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Abstract

Caveolin-1 and caveolae are differentially polarized in migrating cells in various models, and caveolin-1 expression has been
shown to quantitatively modulate cell migration. PTRF/cavin-1 is a cytoplasmic protein now established to be also necessary
for caveola formation. Here we tested the effect of PTRF expression on cell migration. Using fluorescence imaging,
quantitative proteomics, and cell migration assays we show that PTRF/cavin-1 modulates cellular polarization, and the
subcellular localization of Rac1 and caveolin-1 in migrating cells as well as PKCa caveola recruitment. PTRF/cavin-1
quantitatively reduced cell migration, and induced mesenchymal epithelial reversion. Similar to caveolin-1, the polarization
of PTRF/cavin-1 was dependent on the migration mode. By selectively manipulating PTRF/cavin-1 and caveolin-1 expression
(and therefore caveola formation) in multiple cell systems, we unveil caveola-independent functions for both proteins in cell
migration.
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Introduction

Caveolin-1 is an integral membrane protein required for

formation of small plasma membrane invaginations termed

caveolae [1]. Caveolae have been proposed to regulate numerous

processes including lipid metabolism, endocytosis and cell

migration. The presence of caveolin-1 was assumed to equate to

caveolae formation until recent reports that an adapter-like

protein, PTRF (polymerase I and transcript release factor), also

called cavin-1, is required for formation of caveolae [2,3]. PTRF/

cavin-1 mutations were recently reported in patients with

lipodystrophy and muscular dystrophy, correlating with perturba-

tions in caveola function [4,5] and further supporting a physiolog-

ical role of PTRF/cavin-1 in caveolae. Related proteins, including

SRBC-cavin3 [6] and SDPR-cavin2 [7] have also been reported

to regulate caveola endocytosis and membrane tubulation, re-

spectively. In addition, a fourth, muscle-specific member of the

family, MURC-cavin4 has been identified [7,8]. We have

examined the ability of each cavin family member to direct

caveola formation in the presence of caveolin-1 and showed that

when expressed at similar levels, only PTRF/cavin-1 induced the

formation of abundant caveolae [8]. These results suggest that

PTRF/cavin-1 is likely to be the mediator of caveola formation in

vivo while the other members regulate other aspects of caveola

function such as endocytosis.

A role for caveolin-1 in cell migration has been well-

established, mostly through experiments involving manipulation

of caveolin-1 expression levels. While some studies report

a reduction in directional migration upon loss of caveolin-1,

other studies find increased migration (reviewed in [9]). This

apparent contradiction may be due to the lack of discrimination

between caveolin-1 function within and outside of caveolae.

Non-caveolar roles for caveolin-1 are increasingly recognized

[10], however, tools for dissecting these functions were not

available until the recent discovery of PTRF/cavin-1 as an

essential co-factor in caveola formation [2,3,11]. We previously

reported that expression of PTRF/cavin-1 in prostate cancer

PC3 cells reduced transmigration, via a decrease in MMP-9

production independent from de novo caveola formation [12].

This suggests that PTRF/cavin-1 may also have roles in-

dependent of caveolae. In the current study, we examined

whether PTRF/cavin-1 and caveolin-1 function solely from

caveolae during migration. We further utilized the PC3 cell
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system to explore molecular changes in membrane fractions

upon induction of caveola formation.

Results

Modulation of PTRF/cavin-1 Expression Affects Cell
Migration
We have previously reported that exogenous expression of

PTRF/cavin-1 in the prostate cancer cell line PC3, which

expresses abundant caveolin-1 but lacks PTRF/cavin-1, signifi-

cantly reduced transmigration on collagen-coated polycarbonate

filters [12]. To determine the effect of PTRF/cavin-1 expression

on independent cell lines, we down-regulated PTRF/cavin-1 in

two cell lines using shRNA-mediated knockdown. In agreement

with a role for PTRF/cavin-1 in reducing cell migration,

chemotaxis to serum was increased in three PTRF/cavin-1

down-regulated prostate cancer DU145 clones, compared to three

clones stably transfected with scrambled shRNA (Fig 1A).

