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2 Escuela de Ingenierı́a de Sistemas e Informática, Grupo de Investigación en Ingenierı́a Biomédica, Universidad Industrial de Santander, Bucaramanga, Santander,

Colombia, 3 Escuela de Quı́mica, Grupo de Investigación en Bioquı́mica y Microbiologı́a, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia

Abstract

Background: The main objective of flux balance analysis (FBA) is to obtain quantitative predictions of metabolic fluxes of an
organism, and it is necessary to use an appropriate objective function to guarantee a good estimation of those fluxes.

Methodology: In this study, the predictive performance of FBA was evaluated, using objective functions arising from the
linear combination of different cellular objectives. This approach is most suitable for eukaryotic cells, owing to their
multiplicity of cellular compartments. For this reason, Saccharomyces cerevisiae was used as model organism, and its
metabolic network was represented using the genome-scale metabolic model iMM904. As the objective was to evaluate the
predictive performance from the FBA using the kind of objective function previously described, substrate uptake and
oxygen consumption were the only input data used for the FBA. Experimental information about microbial growth and
exchange of metabolites with the environment was used to assess the quality of the predictions.

Conclusions: The quality of the predictions obtained with the FBA depends greatly on the knowledge of the oxygen uptake
rate. For the most of studied classifications, the best predictions were obtained with ‘‘maximization of growth’’, and with
some combinations that include this objective. However, in the case of exponential growth with unknown oxygen
exchange flux, the objective function ‘‘maximization of growth, plus minimization of NADH production in cytosol, plus
minimization of NAD(P)H consumption in mitochondrion’’ gave much more accurate estimations of fluxes than the
obtained with any other objective function explored in this study.
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Introduction

Gradual development on genetic manipulation techniques has

opened great possibilities for alteration of microorganisms for

different purposes. These approaches have ranged from improve-

ments and developments in the production of several metabolites,

to multiple biochemical and microbiological investigations [1].

Since early developments in this field, the need for global analysis

of cellular systems was evident, because interaction between

cellular components does not allow cell functions to be explained

simply by characterizing the components comprised in it [2].

This environment led to the emergence of metabolic engineer-

ing, which is a combination of systematic analysis from different

cellular networks (metabolic, signaling, etc.) with molecular

biology techniques to improve cellular properties through rational

design and the implementation of genetic modifications [1].

Among the areas studied by metabolic engineering, one of the

most relevant fields is searching for techniques to quantitatively

predict the metabolic behavior of microorganisms under different

conditions. In this category, the most widely used mathematical

modeling approach has been flux balance analysis (FBA) [3].

FBA is based on the assumption that evolutionary pressure has

led to the redirection of cellular metabolic fluxes, seeking for an

optimal distribution according to a certain cellular goal [4]. This

assumption make it possible to solve (i.e. to find a flux distribution

based on) the underdetermined system that results from a mass

balance in steady state of the intracellular metabolites [3], shown

in equation (1), transforming the issue into the optimization

problem of the equation (2).

S �~vv~0 ð1Þ

PLOS ONE | www.plosone.org 1 August 2012 | Volume 7 | Issue 8 | e43006



max Z~f (~vv)

subject to
S �~vv~0

~vvlƒ~vvƒ~vvu

(
ð2Þ

In equations (1) and (2), Z is the objective function that

represents the cellular goal, Sis the stoichiometric matrix,~vv is the

flux value vector, and~vvl and~vvu are the lower and upper bounds of

the flux values, respectively. It is evident that the flux distribution

estimated by the FBA depends on the objective function used, and

therefore the chosen goal will have a direct impact on the quality

of the predictions. It has been shown that, qualitatively,

simulations carried out with FBA are consistent with experimental

data [5], but in many cases, quantitative predictions are not

reliable.

To apply FBA as a predictive technique, it should be ensured

that fluxes predicted clearly represent cell growth and exchange of

metabolites by only using information related to the medium in

which cells are growing as input data. For this aim, it is necessary

to have metabolic models of higher quality, to improve the

available knowledge about the restrictions on the metabolic fluxes,

and to obtain objective functions that represent in a better way the

biological goals.

