was

translated back into the functional space of each subject by

applying the inverse registration used to translate the functional

data into MNI space. The average time-course across the region

was computed and used as a reference time-course with which

every other voxel in the gray matter was correlated. The resulting

correlations were transformed to Gaussian variables using Fishers

transform to yield a map of connectivity in that subject to the

Brain Connectivity Related to Age
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medial temporal ROI. These individual subject seed maps were

then translated back into MNI space and the AFNI program

3dLME was used to compute a voxel-wise map of the main effects

of age across subjects, controlling for the effects of scanner. This

group map was cluster-corrected using the AFNI program

AlphaSim and those areas showing significant increases in

connectivity to the medial temporal ROI with age are displayed

at a whole-brain corrected p,0.05 threshold.

The anterior cingulate cortical ROI was defined to include all

significantly negative pixels within the anterior cingulate cortex in

the cluster-corrected group-level map of changes in degree with

age (i.e., Figure 2). The computation of how connectivity to this

region changes with age was identical to that described for the

medial temporal ROI. Those regions of the brain that had

significant decreases in connectivity to the posterior cingulate

cortex with age are displayed at a whole-brain corrected p,0.05

threshold.

Results

Changes in degree with age
The degree of connectivity was found to vary with age. Figure 2

shows a t-statistic map for the effect of age on degree at a whole-

brain cluster corrected p,0.05 level. A positive relationship

between degree of connectivity and age is apparent in many

subcortical and paralimbic cortical regions, as summarized in

Table 1. A negative relationship between degree and connectivity

is apparent in the cortical regions listed in Table 2. Note these

include prominent loci in default mode areas. Neither of the

parameters of the normalization (m or s) nor the ratio between

these parameters (m/s), were significantly correlated with age (the

t and p-values of correlation to age are m: t = 0.78, p = 0.44, s:

t = 1.23, p = 0.22, m/s t = 20.7,p = 0.49), indicating that these

results are not due to the z-score normalization process.

Figure 2. Map showing brain areas where there is a main effect of age on degree of connectivity, displayed at a whole brain
corrected p,0.05 level. Red/yellow areas indicate regions where connectivity increases with age, blue/purple areas indicate regions where
connectivity decreases with age. Slices are shown using radiological convention (i.e. left is on the right).
doi:10.1371/journal.pone.0044067.g002

Table 1. Regions with a positive relationship between degree
of connectivity and subject age.

Region Size (mm3) x y z

Medial temporal cortex R 4585 30 27 213

L 4051 228 27 214

Temporal pole R 4283 40 3 219

L 4268 238 0 225

Putamen R 5273 26 0 0

L 6367 227 21 0

Caudate R 3821 13 9 9

L 4269 212 9 5

Thalamus R 2961 6 217 4

L 1582 27 16 7

Tail of Caudate/Hippocampus R 2600 24 237 6

Parahippocampus R 2597 28 211 221

L 1450 228 211 222

Inferior temporal gyrus/Fusiform R 2408 43 222 221

L 1804 245 216 221

Superior Temporal Sulcus R 2034 54 29 25

Orbitofrontal cortex L 863 218 13 214

Hypothalamus 795 1 0 0

Subgenual cingulate 708 22 15 24

Globus Pallidus R 292 16 1 0

Insula L 240 227 21 0

Cerebellum R 13039 21 257 224

L 11202 214 260 223

Midbrain 4510 1 223 28

Pons/Brainstem 3673 0 226 229

Coordinates indicate center of mass of region in Talairach space.
doi:10.1371/journal.pone.0044067.t001
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Changes in degree with age in those subjects scanned
on the Trio A

When we limited our analyses to just those 59 subjects scanned

on the Trio A, our power was significantly reduced. However, the

qualitative pattern of the age effects was similar. In the

Supplementary data (Figure S1) we show the map of simple

correlations with age in the 59 subjects scanned on the Trio A at

an uncorrected p-value of p,0.05. At this less stringent threshold,

a similar pattern emerges as seen at the corrected level in the

larger group.

