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Abstract

Generalization studies examine the influence of perturbations imposed on one movement onto other movements. The
strength of generalization is traditionally interpreted as a reflection of the similarity of the underlying neural
representations. Uncertainty fundamentally affects both sensory integration and learning and is at the heart of many
theories of neural representation. However, little is known about how uncertainty, resulting from variability in the
environment, affects generalization curves. Here we extend standard movement generalization experiments to ask how
uncertainty affects the generalization of visuomotor rotations. We find that although uncertainty affects how fast subjects
learn, the perturbation generalizes independently of uncertainty.
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Introduction

A central goal of systems neuroscience in general and motor

control research in particular is to understand how sensorimotor

behaviors, such as reaching, are represented and learned. One

factor that regularly influences movement planning and execution

is uncertainty. For example, when we grasp objects our hands

move very differently depending on our level of uncertainty; if we

are uncertain about an object’s position, we open our hands wider,

move more slowly and approach the object with our hands aligned

with the direction of highest uncertainty [1]. This example

highlights the fact that variability in the external world affects

behavior and suggests that uncertainty must be represented in the

nervous system.

Many studies in the field of motor control have used

generalization experiments to examine the neural representation

of movement, asking how learning a perturbation in one task

affects behavior on novel tasks [2,3,4,5,6,7,8,9,10,11,12,13,14]. By

studying which aspects of the behavior are transferred between

tasks and which tasks a behavior transfers to, these experiments

have investigated how we represent and modify movement and

task variables. Generalization is sensitive to many factors including

the coordinate system, nature, and complexity of the perturbation

[5,7,11,12], movement variables such as speed [8] and posture [9],

as well as the extent and type of training and feedback [10,15].

However, one factor that has not yet been studied in the context of

generalization experiments is uncertainty. Many studies have

explored how uncertainty affects behavior [1,16,17,18], but how

uncertainty influences generalization has received little attention.

From a normative viewpoint, subjects should generalize what

they have learned about a perturbation in one situation to a novel

situation only if they expect the perturbation to occur in the novel

situation. Behavior in novel situations reveals what subjects

expected to occur, and these expectations may be affected by

several factors including task similarity or familiarity with the type

of perturbation. It has been difficult to formalize this normative

approach to generalization, since natural movement statistics and

natural perturbation statistics are difficult to collect. However, any

normative description of generalization must take uncertainty into

account, since variability in the external world can have strong

effects on behavior; task uncertainty [17], sensory uncertainty [19]

and motor noise [20,21], have all been shown to affect individual

movements and learning, and may affect the similarity between

movements as well as the resulting generalization.

A common interpretation of generalization from one task to

another is that stronger generalization indicates a larger overlap in

the neural representations of the two tasks. For instance, Krakauer

et al. [12] measured generalization of planar, center-out reaching

movements with rotation and gain perturbations. Training with

a rotational perturbation in one direction produced strong

generalization to nearby angular targets, but did not affect

movements to novel targets with large angular separations from

the training direction (.45u). On the other hand, visuomotor gain

perturbations tended to generalize globally, to all reach directions.

This finding suggests that the internal neural representation that

changed in response to these perturbations is activated during

movements to similar angular directions, and that there may be

a polar representation of planar reaches, where reach angle and

extent are independent. Here we extend a visuomotor rotations

experiment of Krakauer et al. [12] by introducing variability in the

perturbations.

It is not clear, a priori, if and how uncertainty might influence

generalization. One hypothesis, from a normative perspective,

might be that task variability will make subjects more conservative
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and generalization narrower. High variability may indicate to

subjects that it is less likely that the perturbation will be present for

novel targets. A second hypothesis is that higher uncertainty will

result in broader neural representations and that these could be

reflected in wider generalization patterns. Several theories of the

neural representation of uncertainty explicitly predict that un-

certainty changes neural tuning. In particular, these models

predict that tuning of individual neurons becomes wider with

higher uncertainty [22,23], and there is some experimental data

suggesting that this may be the case [24,25] (see Discussion). If

generalization patterns trivially reflect overlapping neural tuning

and if neural tuning becomes wider with increasing uncertainty

then we might expect generalization to become broader with

increasing uncertainty. However, it is difficult to match behavioral

results to precise neural mechanisms; generalization between two

movements can typically only be interpreted in terms of the degree

of behavioral similarity between the movements or in terms of an

abstract similarity between the neural representations of the two

movements [4,26,27,28].

