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Abstract

The Chk1 kinase is required for the arrest of cell cycle progression when DNA is damaged, and for stabilizing stalled
replication forks. As a consequence, many Chk1 inhibitors have been developed and tested for their potential to enhance
DNA damage-induced tumor cell killing. However, inhibition of Chk1 alone, without any additional exogenous agent, can be
cytotoxic. Understanding the underlying mechanisms of this sensitivity is critical for defining which patients might respond
best to therapy with Chk1 inhibitors. We have investigated the mechanism of sensitivity in U2OS osteosarcoma cells. Upon
incubation with the Chk1 inhibitor MK-8776, single-stranded DNA regions (ssDNA) and double-strand breaks (DSB) begin to
appear within 6 h. These DSB have been attributed to the structure-specific DNA endonuclease, Mus81. The Mre11/Rad50/
Nbs1 complex is known to be responsible for the resection of DSB to ssDNA. However, we show that inhibition of the Mre11
nuclease activity leads, not only to a decrease in the amount of ssDNA following Chk1 inhibition, but also inhibits the
formation of DSB, suggesting that DSB are a consequence of ssDNA formation. These findings were corroborated by the
discovery that Mre11-deficient ATLD1 cells are highly resistant to MK-8776 and form neither ssDNA nor DSB following
treatment. However, once complimented with exogenous Mre11, the cells accumulate both ssDNA and DSB when
incubated with MK-8776. Our findings suggest that Mre11 provides the link between aberrant activation of Cdc25A/Cdk2
and Mus81. The results highlight a novel role for Mre11 in the production of DSB and may help define which tumors are
more sensitive to MK-8776 alone or in combination with DNA damaging agents.
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Introduction

High fidelity DNA replication is essential for the maintenance of

genomic stability and cell survival. Cells have therefore evolved

intricate checkpoint pathways to ensure the repair of any DNA

lesions prior to progression through the cell cycle. Checkpoint

kinase 1 (Chk1) is a vital mediator of the S and G2 checkpoints

and it is well characterized as being essential for cell survival in the

response to many DNA damaging agents [1–4]. However, more

recent studies have revealed a role for Chk1 in normal S phase

progression [5]. Chk1 inhibition in unperturbed human cells can

result in the stabilization of Cdc25A and the activation of cyclin

dependent kinases (CDKs) [6]. This increased CDK activity

causes increased replication origin firing, and DNA-damage

accumulates in S-phase most likely due to the aberrant upregula-

tion of replication initiation [7]. Despite the increased origin firing

in Chk1-deficient cells, replication fork progression is dramatically

reduced [8,9] and consequently, it has been suggested that Chk1

promotes replication fork progression in normal S phase through

the control of replication origin firing [10].

Inhibition of Chk1 has been shown to induce regions of single-

stranded DNA (ssDNA), RPA binding to ssDNA and the

formation of double strand breaks (DSB) in normal S phase [7].

Replication fork collapse has been proposed as the reason behind

S phase-specific DNA damage, and the DNA endonuclease Mus81

has recently been demonstrated as the source of DSB following

Chk1 inhibition [11]. However, the DNA substrate for Mus81

cleavage is unknown and this observation does not account for the

appearance of regions of ssDNA. The Mre11/Rad50/Nbs1

(MRN) complex functions as a DNA damage sensor and is

responsible for the recruitment of ATM to the sites of DSB [12].

The MRN complex also promotes the processing of DSB to

ssDNA [13]. We therefore, hypothesized that the Mre11 nuclease

could play a role in the production of ssDNA following Chk1

inhibition.

Here we show that the Chk1 inhibitor MK-8776 (previously

known as SCH900776) induces phosphorylation of RPA and

H2AX in U2OS cells. The Mre11 inhibitor mirin suppresses both

these effects. Moreover, the Mre11-deficient cell line ATLD1 was

inherently resistant to Chk1 inhibition but could be sensitized

through ectopic expression of Mre11. These findings suggest a

novel role for Mre11 in the production of DNA DSB following

Chk1 inhibition.

Results

Chk1 inhibition results in rapid accumulation of ssDNA
and DSB in U2OS cells

Since discovering the checkpoint inhibitory activity of UCN-01

over 15 years ago [14], we have performed extensive experiments
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on the activation of Chk1 by DNA damaging agents and its

inhibition by UCN-01, and more recently by MK-8776 [15].