Furthermore, transmigration of pooled shPTRF/cavin-1 NIH3T3

fibroblasts [2] was increased compared to control knockdown with

scrambled shRNA (Fig 1B). Together, the increase in cell

migration upon PTRF/cavin-1 knockdown in DU145 and

NIH3T3 cells corroborates our previous report of reduced cell

transmigration upon PTRF/cavin-1 expression in PC3 cells,

which has a natural lack of PTRF/cavin-1 but expresses caveolin-

1 [12].

Since differences have been reported between two dimensional

(planar) and three-dimensional (through a filter pore) migration

systems [13], we verified whether PTRF/cavin-1 expression also

reduced two dimensional migration. We examined the migration

and morphology of PC3 cells during 2-dimensional migration in

a wound-healing assay using time-lapse video microscopy. PC3

cells expressing PTRF/cavin-1-GFP showed a 2-fold reduction in

2-dimensional, random cell migration compared to control cells

expressing GFP (Figure 2A). Interestingly, expression of PTRF/

cavin-1-GFP in PC3 cells significantly reduced the proportion of

cells exhibiting projections (Figure 2B, 2C).

Changes in migratory potential and morphology are associated

with epithelial-mesenchymal transition (EMT). Furthermore, we

have previously documented that lack of PTRF/cavin-1 expres-

sion causes an increase in matrix metalloprotease-9 production

[12], which is also a hallmark of EMT. We therefore examined

PC3 cells stably transfected with plasmids encoding PTRF/cavin-

1-GFP or GFP for expression of two EMT markers, E-cadherin

and vimentin. As shown in Figure 2D, PC3 cells stably expressing

PTRF/cavin-1-GFP showed an increase in E-cadherin and loss of

vimentin expression, in agreement with PTRF/cavin-1 preventing

EMT, or driving mesenchymal-epithelial transition (MET). Taken

together, these results point towards an inhibitory effect of PTRF/

cavin-1 expression on cell migration.

Polarization of Caveolin-1 and PTRF/cavin-1 during Cell
Migration
We have previously reported the polarization of caveolin-1 and

caveolae during 3-dimensional (3D) migration in endothelial cells

using both confocal and immuno-electron microscopy [13,14].

Caveolin-1 accumulates in the front protrusion while caveolae

accumulate in the rear of the cells [13]. Furthermore, caveolin-1 in

the anterior protrusion is associated with vimentin intermediate

filaments [15]. To determine the localization of PTRF/cavin-1

during transmigration, NIH3T3 cells traversing the pores of

a collagen-coated polycarbonate filter were immuno-labeled with

antibodies to caveolin-1 or PTRF/cavin-1. Confocal fluorescence

microscopy revealed the presence of both caveolin-1 and PTRF/

cavin-1 at the cell rear (Figure 3A, top panel), consistent with

a specific localization of caveolae to the rear [13,14]. Intriguingly,

while both caveolin-1 and PTRF/cavin-1 could be detected at the

cell protrusion, PTRF/cavin-1 was observed as a distinct ring at

the cell-filter contact region (Figure 3A, middle right panel), while

caveolin-1 was observed throughout the center of the protrusion as

previously noted (Figure 3A, middle left panel).

Next we made use of prostate cancer PC3 cells expressing

abundant endogenous caveolin-1, and exogenous PTRF/cavin-1-

GFP [2]. Both proteins were detected at the rear of transmigrating

cells (Figure 3B), consistent with the presence of caveolae

(requiring both proteins) in this subcellular localization. In

a fashion similar to NIH3T3 cells, the anterior of the cell showed

extensive staining for caveolin-1 through the protrusion, without

co-localization of PTRF/cavin-1-GFP. PTRF/cavin-1-GFP was

instead observed as a distinct ring at the cell-filter contact site

without caveolin-1 (Figure 3B, protrusion xy view). Three-

dimensional reconstruction of the confocal images further

illustrates the distinct localization of caveolin-1 and PTRF/

cavin-1 in the protrusion and lamellipodium extending un-

derneath the lower filter side (Video S1). Hence our data support

caveolar-dependent and caveolar-independent localization of

Figure 1. Loss of PTRF/cavin-1 increases transmigration. Trans-
migration toward the indicated serum concentration in the lower
chamber was measured for (A, n = 4, p,0.0001) individual clones of
DU145 prostate cancer cells or (B, n = 3, p,0.05) pooled NIH3T3
fibroblasts, stably transfected with scrambled shRNA (s) or PTRF/cavin-1
shRNA (p). Data are shown as mean 6 SEM. Two-way ANOVA was used
to assess the significance of PTRF/cavin-1 knockdown on migration.
doi:10.1371/journal.pone.0043041.g001