In most analysis, maximization of biomass production has been

assumed as the most appropriate objective function (e.g. [6–12]).

Recently, this objective function has been reviewed [13].

However, it has been found that growth-based optimization may

not occur in all substrates [9], and that in some cases other

objective functions perform better adjustments (e.g. [14–16]).

The problem of creating objective functions from experimental

data has already been addressed; for example, finding the

coefficients of importance (CoIs), representing the consistency of

the hypothesis that a given flux is maximized by the organism as

part of its cellular objective [17], or with the BOSS method, in

which an objective function is generated from the stoichiometric

network, together with constraints over the fluxes and a set of

experimental data [18]. However, the objective functions obtained

with these approaches are highly dependent on particular data

sets, and cannot always be interpreted from a physiological point

of view.

This work was aimed to determine whose FBA objective

functions, composed of linear combination of objectives that

represents targets of the cell compartments, allow better predic-

tions of the metabolic fluxes. There are many objective functions

previously proposed that are included in the linear combinations

studied. Errors in predictions of both cell growth and exchange of

metabolites (i.e. excretion) were evaluated quantitatively. The

methodology presented here is most suitable for eukaryotic

organisms, because prokaryotes do not possess multiple organelles.

Therefore, as Saccharomyces cerevisiae is generally used as the

eukaryotic model organism, experimental data and a metabolic

model of this microorganism were used for the calculations [19].

While most FBA performance evaluations have been done using

moderate size stoichiometric models, this study used a genome-

scale model of the metabolism of S. cerevisiae, which led to the use of

much of the information available about its metabolism. The

experimental data sets were classified in various categories,

according to growth and environmental conditions.

To sum up, the performance of different FBA objective

functions (composed by linear combination of different compart-

mental objectives) was assessed, using a genome-scale metabolic

network as metabolic model, and experimental data to determine

the quality of every objective function. The objective functions

evaluated can be represented by equation (3).

Zi,j~~wwi
~FFT

j ð3Þ

Zi,j are the FBA objective functions tested in the study, n is the

number of cellular compartments considered, ~wwi is an (16n) row

vector of relative weighting, and ~FFj is an (16n) row vector whose o-

th element correspond to a possible objective of the o-th cellular

compartment (the T superscript in equation (3) indicates

transposition).

Errors in the estimations produced for the FBA when every Zi,j

was used as objective function were evaluated, comparing

exchange fluxes and biomass production predictions with exper-

imental data. The tested combinations of compartmental objec-

tives were ranked according to the absolute value of the error

percentage in the prediction of the specific growth rate, when the

combination of objectives is used as objective function in the FBA.

This approach can be expressed as shown by equation (4), but

instead of selecting only one combination of objectives (i.e. solving

the outer optimization problem) for every category, the five best

combinations of objectives for every category (of environmental/

growth conditions) were analyzed; the errors in the estimated

values obtained with those five best objective functions in the FBA

were compared with the errors found using the most popular

objective function (i.e. maximization of biomass production), and

the errors found with an objective function that generally does not

give good predictions (i.e. maximization of ATP production).

min

Pm
k~1

D
mk,estimated{mk,measured

mk,measured
� 100D

m

subject to

max Zi,j~~wwi
~FFT

j

subject to
S �~vv~0

~vvlƒ~vvƒ~vvu

(
8>><
>>:

ð4Þ

In equation (4), mk,measured is the measured specific growth rate

in the k-th experimental data set of the category, mk,estimated is the

specific growth rate predicted by the internal optimization

problem (i.e. a FBA done using Zi,j as objective function) for the

k-th data set, and m is the number of experimental data sets that

belongs to the category (of environmental/growth conditions)

analyzed.

Methods

Multiple data sets of S. cerevisiae growth experiments were

obtained from the literature, forming a wide range of conditions

for the estimations so that the conclusions obtained would be as

versatile as possible. Subsequently, selected data sets went under a

carbon balance analysis, to avoid considering experimental data

with too much error, or too much uncertainty in the measurement.

