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Abstract

In everyday life, we need a capacity to flexibly shift attention between alternative sound sources. However, relatively little
work has been done to elucidate the mechanisms of attention shifting in the auditory domain. Here, we used a mixed
event-related/sparse-sampling fMRI approach to investigate this essential cognitive function. In each 10-sec trial, subjects
were instructed to wait for an auditory ‘‘cue’’ signaling the location where a subsequent ‘‘target’’ sound was likely to be
presented. The target was occasionally replaced by an unexpected ‘‘novel’’ sound in the uncued ear, to trigger involuntary
attention shifting. To maximize the attention effects, cues, targets, and novels were embedded within dichotic 800-Hz vs.
1500-Hz pure-tone ‘‘standard’’ trains. The sound of clustered fMRI acquisition (starting at t = 7.82 sec) served as a controlled
trial-end signal. Our approach revealed notable activation differences between the conditions. Cued voluntary attention
shifting activated the superior intra--parietal sulcus (IPS), whereas novelty-triggered involuntary orienting activated the
inferior IPS and certain subareas of the precuneus. Clearly more widespread activations were observed during voluntary
than involuntary orienting in the premotor cortex, including the frontal eye fields. Moreover, we found -evidence for a
frontoinsular-cingular attentional control network, consisting of the anterior insula, inferior frontal cortex, and medial frontal
cortices, which were activated during both target discrimination and voluntary attention shifting. Finally, novels and targets
activated much wider areas of superior temporal auditory cortices than shifting cues.
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Introduction

The human brain can process only a limited amount of auditory

information at a time. Attention shifting is constantly needed to

allow redirecting of our focus to detect the most relevant sounds

amongst noise. Such shifts can be triggered top-down, for

example, to voluntarily shift the focus based on our goals and

interests (an endogenous process), or bottom-up, when a poten-

tially interesting unexpected sound involuntarily captures our

attention (an exogenous process). The exact neuronal mechanisms

controlling these two modes of auditory attention shifting are not,

however, fully clear.

Previous neuroimaging studies in this field, which have mainly

concentrated on the visuo-spatial domain, suggest that shifting of

attention activates a network of brain areas including dorsolateral

prefrontal cortex, premotor, medial frontal areas, and the

posterior parietal cortex. On the basis of these studies, it has been

proposed that separate dorsal (superior parietal lobule, SPL,

intraparietal sulcus, IPS, frontal eye fields, FEF) and ventral (right

temporal-parietal junction, ventral frontal cortex/anterior insula)

attention systems underlie voluntary vs. involuntary attention

shifting processes, respectively [1–4]. However, the distinction

between dorsal and ventral attention systems is still under debate,

as a number of visual [5–9] fMRI studies have failed to find fully

segregated neural systems subserving endogenous and exogenous

spatial orienting.

Despite the critical role that auditory information processing

plays in human communication, a much smaller number of fMRI

studies have been conducted to investigate voluntary attention

shifting in the auditory, compared to the visual modality. The

results obtained in different studies have not been fully consistent

either. For example, a recent study [10] suggested that automatic

orienting, compared to controlled orienting, is associated with

greater activations in several frontal and parietal regions, while

others [11,12] have reported increased activations in the posterior

parietal cortex associated with top-down control of attention

shifting. Inconsistencies like this are, obviously, in part related to

differences in the experimental designs. At the same time, previous

studies on auditory attention shifting have seldom controlled for

potential biases caused by the acoustical scanner noise, which can

mask the auditory stimuli and modulate the BOLD response in

auditory [13] or even non-auditory cortices [14].

Resolving trade-offs related to acoustical scanner noise might be

particularly essential for studies on involuntary attention shifting,

an area of research that has been much more intensively

investigated [15–18] than voluntary auditory orienting. Notably,

this line of research has been, almost exclusively, based on

methods such as MEG and EEG that are not biased by factors

such as scanner noise. According to these studies, involuntary
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attention is triggered by an automatic change-detection process in

superior temporal auditory cortices, as reflected by the mismatch

negativity (MMN) response. This mismatch detection process is

then followed by a sequence of brain events associated with

attentional orienting and conscious detection of the sound change

in extra-auditory association areas, which potentially involve

dorsolateral prefrontal cortices [19–22], anterior cingulate regions

[23], and/or inferior frontal gyrus [24–26]. However, the relative

contributions of auditory areas and other regions contributing to

automatic change detection and involuntary orienting are not yet

fully clear.

Another factor that has received relatively little attention in

classic orienting studies is the role of the anterior insula in

attention shifting. Accumulating evidence suggests that the

anterior insula, one of the structures originally proposed to be

associated with the ventral attention system [3], may actually play

an important role in voluntary cognitive control [27–30] and

perceptual decision making [31]. A number of recent imaging

studies on visual and auditory task switching, auditory working

memory, and auditory attention have reported activations in the

anterior insula [32–36]. The anterior insula has, consequently,

been conjectured to contribute to the switching of attention [17]

and to the related top-down interference resolution processes [37].

It has also been recently suggested that the anterior insula

constitutes a supramodal region that controls the orienting of

attention [36]. However, the exact role of this region in top-down

aspects of auditory attention shifting needs further investigation.

In the present study, we investigated voluntary and involuntary

attention shifting using a paradigm modified from classic

visuospatial cued orienting [38], auditory-spatial selective attention

[39,40], and auditory involuntary attention-shifting [16,41]

designs. Stimulus-driven orienting was triggered by unexpected

novel sounds, a strategy that has been well documented to produce

strong event-related potential responses and behavioral distraction

effects related to involuntary attention shifting [16,42]. Biases

related to acoustical scanner noises were controlled by using a

mixed design, which combined event-related and sparse sampling

approaches.

Results

Behavioral Data
The present auditory task design (Figure 1) was modified from

classic visual attention shifting [38] and auditory selective attention

[39] paradigms (see Materials and Methods). During fMRI

acquisition, subjects were instructed to detect a monaural

harmonic target sound, which was embedded within trains of

high- and low-pitch pure tones presented asynchronously to their

left and right ears respectively. Outliers were defined as responses

longer or slower than two standard deviations of the average

reaction times within each run and counted as misses in the final

behavioral data. One subject was excluded because of an inability

to perform the task. In the final dataset (N = 18, 11 females, age

19–28 years), the average hit rate was 90.267.9% and the

reaction time was 495648 ms. The mean6SD false alarm rate, as

calculated from Cue+Standards and Cue+Novel+Standards trials,

was 1.261.5%.

To verify the beneficial effect of cues in directing attention to

subsequent targets, we conducted a separate behavioral control

analysis (N = 10, 4 females, age 22–43 years). The result demon-

strated that spatial cueing significantly (t(9) = 24.17, P,0.01)

speeded-up target discrimination, as compared to ‘‘invalidly cued’’

trials where the target occurred in the ear opposite of the cue

(mean6SD reaction times 463668 vs. 5556105 ms to validly vs.

invalidly cued targets, respectively). To make tentative inferences

of cueing benefits during fMRI, the data from this behavioral

group were also compared to the main fMRI group’s performance

during the fMRI session. There were no significant differences in

the reaction times to validly cued targets during the control or

main experiment. The reaction times to the invalidly cued targets

during the behavioral control experiment were, however, signif-

icantly longer (t(26) = 2.24, P,0.05) than the reaction times during

fMRI to validly cued targets, suggesting that subjects may have

been benefiting from the spatial cueing also during the fMRI

experiment.

fMRI Results
Figure 2 shows activations associated with the main contrasts,

presumed to reflect cued attention shifting, novelty-triggered

attention shifting, and target discrimination. The anatomical areas

associated with these activations have been identified in Tables 1,
2, 3 based on the parcellation included the FreeSurfer package

[43]. Our approach revealed notable activation differences

between cued attention shifting, novelty-trigger attention shifting,

and target discrimination. The specific contrasts that were utilized

to determine these effects have been described below.

Cue+standards vs. standards only. We first compared

activations between the condition where the cue occurred in one

of the ears (atop dichotic standard tones) but no target followed,

and the condition consisting of standard tones only (Figure 2A).

This contrast, presumably reflecting cued voluntary attention

shifting, was associated with significantly (P,0.05, cluster thresh-

old corrected for the family-wise error based on the theory of

Gaussian random fields, GRF) increased activations in the

bilateral precentral areas (including premotor cortex, PMC and

FEF), anterior insula, medial superior frontal cortex (mSFC)

including pre-SMA extending to paracingulate and anterior mid-

cingulate cortex (aMCC), dorsal posterior cingulate (dPCC),

posterior superior temporal gyrus (pSTG), planum temporale

(PT), superior temporal sulcus (STS), angular gyrus (AG), and IPS.