Polarization of PTRF/Cavin-1 and Caveolin-1
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caveolin-1 and PTRF/cavin-1 at discrete locations during trans-

migration in two different cell models: NIH3T3 fibroblasts and

metastastic prostate cancer cells (PC3). To our knowledge, this is

the first report of a caveolar-independent, membrane localization

for PTRF/cavin-1.

Polarization of both proteins was further assessed in a two

dimensional, scratch wound assay. Wild type mouse embryo

fibroblasts exhibited posterior polarization of caveolin-1 typical in

this model (Figure 4A). PTRF/cavin-1 was co-localized with

caveolin-1 in the cell rear, consistent with caveolae posterior

accumulation in two-dimensional migrating cells [13]. When

PTRF/cavin-1 immuno-staining was performed on 2D migrating

mouse embryo fibroblasts isolated from caveolin-1 gene disrupted

mouse, polarization of PTRF/cavin-1 was lost (Figure 3B).

Reciprocally, caveolin-1 accumulation at the rear of 2D migrating

cells was lost in MEFs from PTRF/cavin-1 knock out mouse

(Figure 3C). These results indicate that in flat migrating cells,

caveolin-1 and PTRF/cavin-1 regulate each other’s accumulation

at the rear of the cell body, presumably in the form of caveolae.

Caveolae-dependent and –Independent Functions of
Caveolin-1 in Migration
To distinguish between caveolae-dependent and -independent

roles of caveolin-1 and PTRF/cavin-1, we used lentivirus-

mediated shRNA to down-regulate caveolin-1 in PC3 lines stably

expressing GFP or PTRF/cavin-1-GFP. Control lentiviral con-

structs with a scrambled sequence or against the human papilloma

virus E7 protein, which is not expressed in PC3 cells, were used

independently and produced similar results. The loss of non-

caveolar caveolin-1 in GFP-expressing PC3 cells (PTRF/cavin-1-

negative) led to an increase in transmigration (Figure 5A),

suggesting that non-caveolar caveolin-1 performs an anti-migra-

tory function. In contrast, down-regulation of caveolar caveolin-1

in PTRF/cavin-1-GFP-expressing PC3 cells caused a reduction in

transmigration (Figure 5B). These results suggest that caveolin-1 in

caveolar or non-caveolar compartments has distinct functions.

Rac1 Subcellular Localization is Modulated by PTRF-GFP
Expression in PC3 Cells
Loss of caveolin-1 is known to affect cell polarization and

migration via Rho family small GTPases, including Rho, Rac and

cdc25 [16]. We compared the subcellular localization of Rac1 in

PC3 cells stably expressing GFP or PTRF/cavin-1-GFP using

immunofluorescence microscopy. We observed a striking loss of

Rac1 anterior polarization upon PTRF/cavin-1-GFP expression

in PC3 cells, leading to a diffuse staining (Figure 6A). Image

analysis and quantitation revealed a significant reduction in Rac1

polarization upon PTRF/cavin-1 expression in PC3 cells

(Figure 6B).

We hypothesized that loss of polarization was in part due to

caveola formation upon PTRF/cavin-1 exogenous expression.

Previous studies revealed that PTRF/cavin-1-GFP expression

Figure 2. PTRF/cavin-1 expression in PC3 cells reduces 2D migration concomitant with reduced protrusions and mesenchymal
epithelial transition. (A) Relative migration in a wound-healing assay was assessed by time-lapse video microscopy as described in materials and
methods. P,0.01 (B) Representative still images showing cell morphology. (C) Number of projections was quantitated by three individual researchers
in random single cells from three independent videos (N.30 cells assessed per researcher, shown as mean 6 SEM, p,0.05). (D) Total cell lysates
(20 mg) from GFP or PTRF/cavin-1-GFP PC3 cells were separated by SDS-PAGE and immunoblotted using anti-E-cadherin or anti-vimentin antibodies
as indicated. Data representative of 3 independent experiments.
doi:10.1371/journal.pone.0043041.g002