We excluded data sets with errors greater than 10% in the overall

mass balance. Table 1 shows the list of experimental data sets

taken into account in this study, and some important experimental

conditions from the experiments carried out in the selected data

sets from every listed source. Table S1 presents a more detailed

description of the experimental data sets used.

FBA Using Cell Compartmental Objective Functions
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A genome-scale compartmentalized model, the iMM904 model,

was selected as the metabolic model of S. cerevisiae. This model

consists of 1577 reactions (including transport reactions) and 1228

metabolites, distributed in eight locations: extracellular space,

cytosol, mitochondria, peroxisome, nucleus, endoplasmic reticu-

lum, Golgi apparatus and vacuole [31]. As it can be seen, the

model has seven cellular compartments that could be considered

as contributors to the global cellular objective. However, the

number of reactions in the compartments has different orders of

magnitude, so it was decided to consider the five compartments

with higher number of reactions as possible contributors to the

cellular objective function. The five compartments that accomplish

this condition are cytosol, mitochondria, nucleus, endoplasmic

reticulum and peroxisome. The other two compartments, vacuole

and Golgi apparatus, only contain three and six reactions,

respectively.

Subsequently, some preliminary tests were addressed to explore

the influence of the objective functions from the compartments in

the modeling. For each one of these five compartments, a number

of potential objectives were selected, and their linear combinations

would compose the objective functions studied. These preliminary

tests showed that the maximization of growth was one of the

functions that had a greater impact on the quality of the

predictions, and that potential objectives from the compartments

‘‘nucleus’’ and ‘‘endoplasmic reticulum’’ did not contribute

adequately to the quality of the estimations, possibly because of

the insufficient connectivity of metabolites within these compart-

ments in the model [32]. Therefore, those two compartments were

discarded in the modeling of this study, and the objective functions

related to the biomass were moved into a virtual compartment,

named ‘‘global’’. Table 2 shows the different possible objectives

considered for every compartment studied; those objectives are

related mainly to production and consumption of reductive power

and ATP, owing to the outstanding importance of these cofactors

in explaining the cellular behavior. Other objectives considered

are associated with biomass production, because the relevance of

this objective in the FBA modeling is well established, and with

production of diverse secondary metabolites.

The objective functions evaluated in this study consisted of

linear combinations from the objectives of the compartments, as

was established in equation (3). The evaluated relative weightings

represent a big amount of different ratios (e.g., 1:1:1:1, 1:2:3:4,

1:1:1:4, 1:1:1:8, etc); vectors ~wwiwith elements equal to zero were

also included allowing the evaluation of objective functions

composed by subsets of compartmental objectives, and even each

possible objective independently. Table S2 shows the complete list

of the relative weighting vectors used in this study. Many

previously evaluated objective functions (e.g. [6,15,16]) are also

represented, including maximization of biomass production {Z =

(max biomass production)glb}, minimization of reductive power

{Z = (min NAD(P)H production)cyt+(min NAD(P)H consump-

tion)mit+(min NAD(P)H consumption)per}, maximization of ATP

production rate {Z = (max ATP production)cyt+(max ATP

production)mit}, and minimization of production of NADH {Z =

(min NADH production)cyt}.

This study was aimed to compare predictive potential from the

different objective functions formed by the combinations of the

compartment objectives, as mentioned above. Therefore, only the

flux values corresponding to substrate uptake and (if available)

exchange of oxygen, were used as input data in each FBA

executed. Values of biomass production and other fluxes

determined experimentally in the data sets were used to quantify

the predictive potential of the diverse objective functions. Errors in

the estimation of biomass production for the k-th data set were

calculated as percentage of relative error and were named ‘‘Biomass

error’’, as displayed in equation (5).

Table 1. Experimental data used in this study. Characteristics, quantity and source of the experimental data used for the numerical
evaluation of the performance of the FBA predictions, using combinations of cellular objectives as objective function.

