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Abstract

Co-speech hand gestures influence language comprehension. The present experiment explored what part of the visual
processing system is optimized for processing these gestures. Participants viewed short video clips of speech and gestures
(e.g., a person saying ‘‘chop’’ or ‘‘twist’’ while making a chopping gesture) and had to determine whether the two modalities
were congruent or incongruent. Gesture videos were designed to stimulate the parvocellular or magnocellular visual
pathways by filtering out low or high spatial frequencies (HSF versus LSF) at two levels of degradation severity (moderate
and severe). Participants were less accurate and slower at processing gesture and speech at severe versus moderate levels
of degradation. In addition, they were slower for LSF versus HSF stimuli, and this difference was most pronounced in the
severely degraded condition. However, exploratory item analyses showed that the HSF advantage was modulated by the
range of motion and amount of motion energy in each video. The results suggest that hand gestures exploit a wide range
of spatial frequencies, and depending on what frequencies carry the most motion energy, parvocellular or magnocellular
visual pathways are maximized to quickly and optimally extract meaning.
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Introduction

Speech and gesture are theorized to form an integrated system

in language production [1,2], and recent research has extended

this claim to language comprehension [3]. However, little is known

about what aspects of hand gesture are important for this

integration. For example, it is not clear how much, or what type

of, visual information is necessary for someone to extract meaning

from gestures that accompany speech. In the current study, we

used a standard spatial filtering technique to present visually

degraded gestures with speech in order to determine the amount

and type of signal in the visual processing system needed for

successful processing of co-speech gestures.

Growing research in the past decade has demonstrated that

gestures influence language comprehension (for a recent review,

see [4]). By now, researchers understand a great deal about how,

why and when gestures combine with speech during this process.

For example, focusing on iconic gestures, which visually depict

attributes and actions of objects and bodies in space (e.g., making

a drinking gesture), we know that people integrate the meaning of

gesture when processing the meaning of accompanying spoken

utterance. This integration is so strong that some have recently

argued that it is an obligatory [3] and even automatic process [5].

Importantly, all of this work assumes that co-speech gestures

have some inherent and transparent meaning that people naturally

and easily glean during language comprehension. In fact, one of

the most salient features of co-speech gestures–in particular, iconic

gestures–is that their form reflects their meaning in a direct and non-

arbitrary fashion [2]. For example, the form and movement of

different drinking gestures–a gentle movement with a small

precision grasp depicts sipping from a sake cup whereas a more

abrupt movement with a closed fist depicts drinking from a large

beer mug–captures the meaning of these two actions in an obvious

way. In contrast, spoken words reflect meaning only indirectly and

arbitrarily through the particular conventions of a language. For

example, the words, ‘‘nomu’’ in Japanese, and, ‘‘drink’’ in English,

are utterly unrelated to the actual act of imbibing. This difference

is exactly why co-speech gesture is so interesting–it offers a direct

visual complement to the conventional symbols of a language, and

when combined with those symbols, provides a more veridical

‘‘picture’’ of what a speaker means.

Although much progress has been made in understanding how

people integrate the meaning of gesture and speech, a fundamental

part of this process has been overlooked in the literature: how does

the visual system process gesture in the first place? Or more

specifically, which visual pathways are responsible for carrying

information necessary to extract meaning from a co-speech

gesture? The lack of attention to this basic question is striking in

contrast to the rich tradition of psychophysical measurements of

unimodal visual information. It is well known that the visual

system employs a series of linear and non-linear transformations of

the visual world that ultimately lead to an initial representation

based on multiple spatial frequencies (see [6] for a review). This

early representation of spatial frequencies is subserved by two

primary visual pathways, namely the parvocellular (which in part

relays high spatial frequencies, HSF) and magnocellular (which in

part relays low spatial frequencies, LSF) pathways (e.g., [7,8,9]).
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There is good evidence to suggest that visual information is

processed at different rates along these two pathways. For

example, LSF signals sent via the magnocellular pathway have

been shown to reach visual cortex ,10–20 ms before the HSF

parvocellular signal [10,11,12,13], and this advantage has been

observed in human reaction time data for simplistic LSF stimuli

[14,15,16,17]. Furthermore, with respect to biological stimuli,

people are more accurate and faster to discriminate human faces

and recognize negative emotions using LSF vs. HSF visual

information [18,19,20,21].

