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Abstract

We provide a novel interpretation of the dual of support vector machines (SVMs) in terms of scatter with respect to class
prototypes and their mean. As a key contribution, we extend this framework to multiple classes, providing a new joint
Scatter SVM algorithm, at the level of its binary counterpart in the number of optimization variables. This enables us to
implement computationally efficient solvers based on sequential minimal and chunking optimization. As a further
contribution, the primal problem formulation is developed in terms of regularized risk minimization and the hinge loss,
revealing the score function to be used in the actual classification of test patterns. We investigate Scatter SVM properties
related to generalization ability, computational efficiency, sparsity and sensitivity maps, and report promising results.
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Introduction

Dualization is a critical step in support vector machines (SVMs)

[1] and other kernel-based learning algorithms [2,3], since the

actual optimization, or training, is carried out in the dual space.

Despite this, the algorithms are most often formulated and

interpreted solely in terms of the primal optimization problem, e.g.

in the context of regularized risk minimization. A rare exception is

provided by the convex hull view of the dual of binary SVMs [4,5].

This alternative view yields additional insight about the algorithm

and has also lead to algorithmic improvements [6], including

online training [7]. An extension from the binary case to the multi-

class case has furthermore been proposed in [8]. The dual view

therefore in this case provides a richer theory by complementing

the primal view.

In this paper, we contribute a new view of the dual of binary

SVMs (a short version of this work appeared in [9]). We

concentrate on the so-called m-SVM [10], and interpret the dual

in terms of class prototypes. Specifically, we cast the dual

optimization problem as a minimization of between-class scatter with

respect to the class prototypes and their arithmetic mean. This

adds new intuition to the recent prototype framework of several

binary kernel-based classifiers put forth in [11]. More importantly,

we note that scatter is inherently a multi-class quantity. Our

scatter-based view of the dual of SVMs therefore suggests a natural

extension of the m-SVM to operate jointly on C classes.

Interestingly, this key contribution, which we fittingly refer to as

Scatter SVM, does not introduce more variables to be optimized

than the number n of training examples. In addition, the number

of constraints are kept low due to the global reference point

provided by the mean of the prototypes, at the order O(nzC) or

O(nz1) depending on whether or not a bias parameter is

included in the problem formulation. This is a major computa-

tional saving compared to previous joint SVM approaches [12–15]

which typically require optimizing n|C variables under a huge

amount of constraints. Another prototype-based joint approach

[16] also requires optimizing n|C variables, although the number

of constraints are much reduced compared to the aforementioned

joint SVM methods. Non prototype-based approaches also exist,

e.g. tree-based methods [17].

In fact, the number of optimization variables and constraints of

Scatter SVM are at the same level as the binary counterpart.

Binary SVMs are frequently used in practice, also to solve the

multi-class prediction problem. Although this approach breaks a

joint optimization problem into multiple independent binary

problems [18,19], it is often used since solvers based for example

on sequential minimal optimization (SMO) provide a fast

optimization for each one-vs.-rest or one-vs.-one problem. We

develop an SMO-like dedicated and highly efficient optimization

procedure for Scatter SVM, making our approach basically

comparably fast as each run of a binary one-vs.-rest SVM.

Running C one-vs.-rest binary SVMs for the multi-class problem

will therefore require solving C times as many optimization

problems of similar computational complexity as Scatter SVM.

This may be unfortunate when running times are high and cross-
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validation is needed. Similar comments also apply to the one-vs.-

one approach, requiring C(C{1)=2 runs, although solving

smaller sub-problems at each step. We also develop a chunking-

based optimization procedure.

However, although we motivate and develop Scatter SVM by

analyzing and extending the dual of m-SVMs, the theory is not

complete without the corresponding primal. In particular, the

score function to be used in the actual classification of test patterns

is not revealed by the dual view. Therefore, as a further

contribution, we develop the full regularized risk minimization

primal of Scatter SVM. The reference to the mean of the

prototypes in the dual view translates into a reference to a mean

hypothesis, in the form of a hyperplane, in the primal view.

Basically, in the primal, Scatter SVM learns class-wise hyperplanes

such that the corresponding class scores better than the mean

hypothesis by a margin.

The regularized risk minimization framework shows that our

initial formulation of Scatter SVM corresponds to the use of the

hinge loss in the computation of the empirical risk. The theory

may therefore be further developed by incorporating other loss

functions. Furthermore, the primal shows how a hyperplane bias

parameter affects the constraints in the dual, hence providing

additional theoretical insight.

We investigate properties of the new algorithm with respect to

speed and sparsity, and report experimental results, which shows

that our method may obtain promising performance when

compared to the state-of-the-art, at a reasonable computational

complexity.

Another interesting subject we explore is the creation of Scatter

SVM sensitivity maps. In [20], visualization of the sensitivity of

binary SVM solutions to the features (corresponding to brain

regions in that work, since the focus was on neuroimaging), both in

the linear and the non-linear case through kernels, was enabled

through so-called sensitivity maps. In the multi-class case, using

e.g. multiple binary SVM classifiers, it is not obvious how to create

sensitivity maps. We show that Scatter SVM is well suited to create

sensitivity maps also in the multi-class case.

The method [8], which came to our attention in the final phases

of this work, leads to an optimization problem which is quite

similar to ours, however, from a completely different starting point

of convex hulls. Our work surpasses [8] in several aspects. First, by

offering a complete dual-primal view, which reveals a bias

parameter controlling constraints in the dual and which provides

the score function to be used in testing. Our test rule performs

better in experiments than the heuristically obtained rule in [8].

Second, by developing a dedicated and fast solver. Third, by

discussing different loss functions and the creation of sensitivity

maps, which opens up further possibilities within this framework.

Methods and Theory

We start by reinterpreting the binary SVM method in terms of

scatter between class prototypes and their mean. Thereafter, we

extend this novel Scatter SVM theory to multiple classes.

Furthermore, we examine in detail regularization and loss function

issues. Finally, we provide a fast and dedicated solver for the

resulting optimization problem.

A m-SVM Geometrical Prototype Analysis
In this section, we reinterpret the m-SVM [10] to provide a new

geometrical analysis of this classifier in terms of minimization of

between-class scatter with respect to class prototypes and their

mean. This provides the groundwork for a subsequent multi-class

extension.