These observations led to the realization that some cell lines are

highly sensitive to the inhibition of Chk1 as a single agent.

To investigate the role of Chk1 in unperturbed cell cycle

progression we incubated U2OS cells with two concentrations of

MK-8776, selected based on our previous findings that 2 mM MK-

8776 enhances the cytotoxic effects of hydroxyurea in most cell

lines but 200 nM was sufficient in more sensitive cell lines such as

U2OS [15]. Western blotting revealed that MK-8776 induced

phosphorylation of Chk1 at serine 345 at both concentrations as

early as 2 h after administration. It has been suggested that this

phosphorylation is due to the loss of Chk1-mediated feedback

inhibition of ATR [16]. Phosphorylation of H2AX (indicative of

DSB formation; see below) and accumulation of RPA phosphor-

ylation at the S4/S8 site began to appear at 4 h and was

dramatically elevated by 16 h (Fig. 1A). The phosphorylation of

RPA is also observed as a band with retarded electrophoretic

mobility in blots of total RPA.

Analysis by confocal microscopy revealed dramatic cH2AX

pan-nuclear staining in response to just 6 h of Chk1 inhibition

(Fig. 2A, second row), a phenomenon which has been previously

documented following the inhibition or depletion of Chk1 [7].

Furthermore, the cells showing pan-nuclear cH2AX staining

(approximately 20%) were, for the most part, positive for RPA foci

(.10 foci/cell). The fact that ssDNA and DSB were occurring in

the same cells led us to hypothesize that one may be a precursor

for the other. There were a few cells positive for RPA but not

cH2AX suggesting that RPA foci may appear first.

Our previous work has shown that, compared to a panel of ten

cell lines, U2OS cells are very sensitive to Chk1 inhibition by MK-

8776 as a single agent [15]. Here, U2OS cells were incubated with

MK-8776 for 24 or 48 h, then allowed to grow for an additional

5–6 days (Fig. 1B). Alternatively, cells were incubated continuously

for 7 days. The growth curves are fairly similar in all cases

demonstrating that the maximum growth suppression is elicited

within the first 24 h, and the cells are unable to recover thereafter.

It has been shown that the cH2AX induced by Chk1 inhibition

occurs exclusively in cells actively replicating their DNA [17]. We

confirmed this was the case by pulse-labeling cells with EdU to

stain S phase cells and then incubating with MK-8776 for 6 hours.

Cells were then stained for cH2AX and EdU and analyzed by

confocal microscopy (data not shown). Collectively, these results

suggest that inhibition of Chk1 causes DNA damage in cells

actively replicating their DNA.

The Mre11 inhibitor mirin prevents MK-8776-induced
DNA damage

Chk1 inhibition induces DSB which have been attributed to the

Mus81 endonuclease [11]. Whether the production of ssDNA

regions is a cause or consequence of DSB remains unknown. It is

well documented that the MRN complex is recruited to DSB and

is required for the processing of DSB to ssDNA to which RPA

binds [13,18–20]. To determine whether the ssDNA formed

following Chk1 inhibition is Mre11 dependent, we co-incubated

cells with MK-8776 and the Mre11 inhibitor mirin. Immunoflu-

orescence showed that the cH2AX pan-nuclear staining and the

RPA foci induced by 1 mM MK-8776 were completely inhibited

by co-treatment with 100 mM mirin (Fig. 2A). Western blotting

revealed that, while there was little change in the amount of

phospho-Chk1 at serine-345, the higher concentrations of mirin

reduced phospho-RPA, phospho-ATM and cH2AX induced by

MK-8776 (Fig. 2B). These concentrations are consistent with those

previously shown to inhibit the Mre11 nuclease in cells [21].

To determine whether the damage previously shown to be

induced by other Chk1 inhibitors such as UCN-01 is also inhibited

Figure 1. MK-8776 induces DNA damage and S phase arrest in U2OS cells. A. Cells were incubated with 200 nM or 2 mM MK-8776 for 0–
24 h then analyzed by western blotting for markers of DNA damage. B. Cells were incubated with MK-8776 for 24 h or 48 h then allowed to recover
in drug-free media, or incubated continuously for 7 days with MK-8776. Total DNA content per well was then assessed as a measure of cell growth.
Error bars (shown only in one direction for clarity) represent the standard error of 3 independent experiments.
doi:10.1371/journal.pone.0044021.g001