Although this previous work has shown that LSF information is

processed faster and more accurately than HSF information (at

least when the stimuli are biological in nature), it is not clear how

this extends to multimodal processing, such as the processing of

gesture and speech. In fact, there are reasons to believe that HSF

information may play a special role in this type of processing. First,

from a unimodal standpoint it has been shown that both static and

dynamic stimuli containing signs in American Sign Language

(ASL) are more easily identified and more informative when

filtered for HSFs (.1 cycle per degree, cpd, of visual angle)

compared to LSFs [22,23]. Next, consider the neuroanatomical

finding that HSF information is primarily processed along the

ventral processing stream (see [24,25]), which leads directly to

(among other areas) the superior temporal sulcus (STS), a region

involved not only in language comprehension [26], but multi-

modal integration as well [27,28].

In addition to this neuroanatomical evidence regarding the

ventral visual processing stream, there is more direct functional

evidence that HSF information is optimal for multimodal

processing [29,30]. For example, Munhall and colleagues [29]

band-pass filtered videos of dynamic (i.e., mouths speaking) faces–

containing different narrow bands of spatial frequencies–and asked

participants to identify key words spoken in the videos. The main

finding was that participants were better at identifying words when

the video was in mid- to high-frequency bands compared to

a speech-only baseline, whereas performance was no better than

baseline in a low-frequency band. Moreover, Callan and

colleagues [30] used fMRI to identify the STS as a possible

mechanism for this effect. Thus, it appears that the multimodal

regions in the brain are designed to optimally process mid- to high-

frequency visual information when the stimuli consist of speaking

faces.

Building on this previous research, the present study explores

the multimodal processing of co-speech hand gestures during

higher-level (semantic) processing of language. Indeed, in addition

to being implicated in low-level phonemic processing, the STS is

also known to process the meaning of language [26]. Moreover,

the STS has been shown to process hand gestures that accompany

speech [31,32]. However, it is yet unknown how much, or what

type of, visual information (in the form of spatial frequencies) is

necessary for processing the meaning of gestures along with

speech.

To explore this question, we presented visually degraded videos

of a person gesturing while producing a semantically congruent or

incongruent word. We degraded (i.e., filtered) the visual stimuli

along two dimensions. In half of the degraded videos, we preserved

low frequency information (LSF condition), and in the other half,

we preserved high spatial frequency information (HSF condition).

In addition, we had two filter bandwidths (i.e., two degradation

levels), either moderate or severe. These four conditions were

compared to a non-filtered baseline. The task was to identify

whether the speech and gesture were congruent or incongruent.

If low spatial frequencies are optimal for gesture processing,

participants should perform best in the LSF condition. In contrast,

if high spatial frequencies are optimal, participants should perform

best in the HSF condition. For both hypotheses, it is expected that

the difference between LSF and HSF would be greatest in the

maximally degraded condition.

Results

Prime-Target Congruence
Although participants were on average slower to respond to the

incongruent items (M=1167 ms, SE= 43 ms) compared to

congruent items (M=1136 ms, SE= 47 ms), F (1, 19) = 4.33,

p = .05, g2 = .19, they made an equal number of errors (M=0.07,

SE= .008 and M=0.06, SE= .006, respectively), F (1, 19) = 1.84,

ns. Because error rates were comparable for incongruent and

congruent items, all analyses below (including the exploratory item

analysis) collapsed these two conditions.

Error Rates
There was a significant effect of video format, F (4, 76) = 29.12,

p,.001, g2 = .60, with the Baseline video producing fewer errors

than only the two severely degraded videos: HSF, tDS(4,

19) = 5.32, p,.001, and LSF, tDS(4, 19) = 10.10, p,.001 (see

Figure 1A).

For the 262 analysis within the four filtered conditions, there

was a significant main effect of degree F (1, 19) = 150.49, p,.001,

g2 = .88, but not frequency F (1, 19) = 0.00, ns. Moreover, there

was not a significant interaction of degree by frequency, F (1,

19) = 0.03, ns. Planned t tests showed that there were no significant

differences between the HSF and LSF severely degraded videos,

t(19) = 0.03, ns, or moderately degraded videos, t(19) = 0.27, ns.

Thus, as Figure 1A illustrates, participants produced an equal

number of errors for LSF and HSF stimuli in both the moderately

degraded (,3%) and severely degraded (,13%) conditions,

suggesting that both frequency filters provided approximately the

same amount of visual information to participants.