SVMs are normally defined in terms of a class-separating score

function, or hyperplane

f (x)~wTxzb, ð1Þ

which is determined in such a way that the margin of the

hyperplane is maximized. Let a labeled sample be given by

D~f(xi,yi)gi~1...,n, where each example xi is drawn from a

domain X[Rd and y[f1,2g. Consider the following optimization

problem of training a m-SVM [10]

min
w,b,r,ji

1

2
EwE2{2rzm

Xn

i~1
ji

s:t: wTxizb§r{ji, i : yi~1

wTxizbƒ{rzji, i : yi~2

ji§0, Vi:

ð2Þ

The hyperplane determined by w and b has a functional margin

2r which is explicitly maximized while at the same time obeying

the constraints. This is achieved under the regularization imposed

by minimizing EwE2. The parameter m controls the emphasis on

the minimization of margin violations, quantified by the slack

variables ji.

By introducing Lagrange multipliers ai, i~1, . . . ,n, collected in

the (n|1) vector a~ aT
1 aT

2

� �T
, where ac stores faigi:yi~c, c~1,2,

the dual optimization problem becomes

min
a

1

2
aTKa

s:t: 0ƒaƒm1

aT1~2

aT
1 1~aT

2 1,

ð3Þ

where 1 is an all ones vector (the length of 1 is given by the

context) and

K~
K11 {K12

{K21 K22

" #
:

The subscripts indicate the two classes and K
cc
0 are inner-product

matrices within and between classes. Obviously, the constraints in

Eq. (3) enforce aT
c 1~1, c~1,2.

The optimization determines w explicitly as

w~
X

i:yi~1

aixi{
X

i:yi~2

aixi, ð4Þ

where the non-zero ai’s correspond to the support vectors. The

bias b is implicitly determined via the Karush-Kuhn-Tucker

(KKT) conditions.

Before proceeding, we note that a formulation of the m-SVM

problem with b~0 is also possible, corresponding to a score

function simply formulated as f (x)~wTx, hence requiring that the

hyperplane contains the origin. The only change in the dual

problem is that the constraint aT
1 1~aT

2 1 in Eq. (3) disappears.

This is a mild restriction for high dimensional spaces, since it

amounts to reducing the number of degrees of freedom by one (see

also [21]).

Scatter Support Vector Machine
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The dual formulation of the m-SVM optimization problem has

an interesting interpretation in terms of distances between convex

hulls, see for example [10,22]. Here, we provide a new geometrical

interpretation in terms of class prototypes and the arithmetic mean of

those prototypes.

A versatile way of expressing a prototype mc for class c is

exemplified by a weighted combination of the data points

belonging to that class. Under such a model, the weights

determine the properties of the prototype, and thus the way the

prototype represents the class. Let

mc~
X

i:yi~c

aixi, c[f1,2g:

This is therefore an example of a class prototype. Having

introduced this notation, the m-SVM hyperplane weight vector

given by Eq. (4) and expressed in terms of prototypes becomes

w~m1{m2. More interestingly, since it is easily shown that

Em1{m2E2~aTKa, we may by Eq. (3) conclude that the m-SVM

in the dual corresponds to minimizing the squared Euclidean

distance between the class prototypes m1 and m2. Hence, the

optimal class prototypes will be situated on the border between the

classes, and not at centers of mass. This is illustrated in Fig. 1. A m-

SVM is trained, and the support vectors are shown as the encircled

points. The resulting class prototypes are shown as the squares,

learned in such a way that the squared Euclidean distance,

indicated by the arrow, between these two points is minimized.

Situating the class prototypes at the border will ‘‘tune’’ the decision

boundary to the border region, which is exactly where the difficult

cases to classify are located. This is akin to the minimization of the

distance between the convex hulls of the classes [4,5], also focusing

the decision boundary to the border region.

In terms of the class prototypes, the score function, Eq. (1),

which is the end product to be used in the testing phase of the

classifier, is expressed as f (x)~(m1{m2)Txzb if the bias is

included in the primal, or just f (x)~(m1{m2)Tx in the case that

the bias parameter is omitted from the primal formulation. Very

recently, [11] also analyzed several binary classifiers and provided

related types of prototype frameworks.

We provide a novel addition to the prototype framework by

adding the arithmetic mean �mm~
1

2
m1zm2ð Þ into the picture. In

terms of the mean and the class prototypes, we may rewrite Eq. (3)

to obtain the equivalent expression

min
a

1

2

X2

c~1
Emc{�mmE2

s:t: 0ƒaƒm1

aT1~2

aT
c 1~1, c~1,2 (if bias),

ð5Þ

since
P2

c~1 Emc{�mmE2~Em1{m2E2 up to a constant. Interest-

ingly, this new geometrical way of viewing the dual of the m-SVM

may be related to the notion of scatter in pattern recognition.

The so-called between-class scatter is normally defined asPC
c~1 PcEvc{�vvE2 [23,24], with respect to class means

vc~
P

i:yi~c

1

nc

xi, c~1, . . . ,C, and the global mean

�vv~
PC

c~1 Pcvc. The prior class probability is Pc&
nc

N
where nc

is the cardinality of the c’th class. Hence, for C~2, by introducing

the weights ai for each data point xi and by defining the scatter

with respect to the class prototypes mc, c~1,2, and their

arithmetic mean under the equal class probability assumption,

the cost function
P2

c~1 Emc{�mmE2 is obtained.

If the score function f (x) includes the bias parameter b, we see

that the c’th class prototype is restricted to the convex set defined

by the members of that class since the class-wise weights sum up to

one. If the bias is omitted, the class prototype is not limited to the

convex set.

Fig. 2 shows an interpretation of the m-SVM in terms of scatter.

The arrows indicate the squared Euclidean distance between the

class prototypes and their mean (‘‘diamond’’). The sum of these

distances, i.e. the scatter, is minimized.