Sensitivity of Cells to Chk1 Inhibition
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Figure 2. The DNA damage induced by MK-8776 is dependent on Mre11. A. U2OS cells grown on coverslips were incubated with 1 mM MK-
8776, 100 mM mirin or both for 6 h then analyzed for cH2AX and RPA foci by confocal microscopy. 100 cells were scored for each condition and are

Sensitivity of Cells to Chk1 Inhibition

PLOS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e44021



by mirin, we repeated the experiment shown in Fig. 2B using

200 nM UCN-01 instead of 1 mM MK-8776 (Fig. 2C). As

observed with MK-8776, UCN-01 also induced phosphorylation

of RPA and H2AX and both were inhibited by mirin,

demonstrating their Mre11 dependence.

To confirm that the induction of RPA phosphorylation and

appearance of RPA foci were due to the appearance of regions of

ssDNA, we incubated cells with BrdU then used an anti-BrdU

antibody to detect incorporated BrdU in the absence of DNA

denaturation, such that only endogenous ssDNA is detected [7].

There was 100% concordance between cells with RPA foci and

BrdU staining (Fig. 2D, Row 2), demonstrating that RPA foci are

indicative of regions of ssDNA. No BrdU staining was seen when

cells were co-treated with MK-8776 and mirin (Fig. 2C, Row 4)

further supporting our conclusion that Mre11 is required for the

production of ssDNA following Chk1 inhibition. The neutral

comet assay was also performed to confirm the induction of DSB

(Fig. 2E). These data corroborated the cH2AX immunofluores-

cence showing that approximately 25% of the cells had comet tails

following treatment with MK-8776 and mirin reduced the number

of cells with tails to that of the untreated control. Taken together,

these results suggest that the formation of ssDNA following Chk1

inhibition is Mre11-dependent and occurs upstream of DSB.

DSB following Chk1 inhibition have been shown to be

dependent on the structure specific DNA endonuclease Mus81

[11]. To confirm that ssDNA was occurring upstream and

independently of DSB we performed siRNA knockdown of

Mus81 in U2OS cells prior to 6 h incubation with MK-8776

(Fig. 3A). Depletion of Mus81 dramatically reduced cH2AX

following treatment with MK-8776, while there was far less

decrease in RPA phosphorylation; some decrease in RPA

phosphorylation was expected as resection by Mre11 will also

occur downstream of the Mus81-induced DSB.

As the damage induced by MK-8776 was found to occur in

replicating cells, we quantified EdU incorporation following

treatment with mirin to ensure that the reason for the reduced

damage was not slowed DNA replication. We found no difference

in the amount of EdU incorporation in untreated cells or those

treated with 1 mM MK-8776, 100 mM mirin or 1 mM MK-

8776+100 mM mirin for 6 h (data not shown).

Chk1 has been shown to be involved in the regulation of

replication origin firing by inhibiting CDK2 activity [7,10]. In

order to determine whether CDK2 activity is involved in the

production of DNA damage following Chk1 inhibition, we tested

the effects of the CDK2 inhibitor roscovitine on the production of

ssDNA and cH2AX in U2OS cells. Roscovitine inhibited the

phosphorylation of RPA and cH2AX and prevented the

appearance of RPA foci and cH2AX by immunofluorescence

(Fig. 3B,C). This is consistent with previous data that roscovitine

reduces levels of ssDNA and DSB induced by the Chk1 inhibitor

UCN-01 [7].

Mre11 is required for DNA damage following Chk1
inhibition

Cells from patients with Ataxia-telangiectasia-like disorder

(ATLD) express a hypomorphic truncated Mre11 mutation [22].

These cells are hypersensitive to ionizing radiation (IR), fail to

suppress DNA synthesis and have a reduced ATM response to

irradiation [12]. If Mre11 is required for toxicity induced by Chk1

inhibition, we hypothesized that these cells, lacking functional

Mre11, would be inherently resistant to MK-8776. The Mre11

mutation in ATLD1 cells also leads to dramatically reduced

expression of Rad50 and Nbs1 [23] which was confirmed by

western blotting for these three proteins (Fig. 4A). In these cells,

MK-8776 induced negligible levels of cH2AX, phospho-RPA and

phospho-ATM in comparison with that seen in U2OS cells

(Fig. 4B) and no cH2AX or RPA foci were detectable by

immunofluorescence (Fig. 5A, Row 2). These cells are extremely

resistant to MK-8776 and continue to grow even during 7 days

continuous exposure to the drug (Fig. 4C). Hydroxyurea is an

inhibitor of deoxyribonucleotide production via the inhibition of

ribonucleotide reductase. H2AX phosphorylation and RPA

accumulation on the DNA in response to hydroxyurea is not

dependent on Mre11 [24,25]. For this reason, 2 mM hydroxyurea

was used as a control to show that ATLD1 cells retain the ability to

induce cH2AX and RPA foci (Fig. 5A, Row 3).