Polarization of PTRF/Cavin-1 and Caveolin-1
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altered the partitioning of cytoskeletal proteins to lipid raft

fractions [17]. Similarly, we now report that expression of

PTRF/cavin-1-GFP induces proteomic changes in the total

membrane P100 fraction. Statistical analysis using a p-value of

0.05 as cut off revealed that 140 proteins are significantly altered

by PTRF/cavin-1-GFP expression, with an additional 34 proteins

falling between p-values of 0.05 and 0.1. Rac1 is in the latter

category (p = 0.07965) with a PTRF/cavin-1-GFP:GFP SILAC

ratio of 0.4260.09 indicating that PTRF expression in PC3 cells

causes a 2.3 fold decrease of Rac1 in the total membrane fraction,

confirming our fluorescence microscopy observations.

Expression of PTRF/cavin-1 Induces the Recruitment of
PKCa to Caveolae
By screening the P100 fraction for proteins significantly altered

by PTRF/cavin-1 expression, we further identified ten proteins

previously implicated in polarization or cell migration, including

three adapter proteins of the 14-3-3 family, cytoskeletal linkers

(cofilin-1, filamin A), and adhesion proteins (integrins a2, a3, b1,
JAM1 and vinculin). This list of proteins, together with Rac1 and

caveolin-1, was used to generate a protein interaction network

using 2-step shortest paths in GeneGo, which revealed two new

hubs, namely protein kinase C (PKC) and Src.

Both PKC and Src have been localized in caveolae/DRM

fractions [18,19], and regulate caveolae structure and function

[20,21]. Reciprocally, their activity is regulated by microdomain

localization [22,23]. However, while Src localization to caveolae

requires its acylation [19,24], PKCa targeting to caveolae appears

to be mediated through interaction with SDPR/cavin-2 [18].

Furthermore, cellular polarization [25] and MMP-9-mediated cell

migration [26] are both controlled by PKCa. We have previously

reported the loss of PKCa from detergent-resistant membrane

(DRM) fraction of caveolin-1 null MEFs [2], hence we chose to

further investigate PKCa recruitment to caveolae upon expression

of PTRF/cavin-1 in PC3 cells.

In contrast to MEFs, PKCa is absent from DRM of control

GFP-PC3 cells (Figure 6B). Expression of PTRF/cavin-1-GFP in

PC3 cells caused a marked recruitment of PKCa to the DRM

fraction (Figure 6B), concomitant with the reported induction of

caveola formation [2]. Overall PKCa expression in the cell lysate

or P100 fractions was unaltered (Figure 6B). These results suggest

that PKCa is specifically recruited to caveolae when PTRF/cavin-

1 and caveolin-1 are both expressed. To confirm this result, we

utilized NIH3T3 fibroblasts with stable knockdown of PTRF/

cavin-1 (shPTRF), which lack caveolae as we previously observed

by electron microscopy [2]. In agreement with its caveola-specific

recruitment, PKCa was detected in the DRM fraction of control

NIH3T3 cells (shCON) but not shPTRF NIH3T3 cells (Figure 6C).

Discussion

Combining multiple cell lines and migration assays, this study is

the first to show inter-dependent polarization of caveolin-1 and

PTRF/cavin-1 in migrating cells, and to demonstrate that PTRF/

cavin-1 expression regulates cell migration. It further unveils that

caveolin-1 plays a different role in cell migration depending on the

presence or absence of PTRF/cavin-1 (and thus of caveolae).

Caveolin-1 was previously known to regulate cell migration and

polarization. We now show that caveolin-1 polarization is

accompanied by PTRF/cavin-1 polarization. In two dimensional

migrating cells, both proteins accumulate in the cell rear, where

caveolae are also known to accumulate [13]. Furthermore,

caveolae seem to be required for the polarization of both

PTRF/cavin-1 and caveolin-1, since conditions where the cells

Figure 3. Differential polarization of caveolin-1 and PTRF/
cavin-1 during 3D migration. (A) Transmigrating NIH 3T3 cells were
fixed and immuno-labeled using anti-caveolin-1 or anti-PTRF/cavin-1
antibodies and imaged by confocal microscopy. Shown are xy planes of
cell rear, protrusion through the pore or xz planes through the center of
the pore. Bar represents 10 mM. (B) Transmigrating PTRF/cavin-1-GFP
expressing PC3 cells were fixed and immuno-labeled using anti-
caveolin-1 antibody followed by biotinylated anti-rabbit antibody and
texas red avidin. Cells were then imaged by confocal microscopy. Bar
represents 10 mM. (C) Schematic representation of the differential
caveolin-1 and PTRF/cavin-1 polarization during transmigration.
doi:10.1371/journal.pone.0043041.g003