The prototype and scatter-based viewpoint of the m-SVM

training phase introduced here not only provides a new

interpretation. The practical benefit is that it suggests a

Figure 1. Interpretation of the dual of a m-SVM on toy data.
doi:10.1371/journal.pone.0042947.g001

Figure 2. Scatter interpretation of the dual of a m-SVM on toy
data.
doi:10.1371/journal.pone.0042947.g002

Scatter Support Vector Machine
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computationally efficient extension to multiple classes, since scatter

is inherently a multi-class quantity. This topic we explore in the

next section. An incorporation of unequal class priors may also be

worthwhile a study, but will not be pursued here.

Scatter SVM: A Multi-Class Extension
In this section, we motivate and analyze an algorithm for training

a joint, or multi-class, m-SVM-inspired learning machine, by

extending the scatter-based view of the dual of the binary m-SVM

to multiple classes. Aspects which concern the actual score

function to use in testing, with and without bias, is deferred to

the next section, where we derive the full regularized risk

minimization framework.

By Eq. (5), a direct extension of the scatter-based view of the

dual to C classes is proposed here as

min
a

1

2

XC

C~1
Emc{�mmE2

s:t: 0ƒaƒm1

aT1~C

aT
c 1~1, c~1, . . . ,C (if bias),

ð6Þ

for mc~
P

i:yi~c aixi, �mm~
1

C

XC

c~1
mc and weights

a~ aT
1 . . . aT

C

� �T
, where ac stores faigi:yi~c, c~1, . . . ,C. This

constitutes a direct extension of scatter to multiple classes. In this

formulation, it is optional whether or not to include the last

constraint, depending on a bias parameter discussed shortly.

It is easily shown that
PC

c~1 Emc{�mmE2~aTKa, up to a

constant, where

K~

cK11 {K12 � � � {K1C

{K21 cK22 � � � {K2C

..

. ..
.

P
..
.

{KC1 {KC2 � � � cKCC

2
66664

3
77775, ð7Þ

c~C{1 and K
cc
0 are inner-product matrices within and between

classes. Hence, the optimization problem Eq. (6) may also be

expressed as

min
a

1

2
aTKa

s:t: 0ƒaƒm1

aT~C

aT
c 1~1, c~1, . . . ,C (if bias),

ð8Þ

The matrix K is (n|n) and positive semi-definite, and therefore

leads to an optimization problem over a quadratic form (cf. Eq.

(8)), which constitutes a convex cost function. The box constraints

enforce m§1=Nmin where Nmin is the number of points in the

smallest class. This problem can be solved efficiently by quadratic

programming. There are merely n variables to be optimized, as

opposed to n|C variables for joint approaches like [13,14]. With

the bias included, there are O(nzC) simple constraints. This

problem is basically equal to [8]. However, if the bias is omitted,

there are even less constraints, only O(nz1). This latter

optimization problem is the one we primarily focus on in the

experiments. We are thus faced with an optimization problem of

much lower computational complexity than previous joint

approaches. In fact, our optimization problem Eq. (8) lends itself

nicely to a solver based on sequential minimal optimization [25] or

chunking optimization [26], respectively, depending on whether

the bias is included or not. We discuss this shortly, providing a

computationally efficient and fast Scatter SVM algorithm.

Note that in [8], Matlab’s quadprog solver was used, which

according to the authors of that paper, ‘‘takes no advantage of the

structure of the problem’’. Furthermore, they state that ‘‘the design

of a fast iterative solver … is a key research challenge…’’.

Figure 3 shows a simple three-class example of training the

Scatter SVM. Again, the encircled points show support vectors,

and squares show the class prototypes. In this example, there is

only one support vector for each class, and consequently the class

prototypes equal the support vectors. The arrows indicate the

squared Euclidean distance between prototypes and their mean.

The sum of these distances, i.e the scatter, is minimized by the

training procedure. Note that two of the classes are equal to the

two-class data set shown in Fig. 2. The support vectors for these

two classes are no longer the same in Fig. 3 as compared to Fig. 2.

This is perfectly logical, as the two classes are now part of a larger

joint optimization problem.

Of course the toy data set in Figure 3 has a ‘‘benign’’ structure

for Scatter SVM training, in that the classes are nicely distributed

around a center point. It is obvious that one may construct cases,

for example several classes distributed along a line, where the

reference to the mean of the class prototypes may be problematic.

However, by mapping the data to a richer space, of higher

dimensionality, such issues are avoided. A simple example may

illustrate this point. A one-dimensional data set is created, with

three well-separated classes having class means at {4, 2 and 4,

respectively, and global mean equal to 2. With the use of a

Gaussian kernel, this data set is mapped into a high dimensional

space. For visualization, we show in Fig. 4 the corresponding

empirical kernel PCA [2,27,28] map obtained using the three

largest eigenvalues. This yields a three-dimensional space in which

the classes are nicely distributed wrt. the mean.

For this reason, and also for increasing the probability of

linearly separable classes by Cover’s theorem [29], we in general

employ the kernel induced non-linear mapping

Figure 3. The result of training Scatter SVM on three classes
(toy data set).
doi:10.1371/journal.pone.0042947.g003

Scatter Support Vector Machine
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y : X?H, ð9Þ

to a Hilbert space H [30]. Kernel functions

k(x,x’)~Sy(x),y(x’)TH are thus utilized to compute inner

products in H.

We have proposed to extend the dual of the m-SVM to multiple

classes, and have reached an optimization problem which is

manageable in the number of variables and constraints. However,

we have yet to explain the rationale behind the last optional

constraint in Eq. (6) and Eq. (8), and we have also not discussed the

actual score function to use in the testing phase of Scatter SVM.

As explained in the previous section, in the two-class case, it is the

primal formulation of the problem in terms of a score function that

may or may not include a bias term, that determines whether or

not to include the last constraint in Eq. (5). Hence, in order to

obtain a consistent theory, we need to derive the primal problem

leading to the dual which constitutes Scatter SVM. This is the

topic of the next section.

Regularization Framework, Loss and Prototype Score
Function

In this section, with the accompanying detailed derivations in

Appendix S1, we provide the primal view of the Scatter SVM in a

full regularized risk optimization framework, which reveals the

score function to be used to classify unseen data points. Fenchel-

Legendre dualization reveals the form of the dual optimization

problem, and involves loss functions which opens up further

possibilities for Scatter SVM learning. The primal derived here

incorporates the primal of the binary m-SVM as a special case.