Lateralized activations were found in the right inferior parietal

region (including supramarginal gyrus, SMG, and the sulcus

intermedius primus of Jensen) and left cerebellum. Several

subcortical structures including the thalamus, putamen, and

caudate were also activated bilaterally.

Cue+novel+standards vs. cue+standards. In the second

comparison, we contrasted the condition where an unexpected

‘‘novel’’ sound occurred opposite to the cued ear with the

condition consisting of the cue and standard tones but no target

(Figure 2B). This contrast, presumably reflecting novelty-

triggered involuntary attention shifting, was associated with

significant (P,0.05, cluster threshold corrected for the family-

wise error based on the GRF theory) activations in several frontal

and cingular cortex regions, including the right PMC/FEF,

middle frontal cortex (MFC), and pars triangularis of IFC, as well

as in the orbital regions, pregenual ACC, posterior MCC (pMCC),

dPCC, and subparietal sulcus regions (i.e., parietal continuum of

cingulate sulcus). Activations associated with novelty-triggered

involuntary attention shifting were also found bilaterally in the

posterior insula, the temporo-parietal junction (TPJ), in the SMG

and the AG of inferior parietal regions, IPS, and precuneus. In the

temporal lobe, activations associated with this contrast extended to

primary (medial 2/3 of Heschl’s gyrus) and non-primary (anterior

and posterior STG, PT, lateral 1/3 of Heschl’s gyrus) auditory

cortex areas, as well as to the STS and middle and inferior

temporal areas. Finally, in this contrast, we also observed

activations in the visual cortex (left cuneus) and in several

Novelty-Driven vs. Cued Auditory Orienting
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subcortical regions, including the bilateral thalamus and putamen,

as well as in the right cerebellum.

Cue+target+standards vs. cue+standards. Figure 2C
shows data from the contrast that compared activations in the

condition where the target occurred in the cued ear, to the

condition consisting of the cue and standard tones only. In this

contrast, presumably reflecting target discrimination, we observed

significantly (P,0.05, cluster threshold corrected for the family-

wise error based on the GRF theory) increased activations in

several frontal, parietal, temporal, and occipital regions. Fronto-

cingularly, activations were found in the bilateral superior frontal

cortex, the dorsolateral prefrontal cortex (DLPFC), PMC, IFC,

ACC (orbital, subgenual, pregenual), aMCC, pMCC, dPCC, and

the pars marginalis. In and near the parietal cortex, the activations

extended to TPJ, SPL, the SMG and AG of inferior parietal

regions, IPS, the subparietal area, the precuneus, and to the

parieto-occipital sulcus. Increased activations to target discrimi-

nation emerged also in visual cortices including the cuneus,

calcarine sulcus, and lingual gyrus. In temporal areas, in addition

to the primary and non-primary (anterior and posterior STG, PT)

auditory cortex, target discrimination also activated STS, and the

middle and inferior temporal areas. Activations lateralized only to

one hemisphere were found in the left central sulcus, postcentral

gyrus, and SMA of the mSFC (extending to the paracentral

lobule), as well as in right FEF and pre-SMA of the mSFC. Finally,

bilateral activations were observed in subcortical regions including

the thalamus, putamen, caudate, and pallidum, as well as the

cerebellum.

Standards only vs. fixation. To examine the demands of

standard sounds on attention, we contrasted the condition in

which only standard sounds occurred to the condition of fixation

(Figure 2D). Significantly (P,0.05, cluster threshold corrected

for the family-wise error based on the GRF theory) increased

activations were observed in several frontal, temporal and parietal

regions, including bilateral SFC, primary auditory cortex,

posterior insula, STG, paracentral region, and suborbital sulcus.

Left lateralized activations were found in MFC, STS, inferior

parietal region (AG), while right lateralized activations were found

in the central sulcus extending to pre-central and post-central

gyrus.

Comparisons between activations. This analysis was

conducted to illustrate and compare areas specifically concentrat-

ing on cued vs. novelty-triggered attention shifting, and target

discrimination (Figure 3). The more limited comparison in

Figure 3A shows the areas activated significantly in the cued

attention shifting (originally shown in Figure 2A) and novelty-

triggered attention shifting (originally shown in Figure 2B)

conditions. This comparison, which did not consider the target-

discrimination related activations, showed overall distribution

differences between areas activated during cued (red color) vs.

novelty-triggered (green) attention shifting that are principally

consistent with previous models [1–4] distinguishing between

separate dorsal and ventral attention systems (for anatomical

details, see Tables 1 and 2). However, the anterior insula, an area

that has been previously often associated with the ventral stimulus-

driven/salience detection network, was activated bilaterally during

cued attention shifting, while certain areas in the right IFC were

activated during novelty-triggered but not cued attention shifting.

However, when activations during auditory target discrimina-

tion were also considered (dark blue in Figure 3B), the presumed

dorsal vs. ventral distinction between goal-driven (cued shifting,

target discrimination) and stimulus-driven activation networks

became slightly less obvious. That is, particularly in the right

hemisphere, many of the more ‘‘ventral’’ areas, specifically near

the superior temporal auditory areas and in the lower parts of the

lateral temporal cortex (STS), which were significantly activated

during novelty-triggered (but not cued attention shifting) were also

strongly activated during detection of auditory targets. Nonethe-

less, the more posterior aspects of STS, more extensively in the left

Figure 1. Task and stimuli. In each 10-sec trial, subjects were instructed to wait for a cue in the ear where a subsequent target was likely to appear,
and to press a button as quickly as possible after hearing the target. The cues and targets were embedded within dichotic trains of pure-tone
standards. Novel sounds, which occasionally occurred opposite to the cued ear, were to be ignored. All stimuli were presented during a 7.82-sec
period preceding the fMRI acquisition. Subjects were informed that the sound of the scanner ended the trial (i.e., the scanner noise was a controlled
trial-end signal). The proportions of the active trials were as follows: the cue followed by the target (‘‘Cue+Target+Standards’’, 40%), the cue but no
target (‘‘Cue+Standards’’, 20%), the cue followed by a novel (‘‘Cue+Novel+Standards’’, 20%), and standard-stimulation only (‘‘Standards’’, 20%). A
‘‘mixed’’ trial-sequence design was used. That is, each period of 6 random-order active trials was followed by a block of 3 silent baseline trials (for
example, to allow for quality control of within-subject auditory activations). Finally, withineach trial, the stimulus-onset asynchrony (SOA) was jittered
to mitigate expectancy confounds such as omission responses. The overall inter-stimulus interval was 530 ms (during the period between the scans;
corresponding to 1.06 sec within one ear, resulting in mean SOA 1.1 sec/ear).
doi:10.1371/journal.pone.0044062.g001
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hemisphere, seemed to be quite selectively related to stimulus-

driven processes (green in Figure 3B).

Note that there were also overlaps between the two more

goal-driven auditory attention conditions (cued attention shifting

and target discrimination) in areas not activated by novelty-

triggered attention shifting (pink in Figure 3B). One such area

is, interestingly, the anterior insula. Overlapping activations

between the two more goal-driven auditory attention conditions

were also observed in parts of the PMC/FEF and cingulate

cortex.

Despite the complex pattern of overlapping activations to the

three major contrasts of interest, we also found areas that were

significantly associated by only one of the three processes. An

interesting distribution of activations was observed particularly in

the right posterior parietal areas: cued attention shifting activated

the superior and anterior region of IPS, novelty-triggered attention

shifting activated the posterior and inferior IPS, while target

discrimination activated more anterior/superior aspects of IPS.

Finally, areas activated selectively by voluntary attention shifting

were also found in the right and left precentral areas, in the

vicinity of FEF.