Here, with the goal of examining how uncertainty influences

generalization patterns, we designed an experiment to manipulate

the mean and the variance of noisy visuomotor rotations relative to

the central starting position while subjects performed center-out

reaches. We examined how subjects adapt to distributions of

perturbations applied during movement in one direction (training

direction). On each trial a rotation sampled from a Gaussian

distribution with fixed mean and variance was applied to a hidden

cursor controlled by the subjects’ index finger. After the subjects

adapt, we measure how the learned mean generalizes to move-

ments into other directions. The mean perturbation remained the

same under the different noise conditions. If this mean is the only

factor driving generalization movements, then we would not

expect to see any difference between generalization curves. On the

other hand, since uncertainty has been shown to affect many

different types of movement, it is important to test whether or not

generalization changes under noisy perturbations. We found that

the mean of the perturbation generalizes with a width of about 30

degrees, in line with previous studies [12,29,30]. We found that the

variance of the perturbation changes the speed and extent of

learning, but, importantly, generalization is unaffected.

Results

Here we ask how a perturbation that varies randomly across

trials is learned for one direction and how adaptation to this

perturbation affects movements into other directions. We thus

extend movement generalization studies by analyzing how

uncertainty, induced by variability or noise in the perturbation,

affects generalization patterns. Subjects controlled the position of

a hidden cursor with their right index finger by making planar

reaches in a projector-mirror system that blocked the view of the

hand (Fig. 1A). They made center-out reaches from the

workspace center to one of eight targets while a visuomotor

rotation, relative to the workspace center position, was applied to

the hidden cursor position. The visuomotor rotation was drawn

randomly each trial from a Gaussian distribution with fixed

mean and variance (Fig. 1B). During learning subjects were

incentivized to make reaches to one of the targets and received

endpoint feedback about the cursor position that allowed them to

adapt to the perturbations. During testing subjects made reaches

to the other targets, without endpoint feedback, allowing us to

examine the generalization patterns (Fig. 1C). We then

measured how learning about the rotations under different

variance conditions generalized.

Subjects (n = 16) were confronted with a rotational perturbation

that caused the cursor to deviate from the true hand position as

subjects moved away from the center of the workspace. We

presented three blocks of training with the same absolute mean

perturbation (630 degrees) but different variability (standard

deviations, sp: 0u, 4u or 12u). Since the sign of the mean of the

perturbation was randomly chosen for each subject and condition,

in order to compare across subjects we transformed the measure of

generalization so that positive hand position angles always refer to

hand position angles that counteract the average perturbation –

we call this measure the absolute angle of final hand position. In

agreement with previous studies [31,32], we found that subjects

rapidly adapt to the mean rotation, and, while they initially make

large errors, subjects learn to counter-act the perturbation so that

errors become small over the course of a few trials (Fig. 2). We

found that learning is fastest (p,0.03, bootstrap) and most

complete (p,0.001, bootstrap) for the condition with zero

variance (see Methods for details). As the uncertainty of the

perturbation increased learning was both slower and less complete.

Once subjects learn the perturbation in one direction we assess

how this learned perturbation generalizes. Using the average final

hand position during movements to the testing directions as

a measure of generalization, we found that the generalization

patterns are local in all three variance conditions (Fig. 3A–C).