Let the goal be to find a hypothesis f ~(f1,:::,fC) that has low

error on new and unseen data, where the scoring functions fc[H.

Labels are predicted according to

c�~argmaxc fc(x):

Applying regularized risk minimization returns the minimizer f �,
given by

f �~ minf V(f )zmRemp(f ): ð10Þ

The regularizing function is determined by V(f ) and the empirical

risk of hypothesis f is given by

Remp(f )~
1

n

Xn

i~1

l s(f ,xi,yi)½ �, ð11Þ

with respect to a convex loss function l½:�. In the remainder, we

focus on affine-linear hyperplane models of the form

fc(x)~wT
c y(x)zbc: ð12Þ

As discussed earlier, the bias parameter bc may be removed in the

derivations, which is a mild restriction for the high dimensional

space H we consider.

A key quantity is s(f ,x,y), the argument of the loss function. As

a novel contribution, we propose to compute loss based on a

comparison between the performance of hypothesis fy(x) and the

average hypothesis (hyperplane)
1

C

XC

c~1
fc(x), by

s(f ,x,y)~fy(x){
1

C

XC

c~1

fc(x):

Expanding the loss terms into slack variables ti leads to the primal

optimization problem (see Appendix S1)

min
wc ,w,b,r,t

1

2

X
c
DDwc{�wwDD2{Crzm

X
i
l(ti)

s:t: vwyi
{�ww,y(xi)wzbyi

§r{ti, Vi

�ww~
1

C

XC

c~1
wc

�bb~
1

C

XC

c~1
bc~0:

ð13Þ

Here, V(f )~
1

2

X
c
Ewc{�wwE2{Cr. Note that the constraint

Figure 4. Illustration of a kernel induced mapping of data.
doi:10.1371/journal.pone.0042947.g004

Figure 5. In the primal, Scatter SVM learns class-wise
hyperplane functions. The function for class c scores better than
the average hypothesis by a margin, for all class c training data points.
doi:10.1371/journal.pone.0042947.g005

Scatter Support Vector Machine

PLOS ONE | www.plosone.org 5 October 2012 | Volume 7 | Issue 10 | e42947



vwyi
{�ww,y(xi)wzbyi

§r{ti implies that the class-wise hyper-

plane for class yi scores better than the average hypothesis by a

margin. See Fig. 5 for an illustration.

By Fenchel-Legendre dualization, we obtain Vc : wc~P
i:yi~c aiy(xi), yielding the generalized dual problem

sup
a

{
1

2
aTKa{m

X
i

l�({m{1ai), ð14Þ

where K is given by Eq. (7), a : aT1~C, aT
c 1~1, c~1, . . . ,C (if

bias) and where l� is the dual loss of l [31].

Hinge Loss Dual Yields Scatter SVM. When utilizing the

hinge loss l(t)~ max (0,1{t) into Eq. (14), noting that the dual loss

is l�(t)~t if {1ƒtƒ0 and ? elsewise (cf. Table 3 in [31]), we

obtain the dual

inf
a

1

2
aTKa

s:t: 0ƒaƒm1

aT1~C

aT
c 1~1, c~1, . . . ,C (if bias):

ð15Þ

where K is given by Eq. (7). Obviously, the dual equals Eq. (8) and

is thus equivalent to the scatter minimization procedure discussed in

Section 0. The last constraint only applies if the bias parameter is

included in the score functions, Eq. (12).

Alternative Loss Functions. The above analysis shows that

Scatter SVM, as derived in this paper, corresponds to the use of

the hinge loss. For completeness, we mention that using e.g.

squared hinge loss, l(t)~
1

2
max (0,1{t)ð Þ2 which gives dual loss

l�(t)~t{
1

2
t2 if tƒ0 and ? elsewise, produces a dual problem

inf
a

1

2
aT Kzdiag 1=m2

� �� �
a

s:t: a§0

aT1~C

aT
c 1~1, c~1, . . . ,C (if bias):

ð16Þ

The difference to the former problem lies in the increased

conditioning term diag
1

m2

� �
of the kernel matrix and in that no

upper bounds on a are imposed.

Another interesting loss function is logistic loss. In that case,

l(t)~ log 1ze{tð Þ which gives dual loss l�(t)~{t log ({t)
z(1zt) log (1zt) if {1ƒtƒ0 and ? elsewise, producing the

dual

Figure 6. Visualization of toy data sets: 100 class circle data set.
doi:10.1371/journal.pone.0042947.g006

Figure 7. Visualization of toy data sets: 100 class checker data
set.
doi:10.1371/journal.pone.0042947.g007

Table 1. Time comparison of the proposed Scatter SVM to the OVR LIBSVM training strategy.

Checker-Board Circle

Error [%] OVR SVM 35 49 50 22 24 22 21

Error [%] Scatter SVM 24 40 41 14 17 18 17

Time (s) OVR SVM 0.05 1.77 102.15 0.02 3.51 1,229.30 197,236.71

Time (s) Scatter SVM 0.06 1.59 85.21 0.01 2.11 46.27 42,401.26

#Classes 10 100 1,000 10 100 1,000 10,000

N 200 2,000 20,000 100 1,000 10,000 100,000

doi:10.1371/journal.pone.0042947.t001

Scatter Support Vector Machine
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inf
a

{
1

2
aTKa{

Xn

i~1
½ai log (m{1ai)z(m{ai) log (1{m{1ai)�

s:t: 0ƒaƒm1

aT1~C

aT
c 1~1, c~1, . . . ,C (if bias):

ð17Þ

It is left to future work to investigate these formulations, or other

formulations based on different losses, but it illustrates some of the

versatility of our approach with respect to the loss function.

Prototype Score Function in Dual View. As mentioned

above, by dualization, the hyperplane weight vector is given by

wc~
P

i:yi~c aiy(xi)~mc, i.e. a class prototype by our previous

notation. The labels are therefore predicted according to

c�~argmaxc mT
c y(x)zbc, ð18Þ

if the bias is included in the primal, or simple as

c�~argmaxc mT
c y(x) if the bias is omitted from the primal.