Figure 3B show activations in a widespread array of regions

related selectively to target discrimination more dorsally and also

medially in the neocortex. For example, the superior lateral PFC

Figure 2. The main contrasts of the group fMRI analyses. A. The contrast between Cue+Standards vs. Standards only, presumably reflecting
cued voluntary attention shifting. While the strongest activation focus emerged in the anterior insula, significant activations were also found in the
bilateral PMC/FEF, mSFC (including pre-SMA), paracingulate, aMCC, dPCC, pSTG, PT, STS, and IPS. B. The contrast between Cue+Novel+Standards vs.
Cue+Standards, presumably reflecting novelty-triggered involuntary attention shifting. Significant activations were found in the right PMC/FEF, MFC,
pas triangularis, orbital, pregenual ACC, subparietal regions, left cuneus, bilateral posterior insula, pMCC, dPCC, Heschl’s gyrus, aSTG, pSTG, PT, STS,
MTG, ITG, TPJ, IPC, IPS, and precuneus. C. The contrast between condition Cue+Target+Standards and Cue+Standards, presumably reflecting target
discrimination. Significant activations were found in the bilateral SFC, DLPFC, PMC, IFC, orbital ACC, subgenual ACC, pregenual ACC, aMCC, pMCC,
dPCC, pars marginalis, Heschl’s gyrus, aSTG, pSTG, PT, STS, MTG, ITG, TPJ, SPL, SMG, AG, IPS, subparietal sulcus, precuneus, parieto-occipital sulcus,
cuneus, calcarine, and lingual gyrus. D. The ‘‘baseline’’ contrast between condition Standards only and Fixation. In addition to the primary auditory
cortex, significant activations were observed in several frontal and parietal regions. The Z-statistic images were thresholded at Z .2.3 with a GRF
corrected cluster significance threshold of P,0.05.
doi:10.1371/journal.pone.0044062.g002

Table 1. Brain regions activated in the Cue+standards vs. Standards only contrast.

Regions of Interest Left hemisphere Right hemisphere

Frontal-cingulate-insular Regions x Y z PSC Zmax Zc1b Zc2b x y z PSC Zmax Zc1b Zc2b

Superior frontal gyrus 24 22 62 0.59 3.6 1.52 22.12 6 20 48 0.62 4.55 3.31 23.44

Inferior frontal gyrus - pars opercularis 236 18 10 0.51 3.85 3.64 23.56 38 20 10 0.53 3.68 3.35 22.87

Inferior frontal sulcus 244 14 26 0.4 3.54 2.77 21.47 36 18 22 0.47 3.15 2.4 22.01

Precentral gyrus 244 24 48 0.69 3.28 3.24 21.04 44 24 50 0.98 5.05 4.15 21.73

Inferior part of the precentral sulcus 240 8 24 0.48 4.11 1.35 22.85 34 6 32 0.54 3.92 1.91 21.35

Central sulcus 40 28 52 0.43 3.7 2.96 20.44

Superior part of the precentral sulcus 232 28 50 0.33 3.74 3.08 22.75 42 24 48 0.43 4.57 3.84 21.47

Middle-anterior part of the cingulate gyrus & sulcus 28 10 46 0.31 3.12 1.33 23.26 10 12 52 0.39 4.31 1.6 22.44

Middle-posterior part of the cingulate gyrus & sulcus 10 4 52 0.33 4.36 2.11 22.56

Superior segment of the circular sulcus of the insula 230 28 8 0.45 5.18 3.25 23.38 30 24 10 0.49 4.68 2.75 23.27

Anterior insula - short insular gyri 230 22 6 0.36 3.96 3.75 23.5 34 20 0 0.42 4.39 3.52 23.68

Anterior segment of the circular sulcus of the insula 228 28 0 0.32 4.2 2.72 23.86 30 24 0 0.43 4.02 3.31 22.89

Temporal Regions

Lateral superior temporal gyrus 262 244 14 0.6 3.5 1.99 20.36 64 236 12 0.58 3.41 2.81 1.8

Superior temporal gyrus - planum temporale 252 242 20 0.48 3.41 2.49 20.06 64 232 16 0.4 3.09 2.79 2.32

Superior temporal sulcus 256 246 12 0.41 3.05 2.95 20.6 46 244 12 0.46 3.47 1.53 21.42

Parietal Regions

Inferior parietal - supramarginal gyrus 60 240 16 0.5 3.58 2.79 0.46

Inferior parietal - angular gyrus 228 268 42 0.43 3.43 1.22 23.18 34 264 44 0.43 3.41 1.49 21.93

Sulcus intermedius primus of Jensen 60 238 16 0.38 3.58 2.93 0.9

intraparietal sulcus and transverse parietal sulci 230 256 38 0.49 5.1 1.88 23.46 32 260 44 0.47 3.63 2.04 22.2

Interlobar Regions

Posterior ramus of the lateral sulcus 250 242 22 0.35 3.28 2.88 0.01

Pericallosal sulcus 24 230 28 0.4 3.02 21.16 23.99

Note: x,y,z coordinates in units of mm; PSC: percent signal change of the group average of each subject’s maximum percent signal change in the region; Zmax: the Z-
score of the peak voxel of activation within the local cluster; Zc1b: the Z-score of the 1st condition cue+standards vs. baseline; Zc2b:the Z-score of the 2nd condition
standards vs. baseline.
doi:10.1371/journal.pone.0044062.t001
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areas (including DLPFC), the medial PFC, and cingulate cortex

areas were activated by target discrimination only (see Figure 2C
and Table 3 for detailed anatomical descriptions). Similarly,

activations of visual cortex areas, including the calcarine sulcus,

cuneus, and lingual gyrus, were almost specific to target

discrimination, with only a few activation points found more

Table 2. Brain regions activated in the Cue+Novel+Standards vs. Cue+Standards contrast.

Regions of Interest Left hemisphere Right hemisphere

Frontal-cingulate-insular Regions x y z PSC Zmax Zc1b Zc2b x y z PSC Zmax Zc1b Zc2b

Middel frontal gyrus 40 12 46 0.65 3.03 1.92 21.5

Inferior frontal gyrus - pars triangularis 52 28 4 0.49 3.25 0.5 24.01

Precentral gyrus 44 2 46 0.65 3.49 3.52 2.31

Inferior part of the precentral sulcus 42 2 40 0.41 3.36 3.54 1.72

Subcentral gyrus (central operculum) and sulci 248 218 16 0.5 3.63 1.89 22.46 54 28 12 0.57 3.77 1.12 21.24

Orbital sulcus 28 38 26 0.69 2.63 1.86 21.64

Superior part of the precentral sulcus 44 0 44 0.33 3.35 3.65 2.77

Middle-posterior part of the cingulate gyrus and sulcus 24 220 32 0.36 3 1.19 23.18

Posterior-dorsal part of the cingulate gyrus 24 226 32 0.39 3.2 1.15 22.4 6 226 30 0.38 3.16 2.99 21.27

Marginal branch of the cingulate sulcus 216 232 42 0.28 2.98 21.46 23.2

Posterior insula 240 0 216 0.6 4.01 2.95 22.16 38 4 218 0.85 4.05 2.65 22.6

Superior segment of the circular sulcus of the insula 32 26 10 0.3 3.02 4.03 3.14

Anterior insula 40 4 24 0.28 3.02 20.72 22.9

Inferior segment of the circular sulcus of the insula 244 222 4 1.09 5.46 5.27 2.79 46 218 24 0.93 5.44 4.21 1.35

Temporal Regions

Heschl’s gyrus 246 220 6 1.09 5.84 4.98 0.71 54 26 2 0.99 5.56 2.98 21.12

Transverse temporal sulcus 240 230 8 1.15 5.43 5.56 3.72 50 228 10 1.19 5.53 5.83 3.19

Lateral superior temporal gyrus (STG) 264 240 12 1.67 5.82 4.92 3.33 64 234 6 1.71 6.29 6.01 2.4

Superior temporal gyrus - planum polare 250 26 26 0.93 5.2 5.22 0.36 50 26 26 0.9 5.18 4.08 20.01

Superior temporal gyrus - planum temporale (PT) 256 232 10 1.47 5.49 5.78 3.11 60 230 14 1.33 5.92 5.05 3.93

Superior temporal sulcus 256 250 6 0.95 4.72 3.14 0.69 52 236 10 0.91 5.72 5 1.96

Middle temporal gyrus 258 254 8 0.78 5.12 2.91 0.22 62 238 22 1 4.65 2.42 21.36

Inferior temporal gyrus 256 258 210 0.64 3.67 21.66 23.52 56 246 212 0.82 3.59 20.22 23.1

Inferior temporal sulcus 244 260 6 0.45 3.56 1.5 21.68 58 242 210 0.48 3.15 0.09 22.95

Medial occipito-temporal gyrus - parahippocampal gyrus 218 232 28 0.77 2.92 20.33 22.94 16 234 26 0.81 2.92 0.4 22.3

Parietal Regions

Inferior parietal - supramarginal gyrus (SMG) 260 246 20 0.75 4.99 2.82 1 64 232 14 1.1 5.12 4.55 3.65