Response Times
There was a significant effect of video format, F (4, 76) = 30.08,

p,.001, g2 = .61, with the Baseline condition producing faster

reaction times than HSF severe, tDS(4, 19) = 4.92, p,.001, LSF

severe, tDS(4, 19) = 8.68, p,.001, LSF moderate, tDS(4,

19) = 3.97, p,.001, but not the HSF moderate condition, tDS(4,

19) = 2.01, ns (see Figure 1B).

For the 262 analysis within the four filtered conditions, there

was a significant main effect of degree F (1, 19) = 76.30, p,.001,

g2 = .80, in addition to frequency F (1, 19) = 5.68, p = .028,

g2 = .23. And although there was not a significant interaction of

degree by frequency, F (1, 19) = 2.39, p = .13, g2 = .10, planned t

tests showed that within the severely degraded condition, the LSF

condition produced significantly slower responses than the HSF

condition, t(19) = 2.34, p = .03, g2 = .221 (two-tailed), whereas

within the moderately degraded condition, there was no significant

difference between the LSF and HSF moderate conditions,

t(19) = 1.25, ns. See Figure 2b.

Exploratory Item Analyses
Given the apparent HSF reaction time advantage reported

above for the severely degraded condition, we sought to examine

the robustness of such an advantage via exploratory analyses on

our sixteen different gestures. We first sought to identify whether

some gestures carry the RT advantage for HSFs in the severely

degraded condition (since that is where the significant difference

was found) more than others by subtracting (across participants)

the mean HSF severe RT from the mean LSF severe RT on

Processing Visually Degraded Gestures and Speech
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a gesture-by-gesture basis (16 items). Specifically, for a given

gesture in the severely degraded condition, all participant reaction

times (excluding outliers as described above) were averaged across

congruent and incongruent trials in the LSF condition, and this

was also done for the HSF condition. We then subtracted the

averaged HSF severe RT from the averaged LSF severe RT

(again, on a gesture-by-gesture basis). The result, shown in Table 1,

revealed a very interesting categorical distinction (note that

positive differences indicate an HSF advantage, while negative

differences indicate an LSF advantage). That is, four of the

gestures show a clear LSF RT advantage, whereas the other twelve

show an HSF advantage, with the two sets separated by a 123.7 ms

difference in RT. It is worth noting that comparable results are

obtained when the item analysis described above is conducted on

RTs from the congruent or incongruent trials separately, with

a non-significant difference between the HSF-LSF RT differences

for each gesture in the congruent and incongruent trials,

t(15) = 0.698, p = 0.496.

Range-of-motion analysis. Upon subjective inspection of

the four LSF advantaged gestures (compared to the other twelve

HSF advantaged gestures), it became clear that our set of sixteen

gestures involved a very broad range of movement across

a significant area of the video screen. We therefore went about

quantifying the range of movement by measuring how much space

each gesture covered on the computer screen (in square

centimeters). The range-of-motion for each gesture is given in

Table S1. As expected from the subjective inspection, there was

much variability in the amount of area that each gesture covered,

from 1 cm2 to 16.5 cm2. Regressing the results of this range-of-

motion analysis against the RT differences revealed a significant

negative linear relationship (the smaller the range of motion, the

larger the HSF RT advantage) that accounted for ,59% (p,.001)

of the variance in the RT differences. Thus, participants tended to

show an LSF advantage when the range of movement was large,

whereas they tended to show an HSF advantage when the range of

movement was small. One way to think about such a relationship

is that when gestures involve a small range of movement, the

recognizability of the particular hand signals may possibly be

restricted to fine-grained bursts of local movement that may be

present when the gesture is restricted to a narrow band of HSFs,

but would likely be obscured if the gesture was restricted to

a narrow band of LSFs. However, when the range of movement is

large, the gesture signal may be spread out across a large region of

space. Because LSFs are restricted to large-scale coarse represen-

tations, they may be optimally suited to process gestures involving

broad-sweeping movement.

Motion energy analysis. While the above account is

appealing, it is largely speculative as the range-of-motion analysis

is not specific to any given band of spatial frequencies (i.e.,

identical estimates of motion area would be produced in the LSF

or HSF filtered videos). Further, it is possible that the range of

motion of a gesture does not necessarily correlate with what spatial

frequency carries the most informative signal for identifying that

gesture. For example, Table S1 shows that ‘‘hammer’’ has the

fourth largest range of motion, but it is possible that the fine

movements of the hand (HSF) are more visually informative than

the broad movements of the arm (LSF). Thus, while the range-of-

motion analysis strongly suggests a relationship between the

amount of space covered by a gesture and the subsequent

recognition of that gesture, it is not specific to any particular band

of spatial frequencies.