This is in line with Krakauer et al. [12] whose main condition was

essentially identical to our sp =0u condition. Given that different

subjects have different baseline biases and the amount of learning

changes depending on subject and condition, we subtracted the

baseline biases and normalized the generalization by the amount

of learning in the learning direction – we call this measure the

percent adaptation relative to the learning direction (Fig. 3C, see
Methods). Despite the fact that uncertainty influenced the rate and

amount of adaptation, we did not find a difference between the

generalization curves in the three conditions in the absolute angle

of final hand position (Fig. 3B) (F2,210 = 1.06, p=0.36, two-way

repeated measures ANOVA) or in the percent adaptation relative

to the learning direction (Fig. 3C) (F2,210 = 0.11, p=0.89, two-way

repeated measures ANOVA). We also did not find a significant

interaction between uncertainty levels and target angle either in

the absolute angle of final hand position (F14,210 = 1.31, p = 0.20,

two-way repeated measures ANOVA) or in the percent adaptation

relative to the learning direction (F14,210 = 0.63, p = 0.84, two-way

repeated measures ANOVA). These results suggest that the

generalization pattern is independent of the uncertainty about

the perturbation.

With the exception of the transformed sign of the angle of final

hand position (for the measures absolute angle and percent

adaptation), we have thus far ignored the sign of the perturbation

(+30u or 230u) in our analysis. We can take the sign of the

perturbation it into account by reflecting the target directions (x-

axis in Fig. 3A–C) of the generalization data relative to the

learning target direction for those blocks that had a 230u as mean

of the distribution of perturbations. Given that all sixteen subjects

are right-handed, by ignoring the sign of the mean of the

distribution of perturbations while combining the data from the

different subjects we expect to detect biomechanical biases that

could eventually scale with the level of variability but indepen-

dently of the sign of the perturbation (Fig. 3B–C). On the other

hand if we take into account the sign of the perturbation we test for

influences of angular direction of the mean of the perturbations on

generalization and how these might eventually scale with un-

certainty (Fig. 3D, see Methods for details).

When we combine the data across subjects after reflecting of the

target directions according to the sign of the mean of the
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perturbation the generalization data, we observe an asymmetry in

the generalization (Fig. 3D). Although we cannot reject the null

hypothesis of no effect of uncertainty in the three conditions either

in the absolute angle of final hand position (F2,210 = 1.06, p=0.35,

two-way repeated measures ANOVA) or in the percent adaptation

relative to the learning direction (F2,210 = 0.11, p=0.89, two-way

repeated measures ANOVA), the interaction between uncertainty

level and target direction appears to be significant in both in the

absolute angle of final hand position (F14,210 = 2.06, p=0.016, two-

way repeated measures ANOVA) and in the percent adaptation

relative to the learning direction (F14,210 = 1.95, p=0.023, two-way

repeated measures ANOVA). The direction that corresponds to

maximum generalization (determined by fitting a raised von

Mises-like function to each subject and condition data, see

Methods for details) is not significantly different from zero for

the lower uncertainty conditions (p = 0.07 and p= 0.27, for sp =0u
and 4u, respectively; one-sided t-test), but it is significantly different

from zero for sp =12u (p = 0.001, one-sided t-test). Even though it

is not consistent with the amounts of uncertainty, there appears to

be a weak deviation from a symmetric generalization curve.

One possible explanation for the weak asymmetry that we found

is use-dependent learning [33,34,35]. Under this hypothesis,

subjects will tend to bias their reaching towards highly repeated

movements. Hand movements during the testing trials would be

attracted to the direction in which the hand moved during

learning. To determine whether or not use-dependent learning

could account for the observed asymmetry, we first plotted

a hypothetical symmetric generalization curve - the angle of final

hand position (relative to the angle of the learning target) as

a function of target direction (Fig. 3E blue dots) for

a perturbation with mean of +30u. Use dependent learning is

expected to bias these symmetric movements towards the hand

movements during learning (Fig. 3E red dots). It is difficult to
quantify this small effect exactly, but we observe that use-

dependent learning is consistent with the direction of asymmetry

that we see in our data.