To confirm that the MK-8776 resistance exhibited by ATLD1

cells was due to a lack of Mre11, we used cells complemented with

wild type Mre11 cDNA to ectopically express a functional Mre11

protein, which also results in increased Rad50 and Nbs1 (Fig. 4A).

These cells regained the ability to phosphorylate RPA, ATM and

cH2AX in response to MK-8776 (Fig. 4B). As ATLD1 cells do not

activate ATM in response to MK-8776, this could explain the lack

of cH2AX in these cells. However, the neutral comet assay

demonstrated that MK-8776 did not induce DSB in these cells

demonstrating that the lack of cH2AX was not just due to lack of

ATM signaling but to a lack of DSB (Fig. 4D). In contrast,

approximately 30% of the ATLD1+Mre11 cells exhibited comet

tails indicating DSB following treatment with MK-8776.

RPA foci and pan-nuclear cH2AX staining were seen in the

ATLD1+Mre11 cells at similar levels to those in the U2OS cells

(Fig. 5C). Once again, mirin almost completely abrogated both

cH2AX pan-nuclear staining and RPA foci formation (Fig. 5B and

C). Cytotoxicity assays showed that a 24 h incubation of

ATLD+Mre11 cells with MK-8776 suppressed growth at a similar

concentration as U2OS cells, but this only achieved about 50%

growth inhibition (Fig. 4C). This is most likely due to the much

slower doubling time of these cells (64 h) such that far fewer cells

are in S phase during the treatment period. Continuous incubation

caused greater growth suppression but did not decrease the

concentration of drug required. The wild type ATLD cells have a

doubling time of 48 h but appear completely resistant to

continuous incubation with MK-8776 demonstrating that their

resistance is not due to a slower growth rate. Collectively, these

results demonstrate that Mre11 is necessary for the DNA damage

induced following Chk1 inhibition and that the ectopic expression

of Mre11 can induce damage in resistant, Mre11-deficient cells.

Discussion

We have shown that the DNA damage induced by the Chk1

inhibitor MK-8776 is dependent on the action of the Mre11

nuclease. In particular we have demonstrated that inhibition of

presented as histograms on the right. Bars represent the standard error of 3 independent experiments. B. U2OS cells were co-incubated with MK-8776
and mirin for 6 h and analyzed by western blotting. C. U2OS cells were co-incubated with UCN-01 and mirin for 6 h and analyzed by western blotting.
D. Cells were prelabeled with BrdU, then incubated for 6 h with 1 mM MK-8776, 100 mM mirin or both. At harvest, cells were stained with antibodies
against BrdU (without DNA denaturation) and RPA. E. U2OS cells were incubated for 6 h with 1 mM MK-8776, 100 mM mirin or both then analyzed
using the neutral comet assay. Examples of negative and positive comet tails are shown. Histograms represent cells with DSB based on increased tail
moment. Error bars represent the SEM of 2 independent experiments. Significance analyzed using the paired t-test; * = p,0.05, ** = p,0.01.
doi:10.1371/journal.pone.0044021.g002
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Mre11 activity prevents formation of ssDNA and DSB induced by

MK-8776 and UCN-01. These data and the fact that an Mre11-

deficient cell line is resistant to Chk1 inhibition, suggests that

Mre11 is involved in the production of DNA damage following

treatment with Chk1 inhibitors.

Following treatment with MK-8776 there is rapid phosphory-

lation of Chk1 at the serine-345 site. This is consistent with the

report that Chk1 induces feed-back dephosphorylation of ATR by

protein-phosphatase 2A; when Chk1 is inhibited, ATR becomes

active and phosphorylates Chk1 [16]. This Chk1 phosphorylation

was also seen in the ATLD cells in response to MK-8776,

indicating that the resistance to MK-8776 in this cell line is not

attributable to a failure to inhibit Chk1.