A Fast and Dedicated Shogun Implementation
With ever increasing data sets, solving complex mathematical

programs such as the one in Eq. (15) with off-the-shelf solvers

quickly becomes impractical. Here we describe an implementation

of a dedicated efficient high-performance solver for the Scatter

SVM quadratic program, that emerges from binary SVM solvers.

Many efficient SVM training methods rely on decomposition

techniques; examples are chunking [26] and SMO. The idea of

decomposition is to iteratively improve a solution candidate by

solving a sequence of subproblems: to optimize a small number of

variables (the so-called working set) while, for that moment,

freezing all others. In chunking, the subproblems typically contain

a few dozen variables and may be solved with off-the-shelf

optimizers. In SMO, the working sets consist of exactly two

variables, such that analytical optimization is possible.

Apart from the working set size, the critical design choice is the

selection of the variables for the sub-problem: the convergence

speed for the global optimization depends on the amount of

progress that the sub-problems allow for. To make SMO efficient,

clever selection strategies for the two variables ak
i ,ak

j to be

optimized at iteration k are required. A proven strategy based on

second order information is implemented in LIBSVM [32,33]. In

chunking-based optimization the subset selection is less critical

since a block of variables is active at the same time increasing the

chance of having a good set.

We exploit the fact that our problem Eq. (15) is a close relative

of the n-SVM dual in the with-bias case and of the C-SVM in the

without-bias case. However, LIBSVM is only capable of a with-

bias training. We thus implemented two algorithms in the

SHOGUN toolbox [34]: a SMO implementation of n-LIBSVM

for the with-bias training and a chunking implementation of

SVMlight for the without-bias training. We refer to Appendix S2

for more details on the implementation.

Both versions are publicly available for download at http://

www.shogun-toolbox.org/.

Experiments

The aim of the experimental section is to highlight properties of

Scatter SVM in terms of sparsity, generalization ability and

computational efficiency, by performing classification on some

well-known benchmark data sets used in the literature (see e.g.

[16,35]). Furthermore, as a novel addition to the multi-class

support vector machine literature, we also develop sensitivity maps

for illustrating the relative importance of the underlying features to

the classification result obtained by Scatter SVM.

In all experiments, the RBF-kernel is adopted. This is the most

widely used kernel function, given by

Figure 8. Analysis of Scatter SVM sparsity on USPS data.
doi:10.1371/journal.pone.0042947.g008

Figure 9. Analysis of OVR SVM sparsity on USPS data.
doi:10.1371/journal.pone.0042947.g009

Table 2. USPS-based analysis of support vector sparsity.

USPS # SVs 0 6 9

Scatter SVM 53 47 31

OVR SVM 64 (8) 74 (14) 39 (17)

doi:10.1371/journal.pone.0042947.t002
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k(xi,xj)~e
{cExi{xjE

2
, ð19Þ

where c~
1

2s2
.

Experiment on Controlled Artificial Data
As a first experiment, we perform a ‘‘sanity’’ check of the Scatter

SVM algorithm in a controlled scenario, focusing both on

computational efficiency and generalization ability. To this aim,

we artificially generated two data sets that have been often used in

Figure 10. Scatter SVM support vectors on USPS data.
doi:10.1371/journal.pone.0042947.g010

Figure 11. Scatter SVM non-support vectors on USPS data.
doi:10.1371/journal.pone.0042947.g011
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the literature (e.g. see [30]): 2d-checker-boards with slightly

overlapping fields and one class for each field, and 2d-data sets

of Gaussians evenly distributed on a circle. These data sets are

illustrated in Fig. 6 and Fig. 7.

Both the number of classes and the number of data points are

increased (cf. Table 1). For the checker (circle) data set we

generated 20 (10) points per class and split the data set evenly into

training and validation set (with an equal number of points in each

class). For this experiment, the Scatter SVM is executed in with-

bias mode, and is contrasted to a one-vs.-rest (OVR) C-SVM

(more thorough experiments with comparisons to other SVM

approaches are deferred to a later subsection). Both methods are

based on LIBSVM as implemented in the SHOGUN toolbox. We

perform model selection over the parameters on the validation

set. For SVMs, RBF-kernels of width s2[f0:1,1,5g, SVMC[
f0:01,0:1,1,10,100g, and n[fC=N,0:5,0:999g are used. We then

measure time (training+prediction) and classification error rates (in

percent, rounded) for the best performing model.

With reference to Table 1, the execution times of Scatter SVM

compare favorably to the OVR C-SVM, and in the most extreme

case correspond to a speed up factor up to 27. Scatter SVM

achieves a higher generalization ability than OVR. This might be

because these data sets contain a fixed number of examples per

class and are thus well suited for Scatter SVM. In other words,

selecting this data may imply a bias towards Scatter SVM.

However, these experiments illustrate in particular the speed-up

properties of our algorithm while maintaining good generalization.

Case-Based Analysis of Support Vectors and Sparsity
We perform two experiments in order to analyze the support

vectors created by Scatter SVM, focussing on handwritten digits

since such data is ideal for visualization. A three-class data set is

created by extracting the classes corresponding to the digits ‘‘0’’,

‘‘6’’ and ‘‘9’’ from the U.S. Postal Service (USPS) data set [36].

We randomly select 1500 data points for training, and use 630
data points as a validation set to determine the kernel size for

which to display the support vectors. A five-class data set is also

created by randomly extracting 2000 data points representing

classes ‘‘0’’–‘‘4’’ in the MNIST data set [37], randomly separated

into a training set and a validation set. For MNIST, all data points

are normalized to unit length.

For this, and all remaining experiments, Scatter SVM operates

in the without-bias mode, based on a SHOGUN SVMlight

implementation. Note that in pre-experiments we compared the

with- and without-bias training and found that the without-bias

Scatter SVM, involving the least number of constraints, consis-

tently achieves either an equal or slightly better test error. We thus

only present results for the without-bias case and refer the reader

interested in the with-bias results to our previous technical report

[38]. In that report, results were also contrasted to the method in

[8]. The training procedure in [8] resembles our with-bias

training, but the testing rule is based on heuristics. It did not

perform satisfactorily in our experiments, therefore these results

are not repeated here. The ‘‘m’’ parameter in Scatter SVM

translates into a ‘‘C’’ parameter, similar to the parameter in the

OVR C-SVM. Both methods are now trained on eleven

logarithmically evenly spaced C-parameters from 10{3 to 103.