To check for more subtle differences in generalization we

estimated the width of the generalization curve for each individual

subject and uncertainty condition (determined by fitting a raised

von Mises-like function, see Methods for details). For sp =0u, 4u
and 12u we found generalization widths of 27.062.2, 24.061.1

and 25.461.3 (mean6SEM, across subjects), respectively. We

could not conclude that higher uncertainty corresponds to wider

generalization for any of the 3 pair-wise comparisons (p = 0.79,

p = 0.13 and p= 0.92 for sp =12 vs sp =0u, sp =12u vs sp =4u
and sp =4u vs sp =0u, respectively; one-sided paired t-test). These

results suggest that the width of generalization of the mean of

a noisy visuomotor rotation does not depend on the level of

uncertainty in the perturbation.

Finally we did a post-hoc power analysis to compute the

minimum detectable effect size (see Methods for details). The

rationale behind this kind of analysis is that there may be

Figure 1. Experimental setup, protocol and typical trajectory data. A) Experimental setup. Subjects control the position of a hidden cursor
on the screen with their right index finger. A projector-mirror system allows the image on-screen to be perceived as being in the movement plane.
Subjects were incentivized to reach to a target (yellow) starting from a central target position (blue). The experiment assesses generalization of the
learned mean under different uncertainty conditions. B) Perturbations and block design for an individual subject. Sequence of trials in the learning
direction and generalizing directions and perturbations applied to trials in the learning direction for an individual subject. sp denotes the standard
deviation of the distribution of perturbations. Each block is composed of 4 sub-blocks: familiarization, baseline, learning and testing. Numbers in the
1st block horizontal axis correspond to the total number of trials during each sub-block (no brackets) and the number of trials towards the learning
direction during each sub-block (between brackets). C) Typical hand and cursor position during a testing sub-block. Thin colored lines are movements
towards the learning target (colored circles). Dashed thick lines are average hand position for reaches in each direction. Black circles are targets in
generalizing directions.
doi:10.1371/journal.pone.0043016.g001
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Figure 2. Learning of mean under different variance conditions. A) Learning the mean of a perturbation during the first perturbation block
for a typical subject. Solid lines denote exponential fits. B) Learning the mean of a perturbation during the first perturbation block across subjects
(n = 8, n = 4, and n = 4 for the standard deviations, sp of 0u, 4u and 12u, respectively). Thick lines are average (6SD) across subjects considering bins of
5 trials. Thin lines are exponential fits. Grey dashed lines indicate the absolute average of the imposed perturbation (30u). C) Learning the mean of
a perturbation considering all blocks for each variance condition. Thick lines denote medians across subjects and trials in a trial window of 5 trials.
Shaded area is 95% confidence region (bootstrap). D) Variability of angle of final hand position. Thick lines denote the interquartile range of the angle
of final hand position across subjects and a trial window of 5 trials. Shaded area is 95% confidence region (bootstrap).
doi:10.1371/journal.pone.0043016.g002
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a difference in generalization widths and that we did not observe it

by chance or because the effect size is small over the range of noise

levels used here. We computed how big the effect size should be

for us to have a high expectation of observing it using a one-sided

paired t-test with significance level of 0.05. We determined that we

would expect a probability higher than 0.95 of observing

a significant difference in the generalization widths, i.e. we would

have had sufficient power to detect an effect, if the effect sizes

(generalization widths) were higher than 8.5u, 5.7u and 8.2u for the
12u condition relative to 0u, the 12u relative to 4u, and 4u relative
to 0u, respectively. Hence we would expect to observe a significant

difference in the generalization widths even if the effect size was

relatively small.

Discussion

Here we extended traditional movement generalization studies

by examining how generalization following learning of a visuomo-

tor rotation is affected by the introduction of trial-by-trial

variability. We found that generalization about the mean of

a visuomotor rotation is largely unaffected when the perturbation

is variable – generalization was local under three different variance

conditions. Adaptation is slower and less complete with increased

variance level but the width of generalization is unaffected.