Our study shows that Chk1 inhibition induces rapid phosphor-

ylation of RPA and H2AX in U2OS cells, indicative of the

appearance of regions of ssDNA and DSB respectively. We also

found that MK-8776 treatment induces RPA foci and cH2AX

pan-nuclear staining in about 25% of the cells. Pan-nuclear

cH2AX staining, as opposed to foci has been previously

documented in response to Chk1 inhibition and has been shown

to be associated with DSB following Chk1 inhibition [7]. It has

been suggested that this widespread phosphorylation of H2AX is

due to the inappropriate firing of replication origins, leading to

fork collapse at numerous points distributed throughout the

genome [26]. The comet assay was performed to further confirm

that DSB were responsible for the phosphorylation of H2AX. Flow

cytometry revealed that the cells expressing the phosphorylated

form of H2AX were in S phase of the cell cycle. This is consistent

with previous reports that Chk1 is required in normal S phase to

protect against DNA breakage [7].

In response to DSB induced by ionizing radiation (IR), the

MRN complex acts as a DNA damage sensor and is responsible

for recruiting ATM to the sites of DNA damage [19]. The MRN

complex promotes the initial processing of DSB to ssDNA by the

action of the Mre11 nuclease in concert with its partner CtIP [27].

We therefore hypothesized that Mre11 could be involved in the

Figure 3. The role of Mus81 and CDK2 in MK-8776-induced DNA damage. A. Cells were transfected with siRNA against Mus81 then analyzed
by western blotting for markers of DNA damage following a 6-h treatment with MK-8776. B. U2OS cells grown on coverslips were incubated with
1 mM MK-8776, 20 mM roscovitine or both for 6 h then stained with the indicated antibodies and analyzed by confocal microscopy. 100 cells were
scored for each condition and are presented as histograms. Error bars represent the standard error of 2 independent experiments. C. U2OS cells were
co-incubated with MK-8776 and roscovitine for 6 h and analyzed by western blotting.
doi:10.1371/journal.pone.0044021.g003

Sensitivity of Cells to Chk1 Inhibition
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Figure 4. Mre11-deficient ATLD1 cells are resistant to MK-8776. A. Whole cell lysates from U2OS, ATLD1 and ATLD1+Mre11 cells were
analyzed by western blot for proteins of the MRN complex. B. ATLD1 and ATLD1+Mre11 cells were incubated with 200 nM or 2 mM MK-8776 for 0–
24 h, harvested and analyzed by western blotting. The samples incubated for 24 h at 2 mM were also run beside the samples from the opposite cell
line to compare signal intensities. C. Cells were incubated with MK-8776 for 24 h or 48 h then allowed to recover in drug-free media, or incubated
continuously for 7 days with MK-8776. Total DNA content per well was then assessed as a measure of cell growth. Error bars (shown only in one
direction for clarity) represent the standard error of 3 independent experiments. D. ATLD1 and ATLD1+Mre11 cells were incubated for 24 h with and
without 1 mM MK-8776. The neutral comet assay was performed and histograms represent cells with DSB. Error bars represent standard error of 2
independent experiments.
doi:10.1371/journal.pone.0044021.g004

Sensitivity of Cells to Chk1 Inhibition
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production of ssDNA following Chk1 inhibition as it has been

shown to promote the processing of DSB to ssDNA following IR

[13]. Inhibition of Mre11 did indeed reduce the amount of ssDNA

but importantly Mre11 inhibition also led to a decrease in cH2AX

and a decrease in DSB. It is of note that while levels of phospho-

RPA and cH2AX were dramatically decreased by the presence of

mirin, phospho-Chk1 levels were not altered, indicating that the

ability of MK-8776 to inhibit Chk1 was not affected.

The DNA endonuclease Mus81 is required for DSB following

Chk1 inhibition [11]. Mus81 is a substrate-specific endonuclease

which cleaves structures mimicking Holliday junctions [28] but

has been shown to cleave model replication forks and other

‘‘nicked’’ substrates 75-fold more efficiently than stationary

Holliday junctions [29]. Our data demonstrate that ssDNA occurs

upstream of DSB following Chk1 inhibition and we therefore

hypothesize that Mre11 may act to provide the substrate for

Mus81 cleavage.