Given the limitation of the range-of-motion analysis described

above, we sought to investigate whether the extent of the motion

signal contained in either the LSF or HSF bands could account for

the RT differences reported in Table 1. In order to achieve this,

we employed a motion energy analysis inspired by standard

spatiotemporal motion energy models designed to reflect how

visual information is processed in early visual cortical areas (e.g.,

[33,34,35]). Specifically, motion energy models employ spatial

filters similar to those used in the current experiment to assess

motion ‘‘detectability’’ (i.e., the extent to which reliable motion

can be perceived by an observer) of an object across time. And,

since motion energy models employ spatial filters that can be set to

any particular spatial band, they can be used to estimate motion

perceptibility within different bands of spatial frequency. Thus,

within the confines of the current study, a motion energy analysis

would allow us to assess the extent to which the speed of co-speech

Figure 1. Error rates and response times for the five conditions.
A) Error rates and B) response times.
doi:10.1371/journal.pone.0042620.g001
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gesture recognition depends on the amount of motion energy

available in a given range of spatial frequencies.

To explore this, we subjected all non-filtered gesture videos (i.e.,

videos from the baseline condition) to a spatiotemporal motion

energy analysis based on that reported by [33]. The details behind

the implementation of the analysis can be found in a report by [36]

(without the saliency component). Briefly, the basis of a spatiotem-

poral energy model stems from the fact that the motion of any

given object can be represented as a single pattern plotted in a 3-

dimensional (3D) x-y-t space, such that the position of a given

piece of an object is tracked across space (horizontally via x and

vertically via y) as a function of time (t). Specifically, with respect to

the gesture videos, an x-y-t volume consists of either a ‘‘stack’’ of 2-

dimensional (2D) x-t slices taken from the same row of pixels across

all frames (i.e., horizontal motion), or a ‘‘stack’’ of 2D y-t slices

taken from the same column of pixels across all frames, transposed

and stacked vertically (i.e., vertical motion). In either of these

stacks, motion is characterized by slanted traces, with the slope of

the traces being proportional to velocity [33,36]. Thus, motion

energy within a given row (or column) of pixels across time can be

measured by differencing (is this an accepted verb?) the output of

spatiotemporally oriented filters row-by-row (or column by

column) across all frames for objects within any given video

sequence [36]. The spatiotemporal filters used in the current

analysis are exactly those reported in previous models (e.g.,

[33,36]), with the exception that motion energy was calculated

separately for LSFs or HSFs (with the filters tuned to a 1-octave

bandwidth as was used in the severely degraded condition). That

is, each non-filtered gesture video was filtered twice, once to

extract motion energy in the LSF band, and again to extract

motion energy from the HSF band. The extraction of motion

energy at the two different spatial frequency bands was achieved

by scaling the spatiotemporal filters to match the spatial frequency

bands in either the LSF or HSF conditions of the behavioral

experiments reported above. Refer to Figure 2 for an example of

a gesture with the majority of motion energy in the LSF band

(panel A) and HSF band (panel B). Figures 2C and 2D provide

a frame-by-frame graphical illustration of the relative motion

energy advantage for an LSF gesture (stir) and HSF gesture (cut).

Frame-by-frame graphical illustrations of motion energy for each

gesture used in the current study are given in Figure S1.

Next, we divided our videos into two groups, one in which RTs

were faster for the severely degraded LSF vs. HSF conditions (top

four gestures listed in Table 1) and the other in which RTs were

faster for the severely degraded HSF vs. LSF conditions (bottom

twelve gestures listed in Table 1). We then calculated the average

motion energy for each gesture in each group by averaging motion

energy within each frame, and then taking the mean across all

frames in a given gesture video sequence and averaging across all

gesture videos in each group (refer to Figure 3A for further details).

We also conducted an average motion energy analysis (for either

LSFs or HSFs) by averaging motion energy across videos in a given

group on a frame-by-frame basis (refer to Figure 3B and 3C for

further details).