Polarization of PTRF/Cavin-1 and Caveolin-1
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lack caveolae result in polarization loss. In 3D migrating cells, we

have been able to visualize non caveolar caveolin-1 (throughout

cytoplasmic protrusions of trans-migrating cells) but also non

caveolar PTRF/cavin-1 (as a ring where the protrusion contacts

the filter pore). The mechanism by which PTRF/cavin-1 can

localize to non-caveolar membrane is currently unknown. PTRF/

cavin-1 binds phosphatidylserine in vitro [2], thus one possibility for

caveola-independent PTRF/cavin-1 membrane recruitment is an

enrichment, or distinct organization, of phosphatidylserine at the

plasma membrane-filter (and possibly extracellular matrix) points.

Polarization of PTRF/cavin-1, caveolin and caveolae in transmi-

grating cells is summarized in Figure 3C.

Summarizing what we currently know about the effect of

PTRF/cavin-1 expression on cell migration, a mechanism

emerges through which by allowing caveola formation and

recruitment of caveolar proteins to plasma membrane micro-

domains, PTRF/cavin-1 allows caveola recruitment of PKCa,
modulates cell polarization, decreases MMP-9 production and

ultimately cell migration. Multiple pathways are likely to be

involved in mediating the effect of PTRF/cavin-1 on cell

migration. It is interesting to note that like the phenotype of

caveolin-1-null mice, the phenotype of PTRF/cavin-1-null mice

does not seem to encompass major defects in cell migration, and

regulation must therefore be either compensated for, subtle, or

apparent only upon challenge. PKCa targeting to caveolae was

previously reported to be mediated through interaction with

SDPR/cavin-2 [18]. However, PC3 cells do not express SDPR/

cavin-2, or PRKCDBP/cavin-3 [8], both of which are known to

bind to PKC isoforms. Hence PTRF/cavin-1 induced DRM-

recruitment of PKCa likely occurs via a novel mechanism.

Studies on caveolin-1 and caveolae function commonly employ

caveolin-1 over-expression or knockdown approaches. The present

data suggest that interpretation of such experiments should to be

revisited with knowledge of the PTRF/cavin-1 expression status.

Indeed, expression and subcellular localization of these caveolar

adapter proteins, are co-regulated with caveolin-1. Furthermore it

seems that both caveolin-1 and PTRF/cavin-1 can function from

non-caveola locations, as reported here. As illustrated in Figure 5C,

the loss of caveolin-1, (presumably via loss of caveolae) releases

PTRF/cavin-1 which can function at extra-caveolar locations.

Conversely, ectopic expression of caveolin-1 in PTRF (and

caveola)-null cells may lead to extra-caveolar caveolin-1 functions.

Over-expression of caveolin-1 in PTRF/cavin-1-positive cells

would not only increase caveola density, but could also deplete

Figure 4. Inter-dependent Polarization of caveolin-1 and PTRF/cavin-1. Wild type (WT), caveolin-12/2 and PTRF/cavin-12/2 mouse embryo
fibroblasts (MEF) were plated on coverslips at low density. Immunostaining was performed with (A) mouse anti-caveolin-1 and rabbit anti-PTRF, (B)
rabbit anti-PTRF/cavin-1, or (C) rabbit-anti-caveolin antibody respectively. Randomly migrating cells are imaged. Bar, 20 mM.
doi:10.1371/journal.pone.0043041.g004

Polarization of PTRF/Cavin-1 and Caveolin-1
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extra-caveolar cavins, and/or increase extra-caveolar caveolin-1

function. Notably, cavins show tissue-specific expression patterns

that partially parallel caveolins [2,8]. Furthermore, caveolin-1

expression in some caveolin-1-negative cell lines does not induce

PTRF/cavin-1 expression [27], suggesting that both caveolin-1

and PTRF/cavin-1 expression are limiting for caveola formation

in a cell- and tissue- specific manner. Clearly, these previously

unrecognized parameters confound the interpretation of experi-

ments. Thus distinct extra-caveolar functions of caveolin-1 and

PTRF/cavin-1 reveal a new paradigm in caveolin biology and

calls for re-interpretation of the numerous studies on caveolin-1

and caveola function.