Changes in vertex strength with age
The map of correlations between vertex strength and age was

very similar to the map of correlations between degree and age.

This map is provided in the Supplementary data (Figure S2)

Results of analyses controlling for head motion
The inclusion of frame-to-frame head motion as a covariate in

the group level analyses correlating age with degree of connectivity

had very little effect on the results. The t-statistic map of age from

the model including the motion covariate is provided the

Supplementary data as Figure S3. It is very similar to Figure 2.

As this only controls for linear effects, an analysis using a subset of

data where head motion was balanced across age was also

computed (six of the eight runs from each subject were included).

The t-statistic map of the effect of age on degree in this subset of

the data is shown at a whole-brain cluster corrected p,0.05 level

in Figure 3. Although it is quite similar to Figure 2, there are some

differences. Most notably, the negative correlations between age

and connectivity in the posterior cingulate, the right lateral

parietal, and right visual regions are not apparent in the subset of

the data where motion was balanced across age (i.e., in Figure 3).

Secondary analyses exploring changes in seed region
connectivity

The areas showing increases in connectivity to medial temporal

cortex with age area shown in Figure 4. These include the fusiform

gyrus and other visual regions, portions of the parahippocampal

and retrosplenial cortices, and the dorsomedial nucleus of the

thalamus, which has extensive connectivity to prefrontal regions

[38].

The areas showing decreased connectivity to the anterior

cingulate cortex with age are shown in Figure 5. These include

lateral parietal regions, right lateral frontal areas, the cerebellum,

the caudate and the thalamus.

Discussion

We have found that aging from young adulthood through

middle age is associated with increased connectivity in paralimbic

and subcortical areas, and decreased connectivity in a set of

cortical regions including several nodes of the default mode

network. These findings emerged both when we used the

unweighted graph measure of degree and the weighted graph

measure of vertex strength. Interestingly, a recent study using very

different methods (that is, a multivariate analysis of conditional

mutual information rather than a graph theory based analysis) to

calculate the net connectivity in the resting brain also reported

increasing connectivity with age in the orbitofrontal cortex and

decreasing connectivity with age in the cingulate cortex [39].

Although the spatial extent of the findings in that study was limited

to these two regions, this may have been related to differences in

power arising from the different analyses used or the smaller

sample size in the previous study.

Increases in paralimbic cortex and subcortical areas
Increasing connectivity with age was found in limbic and

paralimbic areas including lateral parts of the amygdala and

hippocampus, the temporal pole, parahippocampal cortex, supe-

rior temporal sulcus, orbitofrontal cortex, and subcortical areas.

Given that these regions are all involved in affective function, these

connectivity changes may be related to changes in emotion

processing with age.

There is a large literature documenting changes in emotion

regulation capacity and emotional memory during mature aging.

Many studies have reported that the capacity to regulate emotions

increases with age from adolescence to late adulthood

[1,40,41,42]. Older adults tend to experience negative emotions

less frequently and to control them better [43] and are less likely to

attend to material with a negative emotional valence than to

neutral or positive material [44]. In studies comparing memory for

emotional material across different age groups, older adults

remember less negative material, relative to neutral and positive

material, than younger adults [45,46,47,48]. In summary, older

adults focus less on negative emotional information, show

increased emotion regulation capacity, and have more positive

overall emotional experiences than younger adults. These

behavioral changes may be related to the age-related changes in

connectivity reported here, particularly the increases in connec-

tivity seen in limbic and paralimbic regions.

A secondary seed-based analysis examining age-related changes

in connectivity to the medial temporal cortex revealed increased

connectivity to the dorsomedial nucleus of the thalamus, which is

highly connected to prefrontal regions [38] as well as increased

connectivity to higher-level visual areas, including the fusiform

gyrus, with increasing age. We speculate that these changes in

limbic circuitry are related to known changes in emotion

processing that occur with age. More specifically, we hypothesize

that increased connectivity between medial temporal and frontal

regions is related to increased emotion regulation ability, while

increased connectivity between medial temporal and visual areas

may enable older adults to selectively focus attention on

information with a positive valence. Further studies are needed

assessing various aspects of emotion regulation capacity and

emotional memory and correlating these with connectivity

measures to determine how the age-related connectivity patterns

reported here relate to emotion processing.