While Figure 3A–C yield a nice illustration of the difference in

motion energy between the gestures grouped according to Table 1,

they cannot by themselves provide meaningful explanatory power

given the large difference in sample size (e.g., n = 4 vs. n= 12). We

therefore ran a regression between spatial frequency advantage

(HSF RTs minus LSF RTs, collapsed across congruent and

incongruent trials) and amount of motion energy difference (HSF

motion energy minus LSF motion energy) for the 1 octave (severe)

and 2 octave (moderate) conditions (refer to Figure 3D and 3E

respectively). Note that the motion energy differences were

calculated by averaging motion energy across all frames for each

gesture (separately for LSF and HSF motion energy). The

averaged LSF and HSF motion energy values are illustrated in

Figure S2 (with gestures sorted according to Table 1). Although

the RT difference is clearly a categorical one, motion energy

accounts for ,55.9% of the variance in RT differences for the

severely degraded condition (p,0.001) (Figure 3D) and ,59.8%

of the variance in RT differences for the moderately degraded

condition (p,0.001) (Figure 3E). This finding therefore suggests

that a substantial portion of the variance of the RT advantage is

explained by the extent to which motion energy is concentrated in

either the LSF or HSF band.

Discussion

The results provide support for both of our predictions.

Although there was an overall HSF advantage for response times,

this effect was modulated by the range of movement and amount

Figure 2. Motion energy analysis output for two gestures. (A) Motion energy for ‘‘stir’’ (a gesture with faster average RTs in the severely
degraded LSF condition). The color bar to the far right shows motion energy values. Top row: LSF motion energy for the ‘‘stir’’ gesture video at three
different time points in the video sequence. Bottom row: HSF motion energy for the ‘‘stir’’ gesture video at three different time points. (B) Same as
(A), but for the ‘‘cut’’ gesture (a gesture with slower average RTs in the severely degraded LSF condition). Note the larger motion energy values for
LSF in (A) and larger motion energy values for HSF in (B). (C) Averaged motion energy (ordinate) for the ‘‘stir’’ gesture video as a function of
sequential frame in the gesture video (abscissa). Note the larger amount of motion energy for LSFs compared to HSFs. (D) Averaged motion energy
(ordinate) for the ‘‘cut’’ gesture video as a function of sequential frame in the gesture video (abscissa). Note the larger amount of motion energy for
HSFs compared to LSFs. Also note the scale differences in A–D.
doi:10.1371/journal.pone.0042620.g002

Table 1. RT differences (LSF minus HSF) – Severely degraded
condition.

Gesture Mean Reaction Time Difference

Wipe 2240.72

Stir 2171.32

Saw 2114.40

Chop 2109.80

Shake 13.89

Twist 36.87

Scrub 76.51

Cut 128.56

Knock 152.54

Turn 166.57

Squeeze 172.44

Wring 177.38

Dial 178.76

Hammer 183.24

Slice 208.99

Type 223.38

Note: Gesture LSF-HSF RT differences have been sorted in ascending order.
doi:10.1371/journal.pone.0042620.t001
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Figure 3. Motion energy analysis output for all gesture videos. (A) Averaged motion energy output for LSF and HSF gesture videos grouped
by RT differences as reported in Table 1 (i.e., top 4 vs. bottom 12). That is, the left black bar and the left gray bar show the averaged motion energy
when RTs were faster in the LSF condition (n = 4), and the right black bar and the right gray bar show the averaged motion energy when RTs were
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of motion energy in the LSF and HSF videos. That is, co-speech

gestures exhibiting a large range of motion tended to elicit an LSF

advantage, while co-speech gestures exhibiting a narrow range of

motion tended to yield an HSF advantage. However, and crucial

to the current study, the spatial frequency advantage observed

here tended to co-vary with the spatial frequency band that

captured the majority of the motion energy signal. Thus, the range

of spatial frequencies important for co-speech gesture recognition

seems to depend on which spatial frequency band contains the

larger portion of motion energy.

Considering the high level of degradation in both of the severely

degraded video conditions, it is remarkable that participants were

able to do our task at all. In fact, they did it quite well (i.e.,

performance was far above chance in all conditions). The ability to

successfully relate even severely degraded gestures to spoken words

lends credence to recent claims that gestures have a deep

connection to speech during language comprehension [3,5].