Inferior parietal - angular gyrus (AG) 258 250 20 0.58 4.12 2.31 0.59 54 246 26 0.49 4 3.5 20.11

Sulcus intermedius primus of Jensen 252 250 30 0.34 3.23 2 21.87 58 242 16 0.64 4.84 3.58 2.39

intraparietal sulcus (IPS) and transverse parietal sulci 230 266 38 0.38 3.22 2.68 0.81 34 266 34 0.34 3.02 1.98 20.28

Subparietal sulcus 12 254 44 0.35 3.19 0.08 23.68

Precuneus 26 252 48 0.54 3.4 20.65 23.23 8 266 34 0.58 4 3.79 20.13

Occipital Regions

Middle occipital gyrus 34 270 34 0.35 2.92 1.2 21.21

Cuneus 26 280 32 0.54 3.15 20.77 22.78

Anterior occipital sulcus 244 262 6 0.3 3.44 1.66 21.43 48 260 8 0.29 3 1.7 21.26

Interlobar Regions

Horizontal ramus of the anterior segment of the lateral fissure 46 30 4 0.32 3.13 0.49 21.89

Vertical ramus of the anterior segment of the lateral sulcus 40 26 10 0.25 3.18 1.98 20.78

Posterior ramus of the lateral sulcus 246 234 10 1.01 5.53 5.01 1.44 50 230 10 0.82 5.77 5.83 2.79

Pericallosal sulcus 22 228 28 0.54 3.73 2.69 21.5 4 224 28 0.45 4.15 3.42 21.66

Parieto-occipital sulcus 210 270 40 0.4 3.27 1.93 20.37 10 264 34 0.48 3.99 3.51 0.37

Note: x,y,z coordinates in units of mm; PSC: percent signal change of the group average of each subject’s maximum percent signal change in the region; Zmax: the Z-
score of the peak voxel of activation within the local cluster; Zc1b: the Z-score of the 1st condition cue+novel+standards vs. baseline; Zc2b: the Z-score of the 2nd

condition cue+standards vs. baseline.
doi:10.1371/journal.pone.0044062.t002

Novelty-Driven vs. Cued Auditory Orienting

PLOS ONE | www.plosone.org 6 August 2012 | Volume 7 | Issue 8 | e44062



Table 3. Brain regions activated in the Cue+Target+Standards vs. Cue+Standards contrast.

Regions of Interest Left hemisphere Right hemisphere

Frontal-cingulate-insular Regions x y z PSC Zmax Zc1b Zc2b x y z PSC Zmax Zc1b Zc2b

Superior frontal gyrus 26 32 36 1.3 4.15 1.37 21.72 20 50 30 1.18 3.72 0.12 23.55

Superior frontal sulcus 226 38 30 0.39 4.74 2.64 22.05 26 40 32 0.39 4.28 2.81 21.33

Middel frontal gyrus 234 38 30 0.89 5.21 4.13 21 38 36 32 0.88 5.01 4.11 21.37

Middle frontal sulcus 234 38 30 0.47 5.21 4.13 21 36 36 32 0.5 4.99 4.65 20.71

Inferior frontal gyrus - pars orbitalis 230 32 22 0.39 2.97 2.58 21.07

Inferior frontal gyrus - pars opercularis 254 2 8 0.84 4.97 5.15 21.89 46 6 6 1 5.58 4.61 20.29

Inferior frontal gyrus - pars triangularis 48 38 2 0.7 4.23 1.08 22.53

Inferior frontal sulcus 238 42 12 0.45 4.43 2.67 20.2 38 40 18 0.56 4.58 3.5 0.3

Precentral gyrus 238 220 58 1.83 4.19 3.15 23.39 56 8 12 0.99 5.26 2.5 1.73

Superior part of the precentral sulcus 224 212 58 0.47 3.37 2.89 22.09 44 0 46 0.47 3.23 3.65 2.82

Inferior part of the precentral sulcus 254 4 12 0.51 3.73 3.96 20.98 50 8 10 0.48 3.6 3.78 1.47

Central sulcus 236 220 54 0.99 4.16 2.6 24.32

Subcentral gyrus (central operculum) and sulci 242 28 14 1.21 5.97 4.64 23.75 50 26 10 0.95 4.23 3.11 21.29

Orbital gyri 222 10 214 0.95 3.43 1.84 24.03 24 10 214 1.14 4.14 2.7 23.17

Lateral orbital sulcus 40 42 2 0.42 4 1.25 21.3

Orbital sulcus 224 38 28 0.52 3.73 2.23 22.45 24 36 28 0.7 3.34 2.53 22.62

Olfactory sulcus 216 8 214 0.72 4.13 2.46 24.08 20 8 214 0.87 3.63 2.85 22.61

Transverse frontopolar gyri and sulci 22 56 2 0.88 3.5 1.25 20.82

Fronto-marginal gyrus (of Wernicke) and sulcus 222 52 0 0.77 3.22 3.12 21.75 20 56 26 0.76 4.64 2.86 21.9

Anterior part of the cingulate gyrus and sulcus 26 36 14 0.47 5.21 3.05 23.9 6 32 24 0.57 4.96 4.48 20.82

Middle-anterior part of the cingulate gyrus and sulcus 28 6 38 1.09 5.55 5.39 22.02 10 26 28 0.91 5.5 4.62 0.74

Middle-posterior part of the cingulate gyrus and sulcus 28 6 38 1.15 5.55 5.39 22.02 6 214 32 0.79 5.03 3.7 22.35

Posterior-dorsal part of the cingulate gyrus 22 232 30 0.7 4.91 3.66 21.99 8 244 24 0.65 4.48 3.48 22.57

Posteror-ventral part of the cingulate gyrus 210 242 6 0.47 4.17 0.94 23.5 16 238 2 0.55 4.16 3.09 23.11

Marginal branch of the cingulate sulcus 28 234 44 0.59 5.05 2.42 23.95 14 242 46 0.43 4.39 1.81 23.13

Anterior insula - short insular gyri 238 24 12 0.68 5.32 4.33 23.42 38 6 2 0.62 5.39 4.83 21.73

Posterior insula 234 222 12 0.88 5.2 5.26 22.7 36 28 26 0.97 4.75 4.09 23.02

Anterior segment of the circular sulcus of the insula 226 20 28 0.4 4.15 2.67 22.1 32 24 4 0.45 3.84 4.44 3.35

Inferior segment of the circular sulcus of the insula 236 220 4 1.33 6.39 5.11 22.65 38 218 0 1.17 5.5 3.6 21.52

Superior segment of the circular sulcus of the insula 238 24 20 0.79 5.73 4.05 21.39 36 6 8 0.62 5.58 4.72 20.99

Temporal Regions

Heschl’s gyrus 240 222 6 1.62 6.26 5.41 20.4 40 222 6 1.23 5.32 4.99 2.92

Transverse temporal sulcus 248 224 6 1.48 5.69 5.87 1.62 50 228 10 1.33 5.68 5.57 3.19

Lateral superior temporal gyrus 264 240 12 2.14 5.64 4.8 3.33 62 220 6 1.9 5.6 4.96 2.79

Superior temporal gyrus - planum polare 250 28 0 1.23 4.82 4.41 1.22 50 26 26 1.08 4.3 3.75 20.01

Superior temporal gyrus - planum temporale 254 232 12 1.92 5.52 5.39 0.95 60 224 6 1.55 5.89 4.64 2.78

Superior temporal sulcus 244 248 14 1.04 3.83 2.53 0.59 46 242 14 1.15 6.09 2.94 1.84

Middle temporal gyrus 262 254 6 0.88 3.5 2.37 20.03 60 258 4 1.18 4.21 2.97 21.89

Inferior temporal gyrus 256 254 210 0.87 3.41 21.24 23.29 58 244 212 1.07 3.57 0.66 22.94

Inferior temporal sulcus 254 238 214 0.6 3.22 0.22 23.02 56 242 28 0.57 3.6 0.72 22.36

Medial occipito-temporal gyrus - parahippocampal gyrus 216 236 26 1.04 5.17 2.7 22.49 16 238 24 1.11 4.47 2.89 22.31

Parietal Regions

Superior parietal lobule 28 274 44 1.43 4.54 4.05 21.54 16 272 46 0.68 3.49 1.76 21.51

Inferior parietal - supramarginal gyrus 262 230 22 1.43 6.43 4.69 21.37 64 236 24 1.49 5.24 3.09 0.82

Inferior parietal - angular gyrus 242 256 42 0.67 4.31 3.07 21.42 58 248 32 0.67 4.97 3 0.02

Sulcus intermedius primus of Jensen 252 250 32 0.49 4.51 2.77 22.66 54 242 38 0.9 4.77 4.09 0.58

intraparietal sulcus and transverse parietal sulci 238 254 40 0.58 4.39 4.77 20.23 40 244 38 0.56 3.95 3.67 0.23

Postcentral gyrus 250 224 54 2.15 5.2 3.47 22.66
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dorsally near the parietal-occipital junction and cuneus during

novelty-triggered attention shifting.