Chk1 controls the cell cycle by targeting the protein phospha-

tase Cdc25A for degradation [30–32], thereby preventing Cdc25A

from dephosphorylating and activating CDK2 [33]. Following

Chk1 inhibition, Cdc25A accumulates leading to increased active

CDK2. The means by which Mre11 is activated following Chk1

Figure 5. ATLD1 cells do not form RPA or cH2AX foci in response to MK-8776. A. Cells grown on coverslips were incubated with 1 mM MK-
8776 for 6 h, or 2 mM hydroxyurea for 24 h, stained with antibodies against cH2AX and RPA and analyzed by confocal microscopy. B. ATLD1+Mre11
cells were incubated with 1 mM MK-8776 for 12 h concurrent with 0–100 mM mirin. Cells were harvested and analyzed by western blotting. C.
ATLD1+Mre11 cells grown on coverslips were incubated for 6 h with 1 mM MK-8776, 100 mM mirin or both and analyzed by confocal microscopy for
cH2AX and RPA foci. 100 cells were scored for each condition and are presented as histograms on the right. D. Proposed pathway for the induction of
damage upon inhibition of Chk1.
doi:10.1371/journal.pone.0044021.g005
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inhibition remains unclear. CtIP promotes DSB end resection and

has been shown to interact with the MRN complex [34]. CtIP is

phosphorylated by CDK2 [35] and DSB resection by MRN/CtIP

has recently been shown to be CDK2 dependent in Xenopus eggs

[36]. CDK2 has recently been reported to bind directly to Mre11

and this interaction is required for CtIP phosphorylation [37].

Following initial resection by MRN/CtIP, efficient long range

strand resection is taken over by the DNA nucleases Exo1 and

Dna2. The activation of these two nucleases is also mediated by

phosphorylation by CDK2 [38]. The ssDNA produced by these

nucleases is then coated with RPA which recruits ATR and

subsequently activates Chk1 [13,39]. These findings taken

together with the fact that Chk1-induced DNA damage is

prevented by the addition of the CDK inhibitor roscovitine, and

by depletion of Cdc25A [5] led us to propose a pathway for the

induction of DNA damage following Chk1 inhibition (Fig. 5D). In

this pathway, the aberrant activation of CDK2 following Chk1

inhibition leads to activation of Mre11.

There are still many unknown steps in this pathway; in

particular why CDK2 does not activate Mre11 in normal S

phase. One possibility is that Mre11 activity is suppressed in

normal S phase by other factors; for example the Ku and RPA

proteins have both been shown to regulate the nuclease activity of

the MRN complex [40]. The ability of BRCA2 to stabilize Rad51

filaments has also been shown to protect stalled replication forks

from degradation by Mre11 [41]. As Chk1 is required for the

interaction of BRCA2 and Rad51 [42], it is possible that in the

absence of Chk1 activity, BRCA2 is unable to protect stalled forks

from Mre11 degradation. Another possible explanation is that, as

Chk1 restrains CDK activity in normal DNA replication [43], the

high levels of CDK2 which result from the inhibition of Chk1 in

normal S phase could result in over-activation of Mre11. Further

work is required to elucidate the finer points of this pathway but it

will be of importance to determine whether Mre11 function could

act as a determinant of cellular sensitivity to Chk1 inhibitors.

In our recent analysis, we observed a large range of sensitivity to

MK-8776 following a 24 h incubation [15]. Interestingly some cell

lines resembled the ATLD1 cells in that they continued to grow

when incubated with MK-8776. However, these cells are not

deficient in Mre11 [44], suggesting there must be alternate

mechanisms by which cells can avoid growth inhibition when

Chk1 is inhibited. We anticipate that the other steps in the

pathway described in Figure 5D can also vary between cell lines,

and thereby avoid activation of Mre11. It is also worth recognizing

that many previous studies have used U2OS cells as if they are

representative of the majority of cell lines, yet our results suggest

that in comparison to many other cell lines, U2OS are very

sensitive to short-term pharmacologic inhibition of Chk1 [15]. If

normal cells are relatively resistant to MK-8776 as has been

suggested [45], our hope is that some tumors will be highly

responsive and thereby provide a therapeutic window for

successful administration of Chk1 inhibitors to patients.

Materials and Methods

Human cell lines
U2OS osteosarcoma cells (ATCC, Manassas, VA) were grown

in DMEM/F12 and supplemented with 10% fetal bovine serum

(FBS). ATLD1 and ATLD+Mre11 cells were a kind gift from Dr.