We could have expected to see differences in generalization

widths. Narrower or broader generalization could both have been

justified based on normative arguments or under certain

assumptions about the how uncertainty affects overlapping neural

representation of movement. Furthermore, several previous

experiments have shown that generalization widths and patterns

are neither universally uniform nor immune to changes in

experimental conditions. Even though the width of generalization

seems to be consistent across tasks such as reaching and wrist

tilting [12,30], different kinds of perturbations show wider

generalization; for example, gain perturbations in center-out

reaches appear to generalize globally [12]. Also, studies that

manipulate experimental conditions, such as the complexity of the

perturbation [5] show changes in width of generalization.

Moreover, uncertainty has been shown to affect learning [31,36]

and retention [36], in particular learning of visuomotor rotations

[18,37]. As uncertainty is important for all of these other aspects of

motor learning, it may well affect generalization patterns as well.

Here we have shown that generalization width for visuomotor

rotations is not affected by changes in variability at least not up to

12 degrees of standard deviation.

A number of models have been proposed for how the nervous

system might represent and manipulate probability distributions

and uncertainty [23,38,39,40,41,42,43,44,45]. Generally in these

Figure 3. Generalization under different variance conditions.
A) Baseline and generalization of the mean (6SEM) of a perturbation
for a typical subject as measured by the absolute angle of final hand

position relative to the target. Solid lines are generalization patterns
after learning and dashed lines denote the pre-training (baseline)
results. B) Average generalization (6SEM) across subjects. Solid lines
denote generalization patterns after learning and dashed lines denote
the pre-training (baseline) results. C) Percent adaptation (6SEM) in the
generalizing directions relative to the learning direction. D) Percent
adaptation (6SEM) in the generalizing directions relative to the learning
direction after correcting for the sign of the mean of the perturbation;
blocks with 230u mean have the target directions (x-axis) reflected
relative to the learning direction. E) Diagram illustrating the direction of
an asymmetry caused by used-dependent learning. The blue curve
denotes a symmetric, local generalization pattern - without used-
dependent learning. If there is used-dependent learning, hand move-
ments in trials towards other targets would be attracted towards the
direction to which the hand moved during the learning block (dashed
red line). This effect would predict an asymmetry with the same side as
the one observed in Fig. 3D.
doi:10.1371/journal.pone.0043016.g003
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models, the probability distribution over the set of expected

perturbations or other environmental variable based on past

experience is called the prior. After combining the prior expecta-

tions with new incoming sensory information – the likelihood - a new

probability distribution is computed – the posterior. By manipulat-

ing the variance of stochastic perturbations we are modifying the

variance of the prior and can alter how much subjects rely on new

sensory information during single reaches [17]. However, depend-

ing on how these distributions are represented by a given neural

model and precise assumptions about the neural basis of

generalization, these models will make different predictions about

generalization behavior.

Some models of neural representation [22,23] explicitly propose

an encoding scheme where tuning curves become wider with

increasing uncertainty. Under these models neural tuning becomes

broader due to the fact that neurons are receiving uncertain input

[23] or because they are optimizing the representation of the prior

distribution itself with narrowly tuned neurons representing more

common directions/orientations [22]. Analogous models applied

to movement direction would predict that higher uncertainty

would lead to broader tuning curves. There is also some

experimental data suggesting that individual neurons and popula-

tions of neurons are sensitive to changes in uncertainty. Receptive

fields in the cat’s retina, for instance, become wider with

decreasing light levels [24] and populations of neurons in pre-

motor cortex appear to be able to represent uncertainty in reach

plans [25]. However, there is still relatively limited experimental

evidence to constrain these models of the neural representation of

uncertainty, particularly in the movement related brain areas.