Cued attention shifting vs. novelty-triggered attention

shifting. Additionally, we also directly compared cue vs. novel

and novel vs. cue contrasts using second-level random-effects

group analysis thresholded at P,0.01 (Figure 4). Activations

associated with the Cue vs. Novel contrast were significantly

higher in bilateral mSFC/aMCC (both more prominently at the

right), anterior insula, and IPS, as well as right FEF, PMC, and

IFC (pars opercularis). Activations associated with the Novel vs.

Cue contrast were significantly higher in bilateral primary and

non-primary (anterior and posterior STG, PT) auditory cortex,

posterior insula, STS, MTG, ITG, TPJ, inferior parietal (SMG,

AG), and precuneus, as well as right IFC (pars triangularis).

Discussion

While a small number of fMRI studies [11,12,36] utilizing

continuous fMRI scanning on cued auditory attention shifting

have been published, the current study was specifically designed to

compare auditory fMRI activations between attention shifting to

predictable cues and stimulus-driven orienting to unexpected

novel sounds. Noting the essential role of sensory areas in

automatic change detection processes triggering involuntary

attention in the auditory domain, we used a ‘‘mixed’’ event-

related/sparse sampling approach to mitigate both sensory and

attentional confounds caused by acoustical scanner noise to

achieve this goal. In addition to similarities between activations

to putative endogenous and exogenous processes consistent with

previous studies [7,9–11], our approach also revealed some

notable activation differences between cued attention shifting,

novelty-triggered attention shifting, and target discrimination.

Areas activated selectively by cued attention shifting were found

in the bilateral precentral/FEF regions, and in posterior parietal

areas. In these areas, the foci of activations were clearly different

between cued attention shifting (more posteriorly/superiorly in

IPS), novelty-triggered attention shifting (inferior/posterior to

IPS), and target discrimination (more anteriorly in IPS/SMG). In

line with the theory [1–4] of distinct dorsal vs. ventral attention

systems, novelty-triggered attention shifting activated selectively

posterior aspects of the STS/medial lateral temporal cortex,

inferiorly to the activations of the two other more goal-directed

attention conditions. Interestingly, the anterior insula, which has

often been associated with more fundamental processes of

stimulus-driven change [44] and salience detection [45,46], was

activated during cued attention shifting and target discrimination,

but not during attention shifting to sound novelty. In the prefrontal

cortices, activations associated with target discrimination were

widespread and found in regions more anterior and superior to the

frontal areas activated by other conditions.

In the precentral areas including the FEF and lateral PMC

areas (BA 6 and 44), most widespread activations were observed

for the contrast associated with cued attention shifting. Within

these areas, the region probably most closely corresponding to

FEF was significantly activated also during novelty-triggered

attention shifting, but only very weakly during target discrimina-

tion. Our results, thus, would suggest that these areas are related to

the orienting of auditory attention, and most strongly, during cued

Table 3. Cont.

Regions of Interest Left hemisphere Right hemisphere

Frontal-cingulate-insular Regions x y z PSC Zmax Zc1b Zc2b x y z PSC Zmax Zc1b Zc2b

Postcentral sulcus 244 228 48 0.8 5.47 4.85 23.78 40 242 36 0.48 3.65 3.48 20.13

Paracentral lobule and sulcus 24 214 72 1.45 3.06 2.4 21.93

Subparietal sulcus 28 246 44 0.4 4.06 20.19 23.66 10 258 42 0.43 4.36 0.95 23.1

Precuneus 26 232 44 1 4.93 2.93 23.86 10 258 42 0.77 4.36 0.95 23.1

Occipital Regions

Occipital pole 28 294 24 0.67 4.32 2.73 21.99 8 294 14 1.19 3.88 20.57 23.45

Calcarine sulcus 218 272 4 0.86 4.53 0.93 22.62 16 272 10 0.87 4.22 2.52 22.45

Superior occipital gyrus 216 278 38 0.59 2.82 0.66 22.37

Cuneus 26 278 32 0.92 4.03 3.02 22.99 10 278 12 0.98 4.26 1.68 22.4

Medial occipito-temporal gyrus - lingual gyrus 26 294 26 1.03 4.31 1.91 22.29 6 282 0 1.15 4.36 2.6 22.77

Medial occipito-temporal sculcus and lingual sulcus 224 272 24 0.53 3.2 0.49 22.15

Lateral occipito-temporal sulcus 248 246 214 0.38 3.1 20.53 23.34

Interlobar Regions

Horizontal ramus of the anterior segment of the lateral fissure 232 32 4 0.22 3.76 3.15 20.61 36 32 6 0.39 4.17 3 21.22

Vertical ramus of the anterior segment of the lateral sulcus 236 26 10 0.26 3.31 5.39 0.65 38 22 10 0.27 4.27 5.32 2.8

Posterior ramus of the lateral sulcus 232 228 22 1.42 5.72 3.92 21.94 42 232 14 1.11 6.55 4.67 1.54

Anterior transverse collateral sulcus 238 214 222 0.49 2.92 1.34 21.82

Posteror transverse collateral sulcus 220 274 24 0.3 3.29 20.25 22.93

Parieto-occipital sulcus 216 270 36 0.64 4.16 1.13 21.91 12 266 34 0.71 4.17 4.1 1.57

Pericallosal sulcus 24 234 26 0.97 5.5 4.67 21.5 4 230 28 0.83 5.31 4.85 21.17

Note: x,y,z coordinates in units of mm; PSC: percent signal change of the group average of each subject’s maximum percent signal change in the region; Zmax: the Z-
score of the peak voxel of activation within the local cluster; Zc1b: the Z-score of the 1st condition cue+target+standards vs. baseline; Zc2b: the Z-score of the 2nd

condition cue+standards vs. baseline.
doi:10.1371/journal.pone.0044062.t003
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attention shifting. This interpretation is consistent with the long-

held view that FEF constitutes a critical locus for the control of

spatial attention [47], as it is presumably interconnected with other

frontoparietal regions, such as IPS, and because it may also be

involved in multisensory attention [48] and orienting [9,49]. The

increased FEF activations associated with auditory attention

shifting, during a condition in which subjects were instructed to

fixate on a cross in the center of the screen for all tasks, is also in

line with the notion [49,50] that this area is involved in more than

just the control of eye movements and overt gaze orienting.

However, similar to previous observations [7,9,11], our results

suggest that the right FEF is activated by distracting events that

catch attention in a bottom-up manner as well. Indeed, it was

recently suggested that regions of human FEF and IPS may reflect

the representation or integration of attentional priority [9,51],

instead of constituting strictly a ‘‘voluntary’’ attentional system. In

other words, the function of FEF may, instead of voluntary control

only, be more essentially associated with orienting of spatial

attention. Intriguingly, the lateralization of present FEF effects for

novel and distracting auditory events is also in line with the

traditional view that the triggering of involuntary auditory

attention is specifically lateralized to the right frontal cortex

[40]. Meanwhile, the voluntary shifting condition seemed to

activate precentral areas including the FEF more bilaterally.

Our results on precentral areas (beyond FEF) may be interesting

in light of the recent debate on the attentional role of lateral PMC.