The validation procedure is performed over 76 kernel sizes c~2k

for k between {10 and 5 in steps of 0:2 in Eq. (19).

Table 3. MNIST-based analysis of support vector sparsity.

MNIST # SVs 0 1 2 3 4

Scatter SVM 58 39 78 90 74

OVR SVM 110 (1) 85 (2) 148 (0) 148 (1) 141 (0)

doi:10.1371/journal.pone.0042947.t003

Figure 12. Scatter SVM support vectors on MNIST data.
doi:10.1371/journal.pone.0042947.g012
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On the current three-class USPS data, Scatter SVM and the

OVR C-SVM obtain best validation results corresponding to

99:87 and 99:38 percent success rate, respectively. Figure 8 shows

the weights a obtained by Scatter SVM sorted in decreasing order.

A majority of the weights are zero. In Fig. 9, the three sorted

weight vectors obtained by the OVR C-SVM is shown, also

demonstrating a certain sparseness.

If we define a xi as a support vector if ai is greater in value than

10{6, then Scatter SVM produces 131 SVs, corresponding to

8:7% of the training data. The number of SVs for each class is

shown in Table 2, together with the SV structure for the C-SVM.

The number in parenthesis indicate the number of unique SVs of

that class obtained in the ‘‘rest’’ part of the training. The number

of all unique SVs is 216 corresponding to 14:4% of the training

data.

Figure 10 shows the largest 49 support vectors in decreasing

order from upper left to bottom right wrt. the weights. Labels are

indicated. In a manner common to other support vector-based

methods, the Scatter SVM SVs represent the ‘‘difficult’’ data

points to classify. In contrast, Fig. 11 shows the digits correspond-

ing to the smallest weights (all basically zero). These are all neatly

written.

A similar experiment is performed for the MNIST data, here

with five classes. Scatter SVM obtains a best validation result

of 98:46%, while the C-SVM’s best result is 98:06%. Table 3

summarizes the number of SVs. There are 339 Scatter SVM

SVs, corresponding to 33:5% of the training data. The C-

SVM produces 636 unique SVs, i.e. using 62:9% of the training

data.

Figure 12 and Fig. 13 shows the largest Scatter SVM SVs and

the smallest non-SVs, respectively. Also in this case, the SVs

display a wide variety of shapes within classes, as opposed to the

non-SVs.

These experiments show that Scatter SVM may perform on par

with or better than an OVR C-SVM with respect to the sparsity of

the solution. This we consider encouraging.

Generalization Ability on Benchmark Data Sets
To investigate further the generalization ability of Scatter SVM,

we perform classification experiments on some well-known

benchmark multi-class data sets commonly encountered in the

literature (see e.g. [13,16,35]). The data sets are listed in Table 4.

For those cases where specific test data sets are missing, we

perform 10-fold cross-validation over the parameters and report

the best result. If a test set is available, we simply report the best

result over all combinations of parameters. In a practical situation,

a validation set would of course be used to determine the

Figure 13. Scatter SVM non-support vectors on MNIST data.
doi:10.1371/journal.pone.0042947.g013

Table 4. Multi-class benchmark data sets used in
generalization study.

# training
data

# testing
data # class # attributes

Iris 150 3 4

Wine 178 3 13

Glass 214 6 13

Vowel 528 11 10

Segment 2310 7 19

MNIST (0–4) 2000 5 784

Satimage 4435 2000 6 36

Dna 2000 1186 3 180

USPS 7291 2007 10 256

doi:10.1371/journal.pone.0042947.t004
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appropriate parameters. The data sets are obtained from

the LIBSVM web-site: http://www.csie.ntu.edu.tw/,cjlin/

libsvmtools/datasets/multiclass.html, (except MNIST) pre-pro-

cessed such that all attributes are in the range ½{1,1�. The

MNIST data, obtained from http://cs.nyu.edu/,roweis/data.

html, is normalized to unit length.

In this experiment, the Scatter SVM is contrasted to OVR C-

SVM, one-vs.-one (OVO) C-SVM and Crammer and Singer’s

(CS) [16] multi-class SVM since these are related prototype-based

methods. Crammer and Singer’s method constructs as many

hyperplanes as there are classes, each based on n variables. Hence,

the optimization problem may be quite large. Compared to

methods like [13,14], the approach is much simpler since there are

only n slack variables ti, obtained by constructing a scoring

function based on the maximum gap among all the hyperplanes

and the yi’th hyperplane. Decomposition methods were proposed

in order to reduce computational complexity. Still, the method is

vastly more complex than OVR or OVO approaches. All methods

are trained for the same set of parameters and kernel sizes as in the

previous section. For completeness, we also compare with a Naı̈ve

Bayes (NB) classifier based on kernel density estimation [39]. The

best NB result over the same range of kernel sizes used in the SVM

methods is shown in each case.

The results, shown in Table 5, indicate that Scatter SVM has

been able to generalize well, and to obtain classification results

which are comparable to these state-of-the-art alternatives.

Considering that Scatter SVM constitutes a more restricted model

with far less variables of optimization, we consider these results

encouraging, in the sense that Scatter SVM may perform well at a

reduced computational cost. For example, running CS on the

‘‘Vowel’’ data (full cross-validation) required 3 days of computa-

tions. All the three other methods only required a small fraction of

that time.

The tendency seems to be that where the results differ

somewhat, the OVO C-SVM, in particular, has an edge. This is

not surprising compared to Scatter SVM, since the reference to

the global mean in Scatter SVM introduces a form of stiffness in

terms of the regularization of the model, which will require a

certain homogeneity among the classes, with respect to e.g. noise

and outliers, to be at its most effective. For noisy data sets, a more

fine grained class wise regularization approach will have many

more variables of optimization available to capture the fine

structure in the data, at the expense of computational simplicity.

The USPS data may represent such an example, where Scatter

SVM performs worse than all the alternatives.