Substrate Culture conditions
Exchange fluxes measured or
adapted

Amount of
experimental data Reference

Glucose Continuous culture, respiro-
fermentative

Ethanol, glycerol, acetate, succinate,
acetaldehyde, pyruvate

1 [20]

Glucose Continuous culture, anaerobic Ethanol, glycerol, acetate, succinate, pyruvate,
carbon dioxide

4 [21]

Glucose Continuous culture, aerobic Ethanol, glycerol, acetate, succinate, pyruvate 1 [22]

Glucose, maltose, ethanol,
acetate

Continuous culture, aerobic Oxygen, carbon dioxide 4 [23]

Glucose Continuous culture, aerobic and
respiro-fermentative

Ethanol, glycerol,
acetate, carbon dioxide

3 [24]

Glucose plus ethanol Continuous culture, aerobic Oxygen, carbon dioxide 1 [25]

Galactose Continuous culture, aerobic Ethanol, glycerol, acetate, pyruvate, carbon
dioxide

1 [26]

Glucose Continuous culture, respiro-
fermentative and anaerobic

Ethanol, glycerol, acetate, oxygen 8 [27]

Glucose Continuous culture, respiro-
fermentative and anaerobic

Ethanol, glycerol, acetate, oxygen 4 [28]

Glucose Exponential growth in batch culture,
respiro-fermentative

Ethanol, glycerol, acetate, carbon dioxide 8 [29]

Glucose Continuous culture, aerobic Ethanol, glycerol, acetate, pyruvate,
oxygen, carbon dioxide

10 [30]

doi:10.1371/journal.pone.0043006.t001
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Biomass error~
mk,estimated{mk,measured

mk,measured

� 100 ð5Þ

The sign of Biomass error indicates if the prediction overestimates

the growth (positive sign) or underestimates it (negative sign), and

this was utilized in the analysis of the different objective functions.

However, for rating the objective functions, the absolute value of

this kind of error was used, as was shown in equation (4).

On the other hand, errors in the prediction of the (experimen-

tally known) exchange fluxes were calculated as the Euclidean

distance between the experimental values of the exchange fluxes

and the FBA estimated values; this kind of error was named

‘‘Exchange fluxes error’’, and its calculation is presented in equation

(6).

Exchange fluxes error~ ~vvk,measured{~vvk,estimatedk k ð6Þ

In equation (6),~vvk,measured is the vector of measured values of the

exchange fluxes experimentally determined in the k-th data set,

and ~vvk,estimated is the vector of the estimated values of the same

exchange fluxes.

The simulations and comparisons were made with MatlabH
(The Mathworks, Inc.) software and the COBRA toolbox package

[33]. The linear programming solver used was the glpk free solver,

with glpkmex link as the interface with Matlab.

Results

The experimental data sets were classified into different

categories to explore the relationship between environmental

conditions and the objective functions that best model cell

behavior, as well as the relationship between cell growth and the

better objective functions in FBA. The categories utilized to

classify the data sets were dependent on the availability of oxygen

in the media, on the specific growth rate, and on the type of

substrate.

The results obtained in the simulations for every category were

ordered according to the accuracy in estimating the growth rate,

but both classes of error calculated (i.e. Biomass error and Exchange

fluxes error) were considered in the analyses. The errors are shown

in the figures using box-and-whisker plots, with blue color for

Biomass error and green color for Exchange fluxes error. In general, the

objective functions that performed better estimations with respect

to the prediction of microbial growth had also errors in the

estimation of the exchange fluxes that were among the lowest ones.

The analysis carried out consisted in identifying trends among

the best functions, rather than limiting the analysis to the objective

function that gives the best performance in FBA. It was better to

do it that way because of the existence of random error during

experiments, the diversity of experimental techniques used for

obtaining data in this work, the small difference in errors obtained

with several of the functions and the fact that values calculated

using FBA represent a ‘‘average cell’’ in pseudo-stable state [34].