Although we found that certain gestures offered an HSF

advantage and others offered a LSF advantage, this variability is

actually consistent with the previous literature. For example, the

findings of an HSF advantage are consistent with research

demonstrating that mid- to high- frequencies are optimal for

processing lip movements [29,30]. As with lip movements, the

twelve gestures in the present study that demonstrated an HSF RT

advantage exploited a very small range of motion and packed most

of their motion energy into high frequencies. To illustrate,

consider our ‘‘slicing’’ gesture. To correctly understand that

gesture’s meaning, one has to process mainly the fine-grained

movements of one hand (a closed fist making small back-and-forth

cutting movements). Because most of the important information

needed to understand this slicing gesture resides in HSF bands, it

makes sense that participants would be faster to process it when

stripped down (filtered) to contain only HSF information.

In contrast, for the four gestures that covered a wide range of

motion and packed most of their motion energy into the LSF

band, there was an RT advantage for our LSF filtered condition.

This finding is interesting in light of research showing that people

are faster to discriminate human faces and recognize negative

emotions using LSF vs. HSF visual information [18,19,20,21].

Although faces clearly have many fine-grained details, it is well

established that face discrimination relies primarily on global and

holistic visual information [18,19], precisely the sort of information

that is ideally suited for LSF processing. Together, these findings

suggest that for gestures packing most of their motion energy into

very fine-grained movements (e.g., like dialing and slicing), HSF

bands are optimal for processing meaning; whereas for gestures

placing most of their motion energy into very coarse-grained

movements (e.g., like stirring and sawing), LSF bands are optimal.

The present study makes a novel contribution to the neurosci-

ence of multimodal speech processing. For example, although

previous work has manipulated the clarity of speech to investigate

the role of co-speech gesture on language comprehension [37,38],

to our knowledge, no study has done the opposite. By degrading

our videos along spatial frequency, we were able to explore

questions not previously addressed in the literature. Specifically, by

filtering the gesture videos to contain only LSF or HSF visual

information, we were able to band gestures along two early visual

pathways, namely the magnocellular pathway for LSF stimuli and

parvocellular pathway for HSF stimuli (see [24]). This allowed us

to address not only how much spatial frequency content (in the

form of level of degradation, i.e., octave bandwidth) each band

needed before it could be processed, but also which pathway may

play a greater role in the processing of gestures that accompany

speech. Based on the results reported in the current study, it

appears that: 1) regardless of which visual pathway relays the

gesture information, successful processing can occur even with

limited spatial frequency content (as noted above, error rates in all

conditions were well above chance), suggesting that the processing

of gesture may not require a full range of spatial frequencies, and

as mentioned earlier, may take place during the early stages of

visual analysis; and 2) it appears that different visual pathways may

be activated depending on whether gestures place the majority of

motion energy in either low or high frequency bands.

These results also have implications for theories of gesture-

speech integration [1,2,39]. It is now well established that listeners

(viewers) glean meaning from co-speech gesture, and this in-

formation significantly impacts the semantic processing of speech

during language comprehension (for reviews, see [4,40]). Howev-

er, this previous research has taken for granted that the visual

system has done extensive processing to assemble meaning from

these gestures in the first place. The present study took an

important step back and attempted to describe this early stage of

gesture processing according to basic neuroanatomy of the visual

system. By showing that different gestures carry different

frequencies that optimally exploit different visual pathways (with

respect to the motion energy signal), it is clear that not all gestures

are created equal during visual processing–some exploit high

frequencies, some exploit low frequencies and some exploit both.

These results are a first step to better understanding the

psychophysical mechanisms by which low-level visual information

from gesture is combined with low-level auditory information from

speech to create meaning during language comprehension.

Indeed, it would be interesting for future work to explore whether

particular gestural frequencies are optimized to interact with

particular speech frequencies at the earliest stages of gesture-

speech integration in multimodal processing sites in the brain (e.g.,

superior temporal sulcus, inferior parietal lobule, and inferior

frontal gyrus). By taking such a low-level psychophysical approach

to describing gesture-speech integration, gesture researchers–who

mostly come from a language background–will hopefully come to

see this integration process as part of a larger ‘‘binding problem,’’

a problem that has rich traditions of research in other well-

established disciplines (e.g., visual science and computational

neurobiology).