Some studies [2,3] suggest that lateral PMC is involved in the

detection of salient and behaviorally relevant stimuli, especially in

unattended and task-irrelevant locations (stimulus-driven atten-

tion). This finding has led to a proposition that these regions

constitute a part of the same ventral fronto-parietal network that

also includes the anterior insula and TPJ [2,3]. However, the

Figure 3. Anatomical labeling of significant activations during the different task conditions based on group (N = 18) results. A.
Comparison between cued attention shifting (Cue+Standards vs. Standards Only) and novelty-triggered attention shifting (Cue+Novel+Standards vs.
Cue+Standards) conditions would seem to support a distinction between a dorsal voluntary (pSTG, PT, STS, anterior insula, superior IPS, IFC, FEF/PMC,
mSFC, aMCC) and a more ventral (primary and non-primary auditory cortex, TPJ, inferior IPS, precuneus, PCC, right IFC) involuntary attention system.
B. When also overlapped with areas activated during target discrimination (Cue+Target+Standards vs. Cue+Standards), areas purely related to
voluntary attention shifting would seem to be focused to the right and left PMC, including the FEF that is also partially activated by the other
conditions, and to the superior/posterior aspect of IPS. Involuntary attention shifting (Cue+Novel+Standards vs. Cue+Standards) seems to
concentrate in the right inferior IPS and posterior STS (MT/MTG) areas. Interestingly, the anterior insula seems to be activated during both conditions
needing voluntary attentional control. At the same time, in the auditory cortices, voluntary attention shifting (Cue+Standards vs. Standards Only)
seems to be restricted to the posterior ‘‘where’’ area, while both target discrimination and involuntary orienting to novel sounds activated virtually all
superior temporal auditory areas.
doi:10.1371/journal.pone.0044062.g003
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present evidence of more widespread activations in the lateral

PMC during cued rather than novelty-triggered attention shifting

suggests that these regions are involved in top-down/voluntary

attentional control.

The posterior parietal cortex, especially IPS, is essential for

spatial attention [32,52,53] supported by converging evidence

from monkey physiology and human neuroimaging studies. There

is even some evidence that further suggests a topographic

organization of spatial attention signals within IPS [54]. Our

findings that cued attention shifting activates superior IPS,

novelty-triggered attention shifting activates inferior IPS, and

target discrimination activates more anterior/superior IPS areas

suggest possible functional differentiation within these posterior

parietal areas. These findings are also principally in line with the

proposed dorsal vs. ventral distribution of networks dedicated to

goal-driven (cued attention shifting, target discrimination) and

stimulus-driven (novelty-triggered attention shifting) attentional

processes [1,2,4].

Another intriguing finding in our study is that the anterior

insula was, in both hemispheres, more significantly activated in

cued attention shifting and target discrimination than novelty-

triggered attention shifting. Previous studies on executive control

of auditory spatial attention have reported activations in the

bilateral anterior insula [36]. However, the anterior insula has not,

traditionally, been viewed as a task-control region, and its

activations have typically been considered subsidiary to IFC

[11,33,55] or they have not been extensively discussed [10,12].

Nevertheless, our data are in line with the accumulating human

and non-human primate evidence [27–30,56,57] suggesting that

the anterior insula, as a part of a cingulo-opercular system, might

play a more significant role in voluntary cognitive control than

previously assumed. The notion has been further supported by

animal [27] and human [58] evidence on anatomical connectivity

between the anterior insula and mSFC areas, as well as by

histological evidence [59,60]. It has been, however, also debated

whether the anterior insula has a more executive role in

maintaining a sustained task mode and strategy [29], or whether

it is merely a transient saliency detector that initiates attentional

control signals in other higher-order areas [46]. The present lack

of anterior insula activations to the most salient sounds of the

present design, the novel sounds, would seem to be clearly at odds

with the latter idea. Our findings would, instead, seem to be more

consistent with an alternative theory [61] that the anterior insula

activity does not express perceptual salience, per se, but rather the

recruitment of processing resources when faced with a given

sensory event, whatever the source of that recruitment, bottom-up

or top-down. Finally, it is also noteworthy that, in addition to the

actual redirection of attention, attention shifting presumably

Figure 4. Areas Activated by the Cue vs. Novel and Novel vs. Cue Contrasts. Increased activations associated with Cue vs. Novel contrast
were observed in bilateral FEF, mSFC/aMCC, anterior insula, and the anterior/superior aspect of IPS, as well as right PMC and IFC. Increased activations
associated with Novel vs. Cue contrast were most prominently in the bilateral primary and non-primary auditory cortex, TPJ, and the inferior aspect of
IPS. The contrasts were calculated at the second-level using a random-effects group analysis thresholded at P,0.01.
doi:10.1371/journal.pone.0044062.g004
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involves endogenous processes that allow us to disengage from

previous activity and to maintain heightened top-down control on

the new task [62]. Consequently, noting the recent evidence by

Wu et al. [36] and Alain et al. [32] showing anterior insula

activations during working memory processing and goal-directed

actions, it is also possible that activations in the anterior insula

during cued attention shifting and target discrimination are most

essentially related to engagement of attention control.

It has been proposed that the anterior insula and the cingulate

gyrus may belong to the same cingulo-insular system involved in

top-down cognitive control. Our data is consistent with this

proposal, as the mSFC regions (including bilateral pre-SMA and

extending to aMCC, and rostral cingulate zones) and the anterior

insula were both activated during cued attention shifting and

target discrimination, but not in novelty-triggered attention

shifting. The cingulate gyrus has also been identified as a major

component in a distributed network subserving the dynamic

relocation of spatial attention [63,64]. Previous studies also show

that aMCC is associated with conflict resolution [65,66] and

decision making [67]. Here we provide data suggesting that

aMCC is specifically involved in top-down spatial attention

control.

In general, our data are consistent with previous studies on

auditory attention shifting. However, we also observed certain

discrepancies. Such discrepancies may, obviously, be in part

explainable by differences in paradigms and methods between the

studies. For example, our results differ slightly from a previous

event-related fMRI study by Mayer et al. [10] where subjects were

instructed to localize targets following informative (75% valid) or

uninformative (50% valid) cues. In contrast to present findings, as

well as those reported in several recent auditory studies [11,68],

the authors found that automatic orienting elicited by the

uninformative cue condition increased activations in the precentral

areas and the insula, both of which in the present study were

associated with voluntary instead of stimulus driven processes.

However, the study of Mayer et al. apparently did not aim at

separating the processes of auditory cued attention shifting and

target identification. Moreover, based on the behavioral data, it is

not entirely clear that uninformative cues used in Mayer et al.

were, in fact, followed by less intensive top-down processing than

informative cues.

At the same time, the present results differ slightly from the

event-related fMRI study of Salmi et al. [11], in which the authors

used a dichotic target-discrimination design that was in many ways

analogous to the present study. Specifically, Salmi and colleagues

asked their subjects to detect occasional targets in the attended

stream. Instead of novel sounds presented only to the uncued ear,

involuntary attention shifts were triggered by unexpected loudness

deviations presented to either ear. Finally, unlike in the present

study, attention shifts were guided using central visual cues. Their

results were quite similar to the present findings in regards to top-

down controlled attention shifting. Salmi et al did not, however,

observe top-down related activations in the anterior insula. At the

same time, using the visually presented shifting cues, Salmi et al.

observed visual-cortex activations that were absent during cued

shifting in the present study. For the bottom-up driven attention

shifting, the present study showed more extensive activations in

bilateral auditory cortex (possibly due to auditory stimulation and

scanning parameter differences explicated above), posterior insula,

IPS, and posterior cingulate than the study of Salmi and

colleagues. In addition to aforementioned differences in stimula-

tion and scanning parameters (continuous vs. sparse sampling),

some of these discrepancies may be explainable by anatomical

interpretation approaches. For example, the present surface-based

approach may produce different results in terms of the exact

anatomical boundaries between the anterior insula and IFC than

the fully volumetric atlas that was used by Salmi and colleagues.

The present sparse sampling design may help make the results

more easily comparable to cognitive neuroscience studies con-

ducted using other methods that are not confounded by factors

such as acoustical scanner noise. That is, in comparison to the

relatively small number of auditory studies on voluntary attention

shifting, there has been a profusion of MEG and EEG research on

involuntary attention shifting to unattended sound changes [15–

17,69–77]. In these studies, involuntary auditory attention shifting

has been proposed to be triggered by an automatic change-

detection process, reflected by the MMN response [78], followed

by a sequence of brain events associated with attentional orienting

and conscious detection of this change (however, see also [79]).

Indeed, in the present study, quite remarkable differences between

conditions emerged in the superior temporal auditory areas. In

these areas, the activations during novel sound processing

extended all over the superior temporal plane, while activations

to attention shifting cues were only significant in posterior aspects

of auditory cortex (pSTG, PT). This distribution difference of

effects could, in principle, be interpreted to be in line with the

suggestion [78] that automatic deviance detection (reflected by the

MMN process) originates more anteriorly in the auditory cortex

than responses to more predictable shifting cues. At the same time,

previous studies also suggest that non-primary auditory cortex

processes sound identity and location in parallel, through the

anterior ‘‘what’’ and posterior ‘‘where’’ pathways [52,80–82]. In the

current study, the novels contained much richer identity features

than the cues used to trigger voluntary attention shifting. Hence,

the enhanced spreading of auditory cortex activations to the

putative ‘‘what’’ regions might reflect stimulus-driven activations in

the sound-object identification system. A sound-identification

process might also explain some of the IFC activations during

novelty-triggered attention shifting, given the theory that the

‘‘what’’ streams extend to ventral frontal cortex areas [81,82].