The figures show the errors in the predictions of the best five

objective functions (i.e. the five combinations of compartmental

objectives which cause better growth predictions), and the errors in

the predictions of two global objectives: ‘‘maximization of growth’’

(being the most used FBA objective until now) and ‘‘maximization

of ATP production’’ (this objective always predicts a growth rate of

zero, because the fluxes are oriented towards other pathways

rather than biomass production), for comparison in every category

studied.

The simulations showed that the possible peroxisomal objectives

did not play any role on the predictions obtained with the FBA,

since its contribution in every case was null or not significant.

Table 2. Compartmental objectives considered in the study. List of the possible compartmental objectives evaluated in this study.
All the combinations of these objectives create the objective functions whose predictive potential was evaluated.

Global Cytosol Mitochondria Peroxisome

max (biomass production) max (NAD(P)H production) max (ATP production) max (fatty acids production)

min (biomass production) max (NAD(P)H consumption) max (NAD(P)H production) max (ATP consumption)

min (NADH production) min (NAD(P)H consumption) min (ATP consumption)

min (NAD(P)H consumption) max (transport of ATP towards
cytosol)

max (NAD(P)H production)

min (NAD(P)H production) min (NAD(P)H consumption)

max (ATP production)

min (ATP consumption)

min (acetate production)

min (CO2 production)

min (ethanol production)

min (succinate production)

min (glycerol production)

max (acetate production)

max (CO2 production)

max (ethanol production)

max (succinate production)

max (glycerol production)

doi:10.1371/journal.pone.0043006.t002
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Because of this, the figures and results do not mention any

peroxisomal objective. Another unexpected phenomenon found

was that all the different estimations obtained could be represented

using only ones and zeros as relative weightings (i.e. all the

predictions obtained using relative weightings that include values

different to –exclusively– ones and zeros were equal to the

obtained with some relative weighting composed only by ones and

zeros). Therefore, the results in the figures do not show relative

weighting values because all of them are ones and zeros (a weight

that is zero means that none of the objectives from this

compartment is active).

Predictive potential concerning availability of oxygen
The experimental data [20–30] were classified according to the

availability of oxygen in the cell culture, categorizing those in

anaerobic growth in continuous culture (six of the data sets utilized

belong to this category), aerobic growth with known oxygen

uptake rate in continuous culture (25 data sets), aerobic growth

with unknown oxygen uptake rate in continuous culture (six data

sets), and aerobic exponential growth in a batch reactor with

unknown oxygen uptake rate (eight data sets). This subdivision

from the aerobic growth cases was made because there is a huge

difference in the accuracy of the FBA predictions between these

cases. When oxygen uptake is unknown, the oxygen flux in the

FBA restrictions was bounded by a lower limit of zero, while the

upper limit was a value higher than the experimental oxygen

uptake measured in experiments with high growth rates, and this

caused that accuracy of the estimations was more limited. This

election of the upper limit in the oxygen flux value was done to

compare the performance of the different objective functions when

there is lack of information about this flux. Figure 1 shows the

predictions errors from the five best objective functions, compared

to the errors obtained with maximization of growth and

maximization of ATP production as objective functions, for each

one of the categories mentioned at the start of this section.

In the case of anaerobic growth (Figure 1A), the best

predictions were obtained with ‘‘maximization of growth’’,

‘‘maximization of growth plus minimization of NADH production

in cytosol’’ and ‘‘maximization of growth plus minimization of

succinate production in cytosol’’. Based on the data employed,

these three objectives led to an overestimation of the growth rate of

about 25%, and a low error in the exchange fluxes’ prediction.

The other two interesting objectives were ‘‘maximization of

growth plus minimization of ethanol production in cytosol’’ and

‘‘maximization of growth plus minimization of CO2 production in

cytosol’’ These two objectives led to a slightly better prediction of

growth rate (less than 20%), but underestimating it. Anyway, the

other fluxes’ estimations for those two functions are much poorer,

so these combinations are not good objectives. The other possible

combinations evaluated led to significantly worst predictions. For

example, the fifth best objective function (‘‘minimization of ATP

consumption in cytosol’’) had a Biomass error of almost 100%.