While many electrophysiological experiments have probed how

single neurons represent movement-related variables such as

hand-direction, speed, or muscle activity [46,47,48,49,50] and

even how neural responses change during adaptation to

visuomotor rotations [3], relatively little is known about how

neural activity changes in the presence of sensorimotor uncertainty

(but see [25,51,52,53]).

If it is true that the width of generalization curves reflects the

tuning widths of the neurons, we did not find signs of such

broadening in our generalization study. Importantly, there are

three natural interpretations of this result. It could be that our

study failed to see the effect because we did not have the necessary

statistical power. However, with 16 subjects we ran far more

subjects than most movement studies. Also, our power analysis

revealed that we should have seen even relatively small effects of

broadening; therefore it seems unlikely that this effect exists and

we were unable to observe it. Another possibility is that theories

that predict broadening of tuning curves are wrong, or at least do

not apply to simple targeted reaching movements. However, none

of the theories that deal with the representation of uncertainty

explicitly mention their predictions of generalization and (third

interpretation) generalization may be related to underlying neural

representations in a more complex way than generally assumed in

motor control research [4,5,6,12].

We have found weak signs that generalization curves are slightly

asymmetric. Use-dependent learning, where subjects are biased to

move in a way that is similar to how they have been moving

previously is one of the newly emerging insights in computational

motor control [33,34,35]. These theories would suggest biases

towards the typical direction of hand movement. We find that this

is consistent with the weak asymmetry that we found in the

generalization curves. Furthermore it is also a potential explana-

tion for the commonly observed adaptation at 180u [6,12,30],

since movements in this direction are similar to movements

returning from the learning target to the center of the working

space. Future research would be necessary to clarify which factors

give rise to this asymmetry. For example, this asymmetry may

disappear if perturbations are introduced in a gradual manner or if

limb mechanics are controlled in more detail.

For some subjects the simplicity of the task and the salience of

the perturbations led to cognitive strategies that may have

introduced noise in the measurements. As such, we found

relatively high variability across subjects. Gradually introduced

perturbations have been shown to lead to a more complete

adaptation and larger aftereffects [37,54,55]. It would be

interesting to test if slowly introduced perturbations would reduce

the subject-by-subject variance and even have some effect in the

generalization widths.

The focus both in behavioral as well as in electrophysiological

studies in motor control has been on the generalization and

representation of perturbations without any trial-by-trial vari-

ability. While uncertainty has been shown to be important in

many behavioral settings, variability does not appear to change

generalization curves during visuomotor rotation. Variability

does affect learning, however, and understanding how variability

affects generalization in other tasks should provide some insight

into the neural representations of uncertainty and movement.

Materials and Methods

Ethics Statement
The experimental protocol was approved by the Northwestern

University Institutional Review Board and is in accordance with

the Northwestern University Institutional Review Board’s policy

statement on the use of human subjects in experiments. Written

informed consent was obtained from all participants. The

Institutional Review Board of Northwestern University approved

the study.

Experimental Protocol
Sixteen right-handed healthy subjects (5 male, 11 female; aged

2763.2 years) participated in the experiment. All were naive to the

purpose of the experiment, and were paid according to their

performance. Subjects made center-out reaches in an approxi-

mately 1506150 mm central region of a 100 cm670 cm work-

space. They controlled the position of a cursor with their right

index finger, which was recorded using an Optotrak 3D

Investigator Motion Capture System. A projector and mirror

system was calibrated such that visual feedback was perceived as

being in the movement plane (Fig. 1A), and the subject’s view of

their hand was blocked by the mirror.

The task was designed to measure how subjects generalize the

mean of a noisy visuomotor rotation, that is, how a perturbation

learned during movements in one direction affects subsequent

movements in other, test directions. This experiment extends

a previous paradigm that allows measurement of generalization

about a fixed perturbation [12] to include stochastic perturbations.