The manipulation of PTRF/cavin-1 and caveolin-1 levels in

different cell lines allowed us to identify distinct effects of these

proteins on cell migration and polarization. Heterologous expres-

sion of PTRF in caveolin-1-positive, PTRF/cavin-1-negative PC3

cells results in caveola formation, and reduced cell migration.

Down-regulating caveolin-1 in (PTRF/cavin-1-negative) PC3 cells

to reduce non-caveolar caveolin led to an increase in cell

migration. In contrast, knockdown of caveolin-1 in PTRF/cavin-

1-expressing PC3 cells reduced cell migration. These results,

summarized in Figure 5C, indicate that caveolin-1 can regulate

cell migration without being part of caveolae and functionally

build on previous data obtained via imaging [13]. Future studies

will establish whether other functions previously ascribed to

caveolae [28,29,30,31,32,33,34,35,36,37,38,39,40,41] may be due

to non-caveolar caveolin. Overexpression of caveolin-1 in

a PTRF/cavin-1 null breast cancer cell line, SK-BR-3 was

recently reported to elicit formation of long tubules [27] that may

mediate signaling events different from caveolae.

Distinct non-caveolar functions of caveolin-1 will also have

implications for our understanding of cancer development

and progression since caveolin-1 mutation or overexpression

is suggested to be involved in several cancers

Figure 5. Distinct roles for caveolar and non-caveolar caveolin-1 in cell migration. (A) Knockdown of caveolin-1 in GFP PC3 cells increases
transmigration. (B) Knockdown of caveolin-1 in PTRF/cavin-1-GFP cells reduces rate of transmigration. N= 3, shown as mean 6 SEM. p,0.00001. (C)
Diagrammatic summary of the results.
doi:10.1371/journal.pone.0043041.g005

Polarization of PTRF/Cavin-1 and Caveolin-1
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[34,35,42,43,44,45,46,47,48,49,50,51]. It is now clear that not

only the levels of caveolin-1, but also the relative levels of PTRF/

cavin-1, must be taken into account when interpreting the role of

caveolin-1 in specific disease contexts.

Materials and Methods

Antibodies
Caveolin-1 and Rac-1 antibodies were from BD Biosciences.

Antibodies to E-cadherin and vimentin were from Cell Signaling

Technology. Rabbit anti-PTRF antibodies were produced against

a peptide comprising the C-terminal 14 amino acids of mouse

PTRF and affinity-purified.

Cell Culture
Cell culture and western blotting were performed as previously

described [2,8]. NIH3T3 cells with reduced PTRF/cavin-1

expression have been previously generated [2]. DU145 cell lines

with reduced PTRF/cavin-1 expression were generated using the

same shRNA plasmids, except individual clones rather than

pooled population were characterized. PTRF/cavin-1 null murine

embryonic fibroblasts have been previously described [3]. PC3

cells lines with down-regulated caveolin-1 were generated using

lentiviral stocks containing shRNA to caveolin-1 obtained from

Sigma (MissionH). Briefly, PC3 cells expressing GFP or PTRF/

cavin-1-GFP were seeded in 96 well plates and infected with

lentiviral stocks as per manufacturer’s recommendations. Lentivi-

rus with shRNA against a scrambled sequence (Sigma MissionH)
or against the human papilloma virus E7 protein (not expressed in

PC3 cells, kind gift from Prof Nigel McMillan, The UQ

Diamantina Institute), were used as controls. After infection, cells

were selected in puromycin for 10 passages, and then grown in

normal media. Expression of caveolin-1 and PTRF/cavin-1 was

monitored by immunoblotting.