Even though the primary focus of this paper is performance and

computational efficiency in multi-category classification, we

include some remarks about the high dimension, low sample size

(HDLSS) scenario, which has received recent interest, e.g. in

microarray data analysis. In [40], it was shown that HDLSS data

tends to lie deterministically at the vertices of a regular simplex,

and that different classification methods operate differently under

such conditions. In order to briefly investigate Scatter SVM in the

HDLSS setting, firstly, we reduce the MNIST (0–4) data set by a

factor 6, such that each class contains on average about 65 samples

(334 points in total), each with a dimension of 784. Secondly, we

reduce the USPS training set by a factor 20, such that the smallest

class contains only 19 points, and the largest class 64 points (364

points in total). The dimension is 256. The classification results

obtained are shown in Table 6. Perhaps surprisingly, on MNIST

(0–4), the Scatter SVM increases its mean accuracy rate compared

to the full data set, although with larger standard deviations. On

the USPS data, where Scatter SVM performed worst on the full

data set, the gap to the other methods increases. Overall, this brief

analysis indicates no clear differences wrt. the alternatives when it

comes to performance in the HDLSS setting. A comparison and

thorough analysis akin to recent results on distance weighted

discrimination methods [41] would be interesting, but is deferred

for future work.

For completeness, we also display the running times of the

different algorithms in Table 7 (leaving out the data sets with the

lowest sample sizes, where Scatter, OVO and OVR SVMs run

basically equally fast). For the data sets where cross-validation is

used, we show mean training and testing times over the 10 folds

and over all kernel widths, which are the same as above. All

methods operate with C~1000. Note that here Scatter SVM is

executed in without-bias mode based on a chunking optimization,

as opposed to the SMO strategy employed in OVO and OVR

SVMs. This influences running times, and the numbers might be

different for Scatter SVM optimized using SMO. We note that for

Table 5. Classification results on several real-world data sets.

Scatter SVM OVR SVM OVO SVM CS NB

Iris 97:33+3:44 97:33+3:44 97:33+3:44 97:33+3:44 95:33+5:49

Wine 98:33+2:68 98:33+2:68 98:89+2:34 98:89+2:34 97:78+2:87

Glass 71:90+7:60 70:95+8:53 72:86+8:11 70:48+10:95 66:67+13:09

Vowel 99:24+0:98 99:06+1:33 99:44+0:91 99:06+1:33 81:08+7:61

Segment 97:62+1:25 97:49+1:08 97:71+1:06 97:40+1:14 89:83+1:43

MNIST (0–4) 99:00+0:62 99:20+0:59 99:20+0:42 99:20+0:59 91:95+1:76

Satimage 90:60 90:95 91.00 90:55 80:45

Dna 98:57 98.40 98.31 98.31 97:81

USPS 94:92 95:76 95:47 95:47 83:46

doi:10.1371/journal.pone.0042947.t005

Table 6. Classification results in the HDLSS setting on MNIST
(0–4) and USPS.

HDLSS Scatter SVM OVR SVM OVO SVM CS

MNIST (0–4) 99:09+1:46 98:18+3:26 98:48+2:58 98:18+3:26

USPS 86:55 88:19 88:04 88:29

doi:10.1371/journal.pone.0042947.t006
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USPS, Scatter SVM is the fastest method, and is much faster in

general than the CS method, which is also a joint SVM approach.

Overall, however, OVO SVM is the fastest method for these data

sets. It is a bit surprising that for MNIST, Scatter SVM has a

significantly higher training time than e.g. OVR SVM. The Dna

data set is binary, and may exhibit an unusual structure compared

to the other data sets. Here, the CS method is as fast as Scatter

SVM, which is by far not the case on any other data set.

Computational Efficiency and Speed
In this subsection, in a manner similar to Sec. 0, we would

primarily like to indicate the computational efficiency of Scatter

SVM, in terms of training and testing times, as a function of the

number of classes. To this end, we obtained the Caltech101 data

set [42] (from Peter Gehler) including the kernel matrices precisely

as used in [43], with the same train/test partition consisting of 15
and 45 instances per class for training and testing, respectively. We

compare the test errors, training time, and testing time attained by

Scatter SVM, employing the without-bias implementation, with

the ones of OVO, OVR and the implementation of Cramer &

Singer. For OVO we used the efficient LIBSVM implementation

and for OVR we used SVMlight as binary C-SVM solver.

Figure 14 shows the training and testing times obtained in this

experiment. We can see from the plots that Scatter SVM clearly

has the fastest testing time for all numbers of classes, and is also

more efficient than OVR and Cramer & Singer in terms of

training times. Asymptotically, we observe that with increasing

number of classes Scatter SVM scales best in terms of training time

so that eventually it will be the fastest method. This asymptotical

behavior is already observed in practice: already for 50 classes,

Scatter SVM is the fastest method in total (i.e., training

time+testing time). We can also remark that Cramer & Singer is

by far the slowest method in total due to its exorbitantly high

training time.

For completeness, we show in Fig. 15 the observed test errors.

The results indicate, on this particular data set, that the Scatter

SVM is not able to achieve as low test error rates as the

competitors, which are optimizing more variables. This may be

due to the very low, and heterogeneous nature, of training samples

per class, as discussed in the previous subsection.

Figure 14. The results of training several SVM-related multi-
class methods on the Caltech101 data set in terms of runtime.
doi:10.1371/journal.pone.0042947.g014

Figure 15. The results of training several SVM-related multi-
class methods on the Caltech101 data set in terms of test error.
doi:10.1371/journal.pone.0042947.g015

Table 7. Running times in seconds (train, test) on several real-
world data sets.

Scatter SVM OVO SVM OVR SVM CS

Segment 0:86,4:20:10{3 0:13,0:01 0:50,0:01 164:70,0:02

MNIST (0–4) 4:93,4:80:10{3 0:09,0:01 0:34,0:01 88:73,8:40:10{3

Satimage 1:22,0:09 0:43,0:33 2:15,0:28 1085,0:33

Dna 3:21,0:05 0:15,0:06 0:30,0:09 3:13,0:09

USPS 4:24,0:60 6:04,2:50 49:31,2:40 915,2:42

doi:10.1371/journal.pone.0042947.t007

Figure 16. Illustration of toy data used for creating sensitivity
plot.
doi:10.1371/journal.pone.0042947.g016
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Scatter SVM Sensitivity Maps
In [20], visualization of the sensitivity of binary SVM solutions

to the features, both in the linear and the non-linear case through

kernels, was enabled through so-called sensitivity maps. In the

multi-class case, using e.g. multiple binary SVM classifiers, it is not

obvious how to create sensitivity maps. We show that Scatter

SVM, on the other hand, is well suited to create sensitivity maps

also in the multi-class case.