Subjects were instructed to make center-out reaches into

a certain direction (the learning direction) until they adapted to

the perturbations/rotations. During this period subjects were given

endpoint feedback - that is, the final position of the hidden cursor

was displayed - and were eventually able to correct endpoint errors

in the learning direction. Afterwards, they were instructed to make

movements into other directions (the generalizing directions) in

order to measure the generalization pattern of the learned mean of

the perturbation. Generalization of the mean was assessed by

analyzing their average reaching direction for each target.

The learning direction was randomly sampled from one of the 4

diagonal directions and generalization was measured in 7

Generalization of Stochastic Visuomotor Rotations
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directions: 180u, 690u, 645u and 625u from the learning

direction (Fig. 1C). Subjects controlled the position of a red

circle, the cursor (,3 mm radius), with their right index finger.

Except for the first familiarization trials the position of the cursor

was hidden. Subjects were instructed to make radial reaches from

a central blue circle, the starting circle (,6 mm radius) to one of 8

yellow circles, the targets (,6 mm radius). Targets were all

displayed at a distance of 72 mm from the central blue circle.

300 ms after positioning the cursor over the blue circle, the cursor

disappeared, one of the eight targets appeared and subjects had to

reach it. On some of the trials the final position of the cursor was

displayed for 500 ms (endpoint feedback). The final position of the

cursor was defined as the first position of the cursor when its center

was at a distance greater than 72 mm from the center of the

starting circle. If the reach was successful, that is, if the center of

the red cursor was inside the target then the target turned white

and subjects were rewarded by having a point added to their score.

If a successful reach happened in those trials where no information

was provided about the success of the reach (no endpoint feedback)

then a point was added to a hidden score. To initiate the next trial,

subjects had to reposition the cursor in the starting blue circle.

Except for the familiarization trials where the cursor was always

visible, the cursor was visible only within a distance of 10 mm

from the center of the starting blue circle. Since some subjects have

difficulty finding their way back to the starting blue circle, 4

seconds after the previous trial was over, the cursor flashed every

second for 50 ms to allow subjects to find the starting position.

We measured generalization of the learned mean for a rotation

of 630u under three variability levels. Each trial, noise was added

to the visuomotor rotation drawn from a Gaussian with a standard

deviation of 0u, 4u or 12u. The standard deviation of 0u reproduces
previous experiments that measured the generalization pattern of

a deterministic visuomotor rotation [12].

The experiment was divided into three blocks of 560 trials

(Fig. 1B). Blocks differed in the level of variance and were

pseudo-randomized. Each block was composed of 4 sub-blocks:

Familiarization, Baseline, Learning and Testing. No rotation was

imposed during the familiarization and baseline blocks. In all

cases, the maximum time to complete each trial was 4 seconds and

the minimum time 40 ms. If any of these times was violated the

trial was restarted.

Familiarization. During the first half (40 trials, 5 movements

to each target) of the familiarization sub-block the cursor was

always visible. During the second half (40 trials, 5 movements to

each target) only endpoint position was displayed.

Baseline. This sub-block was used to measure the baseline

(80 trials, 10 movements to each target). These reaches were made

under the same conditions as the second half of the familiarization

block – endpoint feedback was provided in all trials and no

perturbation was applied to the cursor.

Learning. Subjects completed 240 trials of movements

towards a single learning target with only endpoint feedback.

The cursor was rotated relative to hand position.

Testing. The testing sub-block was composed of 160 trials. In

order to prevent de-adaptation to the perturbation, the learning

target was revisited at least twice every 4 trials; every sequence of 4

trials consisted of two reaches towards the learning target and two

reaches towards any two of the 8 targets. Targets were chosen

pseudo-randomly so that there were 10 reaches total towards each

of the generalizing directions. Endpoint feedback is provided only

in the learning direction trials. During these trials towards the

learning direction the perturbations applied to the cursor position

were sampled from the same distribution used in the learning

block.