In the second case (aerobic growth with known oxygen uptake

rate (Figure 1B)) ‘‘maximization of growth’’ and ‘‘maximization

of growth plus minimization of NADH production in cytosol’’

were again between the best objective functions, and ‘‘maximiza-

tion of growth plus minimization of NAD(P)H consumption in

mitochondrion’’ achieved the same prediction error. Additionally,

other two objective functions presented a comparable prediction

level, and the rest of the combinations of compartmental objectives

led to estimations of much lower quality.

The third category (aerobic growth with unknown oxygen

uptake rate (Figure 1C)) shows some functions with a precision

comparable to that of ‘‘maximization of growth’’ again, and

between those functions we can also find ‘‘maximization of growth

plus minimization of NADH production in cytosol’’. It is evident

that the lack of knowledge about the oxygen uptake rate causes a

tendency to considerably overestimate the growth rate, exceeding

100% of error in some cases, for the combinations of objective

functions having ‘‘maximization of biomass’’ between its elements.

Only one of the best functions, ‘‘maximization of growth plus

minimization of CO2 production in cytosol’’, tends to underesti-

mate the growth instead of overestimating it, showing only a

slightly worst exchange fluxes’ prediction. But in general, the

predictions are worst than the ones obtained when the oxygen

uptake rate is known (it is clear that in the anaerobic case the

oxygen uptake is also known, being equal to zero).

The trends were totally different in the fourth case (aerobic

exponential growth in a batch reactor with unknown oxygen

uptake rate (Figure 1D)). ‘‘Maximization of growth’’ now causes

a Biomass error higher than 300% in all studied data sets.

Quantitatively, the best predictions were obtained with functions

that predict no growth (i.e. underestimating the growth by 100%),

except for one function, that really stands out among all: the

combination ‘‘maximization of growth plus minimization of

NADH production in cytosol plus minimization of NAD(P)H

consumption in mitochondrion’’; which permits to obtain predic-

tions with Biomass error of less than 20%, and Exchange fluxes error

lower than 10. Figure 1D clearly shows the big difference in the

predictions obtained with the previously mentioned combination

of objectives for the data sets evaluated, which seem to be a very

attractive option for modeling exponential growth phase of S.

cerevisiae. This indicates that the addition of the objectives

‘‘minimization of NADH production in cytosol plus minimization

of NAD(P)H consumption in mitochondrion’’ to the ‘‘maximiza-

tion of biomass’’ objective causes that the objective function

models the real oxygen uptake rate in an outstanding way, in cases

where the growth rate is high (exponential growth), despite the

lack of accurate information about the oxygen exchange flux.

Predictive potential concerning growth rate, in aerobic
growth with known oxygen flux

The data with measured oxygen consumption came from

chemostat experiments with different dilution rates, so it was

decided to explore the performance of the functions according to

growth rates. The data was classified into three subgroups: growth

rate less than or equal to 0.15 h21 (19 of the data sets utilized

belong to this category), growth rate higher than 0.15 h21 and

lower than or equal to 0.28 h21 (three data sets), and growth rate

higher than 0.28 h21 (three data sets). Figure 2 shows the five

objective functions that cause better FBA predictions in each one

of these categories, and the two objectives used for comparison.

With the three ranges of growth rates, the tendency was that the

best predictions were given for ‘‘maximization of growth’’, and a

couple of combinations including it (between them ‘‘maximization

of growth plus minimization of NADH production in cytosol’’ and

‘‘maximization of growth plus minimization of NAD(P)H

consumption in mitochondrion’’ in the three cases). The only

case in which a better prediction is found among these three

categories is in medium growth rates (i.e. growth rates between

0.15 h21 and 0.28 h21, see Figure 2B), where ‘‘maximization of

growth plus minimization of ethanol production in cytosol’’ and

‘‘maximization of growth plus minimization of ethanol production

in cytosol plus minimization of NAD(P)H consumption in

mitochondrion’’ led to lower values of Exchange fluxes error, with

an equal Biomass error.