Meanwhile, the broader activations associated with auditory target

discrimination, compared to cued attention shifting, could be

partially explained by the more enhanced top-down influences

needed for the more difficult process of discriminating the targets

from the repetitive standards, as established by numerous imaging

studies [83–85]. Our previous work on auditory attention has also

demonstrated correlations between attentional modulation of

auditory cortex activation and behavioral discrimination of target

tones (as measured from the difference in the hit rate between

easier vs. more difficult targets delivered to the ear).

We observed extensive activations in the visual cortices

associated with target discrimination, similar to Wu et al. [36]

(note however that Wu and colleagues asked their subjects to keep

their eyes shut throughout the study). This may be the result of

cross-modal influences between the auditory and visual cortices.

That is, previous studies have shown that the visual cortex can be

activated by auditory input [50,86,87] and that there are direct

anatomical connections between the superior temporal and

occipital regions in primates [88] and humans [89,90]. Mean-

while, a recent fMRI study [91] also showed that auditory occipital

activations depend strictly on the sustained engagement of

auditory attention and are enhanced in more difficult listening

conditions.

The ‘‘standards only’’ condition, during which subjects were

instructed to listen carefully and wait for the cue, revealed

significantly increased activations in several frontal, temporal and

parietal regions. Interestingly, the activated areas included the

paracentral region, which according to recent studies is activated
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during maintenance of attention [92]. These paracentral activa-

tions might have also overlapped with a supplementary eye field

region, which has been previously proposed to be involved in

visuospatial control processes and performance [93]. The areas

activated during the standards only condition also included the

SFC, which has been previously associated with high-level

cognitive control processes such as monitoring [94] and anticipa-

tory spatial attention [95]. However, it has to be noted that, in

contrast to other comparisons that were conducted across active

task/stimulation conditions, the ‘‘standards only’’ comparison was

contrasted with the fixation condition, in which no explicit task

was included.

Benefits of Sparse vs. Continuous Scanning
Here, we utilized sparse sampling to control for biases caused by

the acoustical scanner noise. Acoustical scanner noise is potentially

a problematic variable in all fMRI experiments, but it is of

particular concern in studies of audition and language processing.

First, as discussed above, these effects might obviously modulate

stimulus-driven orienting, which presumably receives a major

contribution from auditory cortex [15–17,69–77]. Although

scanner noise does not necessarily entirely abolish change-

detection activations that trigger involuntary orienting [96], the

benefits of sparse sampling in studies on stimulus-driven auditory

cortex activities have been well documented [97–99]. Second, the

ongoing acoustic and somatosensory stimulation associated with

continuous scanning may also confound attentional top-down

effects, both in auditory cortices and higher-order association

areas. The longer-term effects of continuous environmental noise

on our ability to concentrate have been very well documented

[100]. Not surprisingly, in fMRI studies, it has been shown that

increasing the intensity of acoustical scanner noise modulates

extra-auditory activations during working memory performance,

resulting activation increases in certain areas (inferior, medial, and

superior frontal gyri) and decreases in others (e.g., anterior

cingulate) [101]. Using PET, it has been further shown that

recorded scanner noise may increase regional blood flow in

anterior cingulate and Wernicke’s areas during visual imagery

[102]. Event-related potential (ERP) studies also suggest that

continuous fMRI scanner noise may reduce and delay certain

‘‘endogenous’’ components that are related to auditory attention

[96]. Consistent with these results, active behavioral auditory

performance may be improved during sparse vs. continuous fMRI

scanning [99]. Finally, recent sparse-sampling fMRI studies [103]

also suggest that top-down attention effects may produce

detectable modulations in auditory cortex even in the absence of

any acoustic stimuli. Such endogenous feedback activations could

be easily masked or cofounded in by acoustical scanner noise.

These kinds of confounds have been also discussed [104,105], for

example, in the context of interpreting top-down modulations of

auditory cortex activity by visual stimuli during continuous

scanning.

Based on the above notions, it might seem quite obvious that

sparse sampling is the best approach for any study involving

auditory functions. However, it has to be also noted that with

sparse sampling designs, a much smaller number of volumes can

be acquired in a given experiment, which may reduce the signal-

to-noise ratio in comparison to continuous scanning. Indeed, a

recent auditory cortex mapping study [99] (which however also

utilized 70 dB noise masking on the background in both fMRI

scanning conditions) showed relatively small differences between

sparse and continuous scan experiments. In terms of more

complex designs, a disadvantage of sparse sampling is the reduced

temporal resolution that will make it difficult to extract stimulus

specific BOLD time courses. Finally, a trade-off in sparse sampling

is the fact that the clustered scan noise may, itself, become a ‘‘rare

sound’’ that triggers strong activations of the alerting and orienting

networks. Although the BOLD responses of such activations will

not be necessarily caught by fMRI when the TR is long enough,

the cognitive significance and relative saliency of the subsequent

stimuli of interest may still be modulated. However, a novel

feature in the present orienting design was that these biases were

controlled by using the noise stimulus produced by each fMRI

volume acquisition as a part of the task design.

Potential Limitations
It is noteworthy that in experimental conditions, it is difficult

to produce and document activations that are purely stimulus

driven vs. endogenous. For example, novelty-triggered attention

shifting may involve a number of top-down processes that are

associated with, for example, the suppression of involuntary

attention shifting, reorienting to the relevant task (if this is part

of the instruction), and conflict resolution processes to ‘‘evaluate

the situation’’ after the automatic orienting response (see, e.g.,

Escera et al. [16], Schröger and Wolff [41] ). Cued attention

shifting is, in turn, contaminated by stimulus-driven processes

triggered by the cue itself. At the same time, voluntary attention

shifting may involve active disengagement from the previous

strategy, as well as engagement to the new attentional task

(termed ‘‘cued attention,’’ in Petkov et al. [106], also see [99]).

In other words, although the process is collectively referred to as

‘‘attention shifting’’, the parts that are actually the most

‘‘voluntary’’ or ‘‘goal directed/endogenous’’ might not be

related to the orienting, per se.

It is also possible that differences in auditory cortex activities

during the triggering of involuntary and voluntary attention are

related to the context and predictability of the stimulation. Strong

unpredictable stimuli, such as novel sounds, tend to result in

widespread sensory responses from the bottom up, which then

triggers an involuntary orienting process that, according to

previous ERP studies, is related to the strength of the auditory

cortex response. A more predicable and repeated stimulus, such as

the cue, may trigger less prominent responses – but even in this

case, the cue plays a role in orienting. However, proportionally

speaking, the bottom-up influence is smaller than in the case of

novelty-triggered attention (consistent with our predictions and

conclusions). At the same time, these processes are essentially

modulated by top-down attention, especially when the discrimi-

nation task is difficult (such as in the case of targets that result in a

stronger auditory cortex response than the cues).

Also note that in most visual studies, the cue that triggers

voluntary shifting is usually an arrow, which is physically

different from the target. A related consideration is whether the

present cues were more prone to induce stimulus-driven

activations than the symbolic arrows, which have been utilized

in many visual and also auditory attention shifting studies [11].

It has been thought that because arrow symbols do not occur in

the physical location of the target, they might trigger purely

goal-driven processes. However, it is worth noting that the

processing of any simple cue probably gets rapidly automatized

during the course of an experiment, and as the simple symbol is

repeated, the account of stimulus-driven processes subsequently

increases [107,108]. Most importantly, the present study showed

notable differences between activations during cued and novelty-

triggered auditory attention shifting, clearly beyond areas

associated with sensory cortices processing physical properties

of the sounds. Further, activations in these sensory areas, where

one might expect particularly strong stimulus-driven activations,
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were clearly weaker during attention-shifting cues than during

novel-sound or target-sound detection.

Conclusions
In conclusion, our study revealed distinct activations during

cued auditory attention shifting, involuntary orienting to novel

sound, and auditory target discrimination. Areas most selectively

involved with cued voluntary shifting included the superior/

posterior IPS and precentral areas (including FEF and PMC),

which provides important evidence supporting these regions’

involvement in top-down/voluntary attentional control. Activa-

tions specific to involuntary attention shifting to novel sound were

found in posterior STS, inferior IPS and TPJ, which is principally

consistent with models suggesting more ventral distribution of

stimulus-driven attention [1,3,4,109], but also from the right IFC.