The sensitivity map (see [20] and references therein) visualizes

the relative importance sj of the input data features xj , j~1, . . . ,d,
where d is the dimensionality, for a given function f (x) in a

stochastic environment with a distribution over the inputs given by

the probability density function p(x), and is given by

sj~

ð
Lf (x)

Lxj

� �2

p(x)dx: ð20Þ

In Scatter SVM, we wish to visualize the sensitivity with respect to

the class prototype scoring functions mT
c y(x)~

P
i:yi~c aik(xi,x)

or with respect to the mean function �mmTy(x), where

�mm~
1

C

XC

c~1
mc (note that bias terms are omitted as

Lbc=Lxj~0). Focusing on class-wise sensitivity using an empirical

estimate over xi, i : yi~c, we obtain

ŝsj~
1

nc

X
i:yi~c

Lackx

Lxj

� �2

x~xi

, ð21Þ

where nc is the cardinality of the sample, kx is a (nc|1) vector

that holds elements k(i)
x ~k(xi,x). The derivative can be calculated

for different types of kernels, including the RBF kernel. See [20]

for details. Overall, or mean, sensitivity over all classes is easily

computed based on this expression.

Figure 18. Class 1 sensitivity for toy data.
doi:10.1371/journal.pone.0042947.g018

Figure 19. Class 2 sensitivity for toy data.
doi:10.1371/journal.pone.0042947.g019

Figure 17. Total sensitivity for toy data.
doi:10.1371/journal.pone.0042947.g017

Figure 20. Class 3 sensitivity for toy data.
doi:10.1371/journal.pone.0042947.g020
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We indicate the usefulness of Scatter SVM sensitivity maps with

two experiments. In the first experiment we create a five-

dimensional training data set. Each dimension consists of 300
points, and is illustrated in Fig. 16. Only dimensions 1{3
discriminate between three classes inherent in the data. We train

the Scatter SVM such that it classifies a test set, generated in the

same manner as the training set, perfectly. Fig. 17 shows the

overall sensitivity coefficients si, i~1, . . . ,5, with respect to

�mmTy(x). The result is in accordance with what to expect, namely

that the Scatter SVM prediction function is sensitive to dimensions

1{3. Sensitivity with respect to each class-wise prototype is shown

in Figs. 18, 19 and 20.

Finally, we create a three-class data set consisting of the

(16|16) USPS digits ‘‘0’’, ‘‘1’’ and ‘‘8’’ (a total of 789 vectors of

length 256), and train the Scatter SVM. When presenting the 256
sensitivity weights, we rearrange them into a (16|16) sensitivity

map. The overall sensitivity map is shown in Fig. 21 (best viewed

in colors). Note that the pixels near the boundaries show little

sensitivity to the Scatter SVM classification. The most sensitive

pixels are in regions which appear to be associated especially with

the shapes of class ‘‘0’’ and class ‘‘1’’ digits. Figs. 22, 23 and 24

show the class-wise sensitivities for digits ‘‘0’’, ‘‘1’’ and ‘‘8’’,

respectively, providing additional information.

Figure 21. The overall sensitivity map for USPS digits ‘‘0’’, ‘‘1’’ and ‘‘8’’.
doi:10.1371/journal.pone.0042947.g021

Figure 22. The sensitivity map corresponding to class ‘‘0’’ for
USPS digits ‘‘0’’, ‘‘1’’ and ‘‘8’’.
doi:10.1371/journal.pone.0042947.g022

Figure 23. The sensitivity map corresponding to class ‘‘1’’ for
USPS digits ‘‘0’’, ‘‘1’’ and ‘‘8’’.
doi:10.1371/journal.pone.0042947.g023

Scatter Support Vector Machine

PLOS ONE | www.plosone.org 14 October 2012 | Volume 7 | Issue 10 | e42947



We believe that Scatter SVM sensitivity maps may be especially

useful for identifying active brain regions associated with some

multi-category visual stimulus, or similar approaches, in neuroim-

aging. This we aim to study further in future work.

Conclusions

We have in this exposition provided a novel prototype

framework of the dual of m-SVMs, involving the global mean of

the prototypes as a key quantity in an interpretation based on the

notion of scatter. This has enabled an extension to multiple classes,

resulting in an optimization problem with a manageable number

of variables and constraints. Furthermore, a full regularized risk

minimization framework has been put forth for the primal

problem, revealing the score function to be used in testing, and

the role of the bias parameter. The Scatter SVM optimization

problem has been implemented very efficiently in SHOGUN, thus

offering a fast algorithm for multi-class classification. The results

obtained are promising, also compared to the state of the art

OVR, OVO and CS SVM implementations.

Intuitively, the Scatter SVM optimization problem enforces

every sample to be by a margin more similar to it’s class mean than to the

overall mean. The assumptions under which our method will work

well also becomes transparent, namely, there should be a certain

homogeneity among the classes wrt. noise, outliers and regularization

treatment. The reference to a global mean introduces a global

regularization or stiffness of the model. There are, of course,

learning problems that may require a fine grained class-wise

regularization that is systematically only available by higher-

dimensionally parameterized approaches like one vs. one. Note

however that there is a sufficiently vast body of multi-class

problems that match our assumptions above.

Furthermore, we have developed Scatter SVM multi-class sensitivity

maps, and have indicated that useful visualization results are obtained.

Future work will exploit the Scatter SVM algorithm for image

annotation, in subphoneme classification for speech recognition,

computational biology and neuroinformatics. Visualization using

sensitivity maps will in all these applications be useful for analysis

and identification of discriminative features.

Supporting Information

Appendix S1 Primal Optimization Problem and Duali-
zation.

(PDF)

Appendix S2 Shogun Implementation and Algorithm.

(PDF)
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