Table 2. Regions with a negative relationship between
degree of connectivity and subject age.

Region Size (mm3) x y z

Visual cortex R 9820 25 271 7

L 17709 221 269 9

Medial prefrontal 10075 0 32 25

Posterior cingulate 8863 22 250 30

Precuneus 3164 7 265 42

Lateral parietal R 6481 47 258 34

L 9245 242 261 36

Precentral sulcus/middle
frontal gyrus (BA 6/8/9)

L 2972 243 6 32

Coordinates indicate center of mass of region in Talairach space.
doi:10.1371/journal.pone.0044067.t002

Brain Connectivity Related to Age
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Decreases in default mode regions
A decrease in connectivity of default mode areas with age is

consistent with prior literature reporting decreasing default mode

connectivity in older adults that examined seed-region correlations

or selected components from independent components analyses

[7,8,49]. However, the findings reported here emerged from a

whole-brain voxel-based analysis that in no way incorporated a-

priori expectations regarding regions of interest in the default

mode areas. Thus, they suggest that some of the most prominent

decreases in network connectivity occurring throughout the brain

involve the default mode network. Furthermore, as this study did

not include elderly subjects, the findings indicate these changes are

occurring in the early and middle stages of adulthood.

This study of changes in network properties during mature

Figure 3. Map showing brain areas where there is a main effect of age on degree of connectivity in the subset of data where age
was not correlated with head motion, displayed at a whole brain corrected p,0.05 level. Red/yellow areas indicate regions where
connectivity increases with age, while blue/purple areas indicate regions where connectivity decreases with age. Slices are shown using radiological
convention (i.e. left is on the right).
doi:10.1371/journal.pone.0044067.g003

Figure 4. Areas showing increased connectivity to the medial
temporal ROI with age. Slices are displayed using radiological
convention (i.e., left is on the right).
doi:10.1371/journal.pone.0044067.g004

Figure 5. Areas showing decreased connectivity to the anterior
cingulate cortex with age. Slices are displayed using radiological
convention (i.e., left is on the right).
doi:10.1371/journal.pone.0044067.g005
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aging complements recent literature reporting changes in the

whole-brain networks of children during development. Increases

in long-range functional connections and decreases in short-range

connections were found throughout the brain during development

from childhood to young adulthood [50,51,52]. The default mode

regions in particular were found to develop from a sparsely

connected set of regions to a cohesive functional network [53]. In

contrast, during mature aging and senescence, these brain areas

apparently decrease their connectivity. The rise and fall of

connectivity in this network over a lifetime thus coincides in a

gross sense with the rise and fall of cognitive function.

Indeed, there is a growing literature suggesting that integrity of

the network connections associated with default mode regions is

critical to cognitive function [8,26,49,54]. Thus decreasing

connectivity in these regions may be responsible for age-related

cognitive decline. Studies examining the relationship between

specific cognitive abilities and network properties using measures

such as those shown here provide a promising new approach for

probing brain-behaviour relationships. Along these lines, a recent

study relating network properties in structural brain networks of

elderly subjects to cognitive measures reported, among other

findings, that executive function was most correlated with regional

efficiency in the posterior cingulate cortex [55]. Extending such

work to voxel-wise analyses could provide a more detailed view of

the neurobiological basis for cognitive decline.

A secondary seed based analysis, examining changes in

connectivity to the anterior cingulate cortex with age, revealed

decreased connectivity between this area and lateral parietal

components of the default mode network, as well as decreased

connectivity to lateral frontal areas, the caudate nucleus, and the

dorsomedial portion of the thalamus with age. More work is

needed to determine how this decrease in connectivity to other

highly connected, associative brain areas is related to cognitive

function.