Data Analysis
Final hand position angle gives us a measure of the subject’s

estimation of the perturbation. For each trial we computed the

final hand position by averaging the last data point before the

hand goes beyond a distance of 72 mm – the target radial distance

– from the center of the starting circle and the first data point after

that. Notice that final hand position is well defined for every trial

since trials were restarted whenever the subject did not go beyond

a distance of 72 mm.

Absolute final hand position and percent

adaptation. Since the sign of the mean of the distribution of

perturbation was randomly chosen for each block and each

subject, we normalized the angle of final hand position according

to the sign of mean of the perturbations so that the average final

hand position angle in the learning direction was positive for every

block; this was done by multiplying by 21 the angle of final hand

position when the mean of the distribution of perturbations was

positive (+30 degrees). We call this measure the absolute final hand

position. We measured the baseline movement biases, b(h), and the

learned and generalized means, g(h), by considering the average

absolute angle of final hand position (Fig. 2). Specifically,

b(ht)~ht{�hhbh,t and g(ht)~ht{�hhgh,t, where ht is target direction,

�hhb,th and �hhg,th are average absolute angles of final hand position in

trials towards target t during baseline and testing, respectively.

Using this information we can compute the percent adaptation, that

is, the difference between testing and baseline in the each direction

relative to the learning direction hl (Fig. 3C):

percent adaptation (ht)~
g(ht){b(ht)

g(hl){b(hl)
|100

Notice that a positive absolute angle of final hand position or

percent adaptation corresponds to a hand movement that

counteracts the mean of the distribution of perturbations. We

use one of these two measures in every figure and analysis (with the

exception of Fig. 2A and 3E where the true sign of final hand

angle is displayed).

Time-scales of learning. To compute the time scales and

amount of adaptation we considered only the first block of

learning for each subject (n = 8, n= 4 and n= 4 for sp =0u, 4u and
12u, respectively). We then fitted exponential learning curves that

were constrained to start at zero. We used bootstrapping over trials

to determine the p-value for the differences between the timescales

of learning and between adaptation at end of the learning sub-

blocks.

Correcting for the sign of the mean of the

perturbation. For part of the analysis (Fig. 3D) we wanted

to take into account the fact that, for some of the blocks, the mean

of the imposed perturbation had negative sign (230u). This was
done with the objective of searching for aspects of generalization

that could depend on the sign of the imposed perturbation. We did

the correction by reflecting the target directions relative to the

learning target direction; if we set the learning target direction, hl
to be zero, then the corrected generalization function gc(h) is

defined as: gc(h)~g({h).
Width of generalization. To determine the generalization

width we used raised von Mises-like (circular Gaussian) functions:

g(hDb0,b1,b2,b3)~b0zb1 exp
b2 cos (h{b3) ð1Þ

where h is target direction. We fitted these functions to each

individual percent adaptation generalization. We used 1=
ffiffiffiffiffi
b2

p
as
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the estimate of generalization width. We excluded two subjects

from this analysis because the estimated width of their general-

ization in at least one of the uncertainty conditions was more than

10 standard deviations away from the mean of the remaining

subjects’ widths for that uncertainty condition.
Peak of generalization. To determine if there is a consistent

asymmetry in the generalization pattern, we determined, for each

subject and each uncertainty condition, the angle of maximum

generalization given by the parameter b3 in Equation 1. The sign

of the parameter was corrected for the sign of the mean of the

perturbation, more specifically, we multiplied b3 by the sign of the

mean of the perturbation.
Effect size. To compute the minimum effect size, g, that

would have been required for detecting an significant effect with

probability above 0.95 using a two-sample one-sided paired t-test

at a significance level of 0.05, we used the standard minimum

detectable effect formula (for e.g. see [56]).

g~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s21zs22
14

s
(t0:05,26zt0:05,26)

where s1 and s2 are the estimated variances of widths for each

uncertainty condition and ta,n represents the value of the inverse of

the cumulative t-student distribution with n degrees of freedom at

1{a.
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