Chemotactic Transmigration Assay
Corning transwellH inserts with polycarbonate filters with 8-mm

pores were used to measure chemotactic migration. Cell suspen-

sions prepared in serum free media were loaded on the top

chamber, and serum-containing media in the lower chamber. NIH

3T3 cells were allowed to migrate for 2 hours towards 10% serum,

while PC3 cells were allowed to migrate for 24 hours towards 20%

serum in a humidified 37uC incubator. Filters were washed with

cold PBS and then fixed with 4% paraformaldehyde. Filters were

removed from the transwellH, the cell nuclei stained with DAPI

and mounted onto slides. Nuclei were visualized by fluorescence

microscopy and quantitated using Image J. The migration of

DU145 cells was determined using a modified Boyden chamber

assay as previously described [12] after determination of the serum

concentration eliciting the best chemotactic response (0.5%).

Figure 6. PTRF/cavin-1 expression in PC3 cells impairs Rac1 polarization, but leads to recruitment of PKCa to detergent-resistant
membrane (DRM) fraction. (A) Rac1 polarization was examined by confocal immunofluorescence microscopy. Polarization was measured by
fluorescence intensity along the length of the cell as indicated by red lines shown. For quantitation, 20 cells over 3 independent experiments were
analysed, and Rac1 was deemed polarized when staining was confined to terminal one third of the cell body. P,0.0001. (B) PTRF/cavin-1-GFP
expression in PC-3 cells caused recruitment of PKCa to the lipid raft (DRM) fraction, without altering total cellular level or total membrane (P100) level.
(C) Loss of PKCa from lipid raft (DRM) fraction in NIH3T3 fibroblasts with PTRF/cavin-1 knockdown.
doi:10.1371/journal.pone.0043041.g006
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Immunofluorescence of Transmigrating Cells
A modified Boyden chamber was used to visualize caveolin-1

and PTRF in transmigrating cells. A suspension of 7,500 cells was

loaded in the upper wells of a migration chamber prepared with 8-

mm pores, polycarbonate filters coated with rat tail collagen type I.

Migration was allowed to proceed for 3 h, and filters were

processed for immune-staining as previously described [13].

Following incubation with the indicated primary antibodies, filters

were incubated with biotinylated goat anti rabbit antibody and

Texas-Red-Avidin from Vector (Burlingame, CA). Transmigrating

cells were visualized using a Leica TCS SP5 confocal microscope.

Immunofluorescence Microscopy
Cells were grown to 70% confluency on glass coverslips, washed

in PBS and fixed in 2% PFA prior to permeabilisation with 0.1%

Triton X-100. Coverslips were washed with 2% bovine serum

albumin (BSA) in PBS then incubated with monoclonal anti-Rac1

antibody for one hour prior to washing and incubating with anti-

mouse Alexa 594 antibody. Cells were washed and mounted for

imaging. Fluorescence was imaged using a Zeiss LSM510 Meta

Duoscan with Zen imaging software and processed using Adobe

Photoshop CS2 for images and Image J for quantitation. Images

for quantitation were captured at a 1.38AU pinhole size to ensure

entire cell fluorescence was captured. Twenty cells for each

condition were evaluated for fluorescence intensity distribution.

A straight line was drawn across the length of each cell and

average fluorescence intensity measured along the cell length using

Image J.

Video Microscopy
Cells for real-time microscopy were plated onto 35 mm glass-

bottom tissue culture dishes (MatTek Corp.) 48 hrs prior to

imaging. A scratch wound was made in the cell monolayer

immediately before imaging and the cells were transferred into

CO2-independent medium supplemented with 0.1% BSA (Roche

Diagnostics, IN, USA). Cells were imaged at 37uC using an

Olympus IX81 inverted microscope fitted with an OBS Xenon

lamp and 106objective, Solent Scientific incubation chamber and

Olympus F-View II monochrome CCD camera. Time series

images were collected at 1 frame every 5 min for up to 12 hr using

the RFP/GFP excitation filter with a laser intensity of 2%. All

images were converted to 16-bit TIFF files and further analysed

using Image J software (National Institutes of Health, Bethesda,

MD). QuickTime movies were assembled using Image J 1.37p and

still images were compiled using Adobe Photoshop CS3.

Analysis of cell projections and cell shape was performed

independently by 3 researchers blinded to experimental groups

and the results were pooled.

Supporting Information

Video S1 3D reconstruction of migrating PTRF-GFP
PC3 cell stained for caveolin-1 (red).
(AVI)
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