Interestingly, our results also revealed marked differences in the

anterior insula and IFC activations associated with goal-driven

attentional processing (cued attention shifting and target discrim-

ination) and novelty-triggered involuntary attention shifting,

suggesting that the anterior insula may play a more executive

role in auditory attention than previously thought.

Materials and Methods

Participants
Potential subjects were first screened with a phone interview to

ensure that they had normal hearing and had not been exposed

regularly to environments with excessively loud noise. Nineteen

right-handed college-level educated adults with normal hearing

and no neurological disorders, psychiatric conditions, or learning

disabilities, gave written informed consent prior to testing, in

accordance with the experimental protocol approved by the MGH

IRB. One subject was excluded from the final sample due to an

inability to perform the task (hit rate below 50%), rendering a total

of eighteen subjects (N = 18, 11 females, age range 19–28).

Cued Auditory Attention Shifting Task
In all trials, brief pure tones (duration 50 ms, 5-ms ramps) were

presented in the background, randomly to the right (800 Hz) or

left ear (1500 Hz), similar to a classic study [39]. Because the

standard sounds merely offered a context to other sounds (which

were consistent across ears), the ear/frequency order of the

background standard stream was held constant across subjects.

Subjects were told to wait for a cue (250-ms buzzer sound) that

occurred in the ear where a subsequent target (50-ms tone with

800- and 1500-Hz harmonics) was likely to occur. The average

interval between the cue and the target was ,1.7 sec. Upon

hearing the cue, the subjects were advised to shift their attention to

the designated ear (with eyes remaining fixated), pay close

attention to the tones presented in that ear, and press a button

with the right index finger as rapidly as possible after hearing the

target. Specifically, subjects were instructed to pay attention to a

change in relation to the ongoing stimulation (a ‘‘thickening’’ of

the sound), and they were kept naı̈ve to the fact that the targets

were actually similar in both ear streams.

Previous event-related MEG/EEG studies [15,21,110] suggest

that strong event-related MEG/EEG responses (e.g., the P3a

component) associated with involuntary auditory orienting can be

evoked by physically varying ‘‘novel’’ sounds. In 20% of the trials,

the target was therefore replaced by a task-irrelevant novel sound

presented opposite to the cued ear. These novel sounds consisted

of eight spectrotemporally complex environmental and synthetic

sounds whose peak intensities, onset rise times, and perceived

loudness, as well as their grand-average time envelope, were made

as close to the cues as possible. Pure tones only (no cue, novel, or

target) were presented in 20% of trials. At 7.82 sec after the trial

onset, subjects heard the sound of 2.18-sec fMRI volume

acquisition signaling that the trial had ended. In other words,

the confounding effects of fMRI acquisition noise were controlled

by using it as a task stimulus. Tonal stimulation started 2.3 sec

after the onset of preceding scan/simulation, at a 1.1-sec average

stimulus-onset asynchrony (SOA) in each ear, and ended on

average 1.3 sec before the next scan. The SOA was jittered within

each trial to avoid omission-response confounds. During fMRI,

three silent baseline trials occurred after every 6 active trials (i.e., a

mixed blocked/event-related design was utilized). In subsequent

analyses, individual trials with target-detection responses beyond

the subject’s mean 62SD reaction time were considered outliers.

Finally, in an additional ten-minute behavioral experiment testing

whether the spatial cueing indeed produced significant perfor-

mance benefits, we replaced 50% of the novel sounds with a target

sound opposite to the cued ear (‘‘invalidly cued target’’).

Procedure
A standardized computerized approach taking about 5 minutes

was utilized to teach the task to the subjects before scanning.

During fMRI sessions, subjects were presented with randomly

ordered 10-sec trials. Sound stimuli were presented at 55 dB

Sensation Level, as tested individually at the beginning of each

session, and delivered through MRI compatible insert earphones

(Sensimetrics, Malden, MA). The insert included an eartip to

protect the subjects’ ears during the scan acquisitions. A cross

(fixation mark) was projected on the center of an MRI compatible

video display. Subjects were instructed to look at the fixation mark

throughout the whole study. Each scan session contained three

runs, and there was a brief break after each run to restart the

stimulation and communicate with the subject. For each task run,

there were 136 trials/blocks that lasted 22 minutes and 40 sec-

onds. Subjects were instructed to respond with their right index

finger.

Data Acquisition
Whole-head fMRI was acquired at 3T using a 32-channel coil

(Siemens TimTrio, Erlagen, Germany) and an interleaved echo

planar imaging (EPI) method. To circumvent response contam-

ination by scanner noise, we used a sparse-sampling gradient-echo

blood oxygen level dependent (BOLD) sequence (TR = 10 sec,

TE = 30 ms, 7.82 sec silent period between acquisitions, flip angle

90u, FOV 192 mm) with 36 axial slices aligned along the anterior-

posterior commissure line (3-mm slices, 0.75-mm gap, 363 mm2

in-plane resolution), with the coolant pump switched off. A field

mapping sequence (TR = 500 ms, flip angle 55u; TE1 = 2.83 ms,

TE2 = 5.29 ms) with the same number of slices, voxel size, and

slice orientation to the EPI sequence was applied to obtain phase

and magnitude maps utilized for unwarping of B0 distortions of the

functional data. T1-weighted anatomical images were obtained for

combining anatomical and functional data using a multi-echo

MPRAGE pulse sequence (TR = 2510 ms; 4 echoes with

TEs = 1.64 ms, 3.5 ms, 5.36 ms, 7.22 ms; 176 sagittal slices with

16161 mm3 voxels, 2566256 mm2 matrix; flip angle = 7u).

Data Analysis
The fMRI data were preprocessed using tools from FEAT

Version 5.98, a part of the FSL package [111] (www.fmrib.ox.ac.

uk/fsl). Skull stripping was performed with BET, B0 unwarping

using FUGUE, and motion correction with MCFLIRT. The data

were smoothed with a Gaussian kernel (5-mm FWHM) and

registered to the Montreal Neurological Institute (MNI) space
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using FLIRT. The intensity normalized fMRI time-series were

then entered into a general linear model (GLM) with the task

conditions as explanatory variables. At the second-stage, individ-

ual experimental runs were combined within each subject by using

a fixed-effect model. Finally, contrasts pertaining to the main

effects of the factorial design constituted the data for the third-

stage (mixed-effect) analysis with automatic outlier detection [112],

where the significance of observations was determined across the

group of 18 subjects using FMRIB’s Local Analysis of Mixed

Effects (FLAME) 1 and 2 [111,113],

Group analysis was performed in MNI space. Gray-matter

partial volume information obtained from each subject using

Freesurfer 5.0 anatomical segmentation results was entered as

voxel-dependent anatomical covariate in the group statistics [114].

The Z-statistic images were corrected for multiple comparisons

using whole-brain cluster correction based on GRF theory, with

an initial cluster threshold of Z.2.3 and a post-hoc corrected

threshold of P,0.05 [115]. Finally, to interpret the anatomical

results, the results were coregistered to the FreeSurfer brain

template (‘‘fsaverage’’) and shown in the surface space. The

contrasts presumed to reflect cued attention shifting, novelty

triggered reorienting, and target discrimination processes were

defined as ‘‘cue + standards vs. standards only,’’ ‘‘cue + novel +
standards vs. cue + standards,’’ ‘‘cue + target + standards vs. cue +
standards,’’ respectively. Additionally, the ‘‘baseline’’ contrast, i.e.

‘‘standards vs. fixation’’ was calculated to examine the effect of

standard sounds on attention. Finally, cued attention shifting and

novelty-triggered attention shifting were directly compared by

defining the ‘‘cue vs. novel’’ and ‘‘novel vs. cue’’ contrasts at the

second-level using a random-effects model of the group analysis

with a threshold at P,0.01. Finally, behavioral results were

analyzed using paired and independent-samples t-tests as appro-

priate.
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74. Escera C, Alho K, Schröger E, Winkler I (2000) Involuntary attention and
distractibility as evaluated with event-related brain potentials. Audiology &

Neuro-Otology 5: 151–166.

75. Kahkonen S, Ahveninen J, Pekkonen E, Kaakkola S, Huttunen J, et al. (2002)

Dopamine modulates involuntary attention shifting and reorienting: an

electromagnetic study. Clin Neurophysiol 113: 1894–1902.
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