FBA Using Cell Compartmental Objective Functions
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Predictive potential concerning type of substrate, in
aerobic growth with known oxygen flux

Predictions of FBA with different objective functions in the cases

in which the substrate was glucose (20 of the data sets utilized

belong to this category) were compared with cases in which the

substrate was not glucose (four data sets), because some previous

studies have suggested that the best objective function in the

application of FBA may depend on the type of substrate [9]. The

combinations of objectives with better performance when the

oxygen consumption is known and the substrate is glucose are

Figure 1. Best objective functions for FBA, regarding presence of oxygen in the medium. Errors of the FBA estimations using the five best
compartmentalized objective functions Z (for every category), and ‘‘max biomass production’’ and ‘‘max ATP production’’ functions. The
compartmental objectives that correspond to minimizations have negative sign, so Z is always maximized. Biomass error: error percentage in the
estimation of the specific growth rate (blue boxes). Exchange fluxes error: Euclidean distance between the estimated values and the experimental
values of the known exchange fluxes (green boxes). A: Anaerobic growth. B: Aerobic growth with known flux exchange of oxygen. C: Aerobic growth
with unknown oxygen uptake. D: Aerobic growth with unknown oxygen uptake, in batch experiments (exponential phase). prod.: production; cons.:
consumption; cyt: cytosolic; mit: mitochondrial; trans t cyt: transport towards cytosol.
doi:10.1371/journal.pone.0043006.g001
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shown in Figure 3A, and the best objectives for the experiments

where oxygen flux was measured but substrate is not glucose, are

depicted in Figure 3B.

In Figure 3 it is shown that there is not much difference

between the best objective functions in both cases. With or without

glucose as substrate, the best objectives were ‘‘maximization of

biomass production’’ and a couple of combinations containing the

aforementioned objective. The only exception in this figure is the

best function in the ‘substrate not glucose’ case: the combination

‘‘minimization of ATP consumption in cytosol plus maximization

of ATP transport towards cytosol in mitochondrion’’, with which

slightly better growth prediction and almost equal exchange fluxes’

prediction are obtained. Anyway, there was a lack of data with

substrates other than glucose in the data sets used in this study,

making this observation not very reliable. Nevertheless, this could

Figure 2. Best objective functions for FBA, regarding specific growth rate, knowing the oxygen uptake rate. Errors of the FBA
estimations using the five best compartmentalized objective functions Z (for every clasification), and ‘‘max biomass production’’ and ‘‘max ATP
production’’ functions. The compartmental objectives that correspond to minimizations have negative sign, so Z is always maximized. Biomass error:
error percentage in the estimation of the specific growth rate (blue boxes). Exchange fluxes error: Euclidean distance between the estimated values
and the experimental values of the known exchange fluxes (green boxes). A: Growth rate less than or equal to 0.15 h21. B: Growth rate higher than
0.15 h21 and lower than or equal to 0.28 h21. C: Growth rate higher than 0.28 h21. prod.: production; cons.: consumption; cyt: cytosolic; mit:
mitochondrial; trans t cyt: transport towards cytosol.
doi:10.1371/journal.pone.0043006.g002
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be an interesting FBA objective to analyze by using a bigger

amount of ‘substrate not glucose’ data.

Discussion

Quality of the predictions obtained with FBA was dramatically

dependent on the knowledge of the oxygen uptake rate. Previous

studies used this flux to evaluate the quality of FBA predictions,

but used the other exchange fluxes as input data [16]. As the

predictions has a lower quality when the oxygen uptake rate is

unknown, lack of information about oxygen flux is a big problem

for using FBA as a predictive technique in aerobic cases, because it

is very difficult to predict the exact value of oxygen uptake rate for

a determined medium condition. In any case, for certain

experimental conditions, lower and upper bounds of oxygen

uptake rate can be determined. In consequence, restrictions of

oxygen uptake can be tightened and therefore predictions of FBA

can be remarkably improved.