Matthew D. Weitzman at the Salk Institute (San Diego, CA) and

were grown in DMEM with 20% FBS. All media also contained

1% antibiotic/antimitotic solution (Gibco, Carlsbad, CA). Cells

were grown at 37uC with 5% CO2.

Reagents
Mirin was synthesized in our laboratory as previously described

[46], dissolved in DMSO and stored at 220uC. MK-8776 was

provided by Merck (Kenilworth, NJ) [45]. Hydroxyurea was

obtained from Sigma Chemical Co. (St. Louis, MO).

Immunoblotting
Cells were rinsed in phosphate buffered saline and lysed by the

addition of Laemmli sample buffer. Samples were immediately

boiled for 5 min and stored at 220uC. Proteins were separated by

polyacrylamide gel electrophoresis and transferred to polyvinyli-

dine difluoride membranes. Membranes were blocked in 5% non-

fat milk in Tris buffered saline (TBS), 0.1% Tween 20 and probed

with antibody overnight at 4uC in 5% bovine serum albumin/

TBS/Tween for phosphospecific antibodies or 5% milk/TBS/

Tween for all other antibodies. The primary antibodies used were

as follows: phosphoserine-345-Chk1, cH2AX, Nbs1 (Cell Signal-

ing, Danvers, MA); phosphoserines-4/8-RPA32 (Bethyl Labora-

tories, Montgomery, TX); Chk1 (Santa Cruz Biotechnology, Santa

Cruz, CA); RPA32 (Neomarkers, Fremont, CA), Mre11 (Calbio-

chem, San Diego, CA); Rad50 (Novus Biologicals, Littleton, CO);

ATM (AbCam, Cambridge, MA); phoshoserine-1981-ATM

(Epitomics, Bulingame, CA). Subsequently, membranes were

washed in TBS, 0.1% Tween 20 and incubated with secondary

antibody conjugated to horseradish peroxidase (Bio-Rad, Hercu-

les, CA). Proteins were visualized by enhanced chemiluminescence

(Amersham, Piscataway, NJ).

Immunofluorescence
Cells were cultured on glass coverslips, fixed with 3%

paraformaldehyde (10 min at room temperature), permeabilized

in TBS, 0.5% Triton-X-100 (5 min at room temperature), blocked

for 30 min with 10% bovine serum albumin (BSA) and stained

with antibodies against RPA32 (Neomarkers) and cH2AX (Cell

Signaling) followed by DNA staining with DAPI (5 min, 1 mg/ml

in PBS). Confocal images were acquired using a Zeiss LSM 510

microscope. To measure induction of ssDNA, cells were labeled

with BrdU (3.3 mM, 24 h), fixed, permeabilized and blocked as

described above then stained with anti-BrdU (Becton-Dickinson,

Franklin Lakes NJ); the usual DNA denaturation step was omitted

so that the antibody only detected endogenous ssDNA.

Neutral comet assay
Cells were harvested by scraping and suspended at 26105/ml.

The neutral comet assay (Trevigen, Gaithersburg, MD) was

performed according to the manufacturer’s instructions and 100

cells for each condition were analyzed using the Tri-Tek

CometScoreTM freeware v1.5. Average tail moment is the usual

measure for the comet assay. However, as treatment with MK-

8776 only induced damage in S phase cells, results are expressed as

the percent of cells with an increase in tail moment over untreated

control rather than the average tail moment of the entire

population. This was assessed by selecting a tail moment in the

untreated control, and then scoring the number of cells in the

treatment groups with a higher tail moment. Examples of comet

tails are shown in Fig. 2E.

Transfections and siRNAs
Transfections were performed using RNAi-MAX (Invitrogen,

Grand Island, NY) according to the manufacturer’s instructions

and experiments were performed 48 h afterwards. siRNA

sequences: Control 59-CUGGGUCACUGGUGUUUGA-tt-39,
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Mus81 #1 59 -UGACCUCUCCAAACCCUCU-tt-39, Mus81 #2

39-GGGAGCACCUGAAUCCUAA-tt-39.

Cytotoxicity assays
Cells were seeded in 96 well plates at a density of 1000 cells/well

and left to adhere overnight. Cells were incubated with MK-8776

for the time specified then washed once with PBS, and allowed to

recover in media for 7 days. The cells were washed in PBS, lysed

for one hour in sodium chloride-sodium citrate buffer with 0.02%

SDS at 37uC, then stained with 1 mg/ml Hoescht dye [47]. DNA

content was measured using a fluorescence plate reader.
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