Effects of head motion on findings
There was a relationship between frame-to-frame head motion

and age that was approaching significance in our data. Given this

potential confound, we controlled for motion both by including

head motion as a covariate in the group-level analysis, and by

analyzing a subset of the data in which head motion was unrelated

to age. The approach of covarying motion at the group level had

very little effect on the results. Examining a subset of the data had

more substantial effects, suggesting nonlinear effects of head

motion on functional connectivity that cannot be controlled for by

including motion as a regressor in a linear model. This has

implications for other studies, in that it suggests that regressing out

head motion in the group level analysis may not be an effective

approach for controlling for this confound. Fortunately, we had

sufficient data in each subject to allow us to analyze a subset of

data that did not have any relationship between head motion and

age. The findings were qualitatively similar to the full data set,

showing increased degree of connectivity with age in limbic areas

and paralimbic cortices and decreases in degree of connectivity in

default mode regions. However, there were some differences.

One interesting difference between results from the full data set

and results from the motion-balanced data set was seen in the

posterior cingulate cortex. This region was prominent in our

original map of age-related changes in connectivity, but disap-

peared when we controlled for head motion. This suggests that the

connectivity in the posterior cingulate may be more related to

head motion that to age. This is interesting given that two recent

papers describing the confounding effects of head motion on

functional connectivity patterns both reported that head motion

was related to connectivity estimates in the posterior cingulate

cortex [36,37]. Further work is needed to determine if this is

simply related to topology of the region and how that makes it

susceptible to movement artifact, or if there is some relationship

between functional connectivity of this region and the tendency of

subjects to hold their heads still.

Study limitations
Although the age-related connectivity patterns found in this

study are consistent with the known effects of increased emotion

regulation and decreased cognitive function with age, we did not

collect behavioral data on these subjects. Therefore, we cannot be

sure that the changes in connectivity found are really related to

these aspects of mental function. Furthermore, the cross-sectional

nature of this study limits data interpretation. Future studies that

collect both behavioral and imaging data on the same subjects in a

longitudinal fashion are recommended.

In addition, it should be kept in mind that large sample-size

studies can identify small effects. In terms of human brain imaging,

this is a fairly large study, and the age-related brain patterns

reported may therefore correspond to effects that are small relative

to those reported in other imaging studies.

Conclusion
An emerging method for assessing network properties in the

brain at the voxel level allowed identification of those regions of

the brain that exhibit significant changes in the degree of

connectivity during healthy aging. Increases in connectivity in

paralimbic and subcortical regions and decreases in connectivity in

default mode areas were found, consistent with the literature on

increasing emotion regulation capacity and decreasing cognitive

function with age. This approach provides a promising new tool

for investigating the functional architecture of the human brain

and its relationship to cognitive, clinical, and demographic

variables.

Supporting Information

Figure S1 Map showing brain areas where age is
correlated with degree of connectivity in the 59 subjects
scanned on the Trio A scanner. Results are displayed at an

uncorrected p,0.05 level. Red/yellow areas indicate regions

where connectivity increases with age, blue/purple areas indicate

regions where connectivity decreases with age. Slices are shown

using radiological convention (i.e. left is on the right). Although

power is reduced due to the decrease in sample size, the qualitative

pattern is similar to that seen in the full group of subjects.

(TIF)

Figure S2 Map showing brain areas where there is a
main effect of age on vertex strength, displayed at a
whole brain corrected p,0.05 level. Red/yellow areas

indicate regions where connectivity increases with age, blue/

purple areas indicate regions where connectivity decreases with

age. Slices are shown using radiological convention (i.e. left is on

the right).

(TIF)

Figure S3 Map showing brain areas where there is a
main effect of age on degree of connectivity as computed
in a model that incorporated frame-to-frame head
motion as a regressor. Results displayed at a whole brain

corrected p,0.05 level. Red/yellow areas indicate regions where

connectivity increases with age, blue/purple areas indicate regions

where connectivity decreases with age. Slices are shown using
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radiological convention (i.e. left is on the right). The inclusion of

the motion regressor had little effect, as evidenced by similarity to

Figure 2.

(TIF)
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