For the most of studied classifications, the best predictions were

obtained with ‘‘maximization of growth’’, and other combinations

that included this previous objective. This result agrees with

previous studies that supported the use of maximization of biomass

production as objective function for FBA (e.g. [6,9,18]). ‘‘Min-

imization of NADH production in cytosol’’ and ‘‘minimization of

NAD(P)H consumption in mitochondrion’’ were two objectives

that constantly showed up in combination with ‘‘maximization of

growth’’ in the best objective functions for every classification.

These two objectives did not modify greatly the predictions

obtained by ‘‘maximization of growth’’, but change slightly the

estimations obtained. This biochemical condition has been

observed in S. cerevisiae, that strives to minimize the excess NADH

formation under anaerobic conditions [35]. The biomass yield was

positively correlated with the net amount of NADH reoxidized in

respiration and glycerol formation, indicating that the turnover of

excess NADH from biosynthesis is an important factor influencing

the biomass yield under oxygen-limiting conditions [36]. Minimi-

zation of redox potential had already showed good results as FBA

objective function for Escherichia coli [16], so its relevance is not

something new.

The case of exponential aerobic growth with unknown oxygen

flux is the only exception to the tendency mentioned in the

preceding paragraph. A previous study had already indicated that

the best objective can be different depending on if the cells are

growing in a batch or a continuous culture [15]. In the present

study, the combination ‘‘maximization of growth plus minimiza-

tion of NADH production in cytosol plus minimization of

NAD(P)H consumption in mitochondrion’’ gives estimates of

fluxes that are much more accurate than the given by any other

objective function explored, when S. cerevisiae was growing in a

batch culture. With the aforementioned combination, errors in the

growth rate were lower than 20%, while all of the others objective

functions explored gave predictions with -100% (no growth) o

more than 300% of error in the estimation of growth. This is a

really interesting result, and it seems valuable to explore the

performance of this FBA objective function with a higher amount

of exponential growth data sets.

An extensive redistribution of fluxes has been observed in

anaerobic conditions compared to all the aerobic conditions [27].

In addition, under aerobic conditions S. cerevisiae regenerates

NAD+ mainly through respiration. When limited oxygen avail-

ability restricts respiration, cells are forced to use other means for

regeneration of NAD+, and mitochondrial NADH needs to be

transported to the cytosol for re-oxidation. For the transport of

Figure 3. Best objective functions for FBA, regarding substrate type, knowing the oxygen uptake rate. Errors of the FBA estimations
using the five best compartmentalized objective functions Z (for every case), and ‘‘max biomass production’’ and ‘‘max ATP production’’ functions.
The compartmental objectives that correspond to minimizations have negative sign, so Z is always maximized. Biomass error: error percentage in the
estimation of the specific growth rate (blue boxes). Exchange fluxes error: Euclidean distance between the estimated values and the experimental
values of the known exchange fluxes (green boxes). A: Experiments with glucose as substrate. B: Experiments with substrates other than glucose.
prod.: production; cons.: consumption; cyt: cytosolic; mit: mitochondrial; trans t cyt: transport towards cytosol.
doi:10.1371/journal.pone.0043006.g003
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NADH, mitochondrial alcohol dehydrogenase, encoded by ADH3,

provides a probable redox shuttle [23,37].

The results did not indicate that different objective functions

allow a better performance of FBA depending on substrate type

(glucose or not glucose), as proposed by a previous study [9].

However, there was an uncommon objective function with

unexpectedly good performance when the substrate is not glucose

(‘‘minimization of ATP consumption in cytosol plus maximization

of ATP transport towards cytosol in mitochondrion’’). Anyway,

the amount of experimental data in the both categories studied

was very different, having too little data with substrates other than

glucose. To obtain better conclusions regarding the type of

substrate, it is necessary to perform the analysis using more

experiments with different substrates, being able to assess the

possible existence of differences according to the path where the

metabolites are integrated into the metabolic network. Similarly,

the assessment of the effect of other factors, such as pH or

unfavorable osmotic pressure in the culture medium, requires

more and better experiments.
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