faster in the HSF condition (n = 12). Not that the faster RTs in the LSF condition occurred when there was a high amount of LSF motion energy. Error
bars are 61 S.E.M. (B) and (C) Show averaged motion energy (ordinates) across all frames in the gesture videos (abscissas). (B) Shows averaged
motion energy in the LSF filtered gesture videos yielding faster RTs (open circles, solid black trace), and averaged motion energy in the LSF filtered
gesture videos yielding slower RTs (solid circles, dashed black trace). Note the larger amount of motion energy for the solid black trace with open
circles. (C) Shows averaged motion energy in the HSF filtered gesture videos yielding slower RTs (open circles, solid gray trace), and averaged motion
energy in the HSF filtered gesture videos yielding faster RTs (solid circles, dashed gray trace). Note the larger amount of motion energy for the dashed
gray trace with solid circles. (D) Relationship between RT differences in the 1 octave filtered condition (LSF RTs minus HSF RTs; abscissa) and motion
energy differences (HSF motion energy minus LSF motion energy; ordinate). While the RT difference is clearly a categorical one, motion energy
accounts for ,55.9% of the variance in RT differences for that condition (p,0.001). (E) Relationship between RT differences in the 2 octave filtered
condition (LSF RTs minus HSF RTs; abscissa) and motion energy differences (HSF motion energy minus LSF motion energy; ordinate). Motion energy
accounts for ,59.8% of the variance in RT differences for that condition (p,0.001).
doi:10.1371/journal.pone.0042620.g003
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Methods

Ethics Statement
The study was approved by the university’s Institutional Review

Board (IRB). Prior to the experiment, all participants read and

signed an informed consent form that was also approved by the

IRB.

Participants
Twenty right-handed college undergraduates (10 female)

participated in this experiment as part of the university’s

Introduction to Psychology course. All were native English

speakers and had normal (or corrected to normal) vision.

Materials
The stimuli were 1-s videos of the torso of a female actor making

a gesture and simultaneously saying a verb (adapted from [3]).

Half the videos presented the same information through gesture

and speech (e.g., saying and gesturing ‘‘chop’’), and the other half

presented different information (e.g., saying ‘‘twist’’ and gesturing

chop).

Stimuli for five conditions were created using an in-house

program in MATLAB 2008a equipped with the Image Processing

Toolbox (ver 6.1) and Signal Processing Toolbox (ver 6.9). One

condition was not visually filtered and was used as a baseline. The

remaining four videos were filtered along two dimensions. The

first dimension was spatial frequency, with one level centered on

a high spatial frequency (11 cpd) and the other on a low spatial

frequency (0.25 cpd). The second dimension was level of

degradation, with one filtered to contain a 1 octave bandwidth

(severely degraded) and the other, a 2 octave bandwidth

(moderately degraded) (see Figure 4). The specific design and

parameters of the filters can be found in [41]. The visual angle of

the videos (width) was 9u (viewed from 1.168 m). All videos were

viewed on a monitor with a pixel resolution of 14006900.

In total, there were 80 congruent videos (5 versions of 16

different items) and 80 incongruent videos. The order of all 160

trials was randomized across participants.

Procedure
Participants were instructed to press one keyboard button

(‘‘yes’’) if the gesture and speech contained congruent information

and a different button (‘‘no’’) if they contained incongruent

information. Although explicitly directing attention to the re-

lationship between gesture and speech is not how people typically

process multimodal language in everyday interactions, we chose

this task because it is the most straight-forward first step to testing

how much and what type of visual information is optimal for

extracting meaning from gestures.

Error rates (proportion incorrect) and response times (milli-

seconds) were analyzed from the onset of the congruent and

incongruent trials to determine how well participants could

Figure 4. A single frame from the Baseline and four visually degraded videos. The example shows a congruent stimulus (speech: ‘‘chop’’),
but the video would be identical for an incongruent stimulus, with the only difference being that the speech was ‘‘twist.’’
doi:10.1371/journal.pone.0042620.g004
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evaluate the semantic relationship between the gesture and speech

in each video. Response times that were more than two standard

deviations from the mean were excluded.

Design and Analysis
First, we compared the mean error rates and response times of

the five congruent to the five incongruent trials. Based on this

analysis, we collapsed congruent and incongruent trials into

a single score for each of the five conditions. Following this, we ran

a one-way repeated measures ANOVA (baseline, HSF moderate,

HSF severe, LSF moderate, LSF Severe) comparing the baseline

condition to the four filtered conditions. Finally, excluding the

baseline condition, we computed a 2 (frequency: HSF and LSF) by

2 (degree: moderate and severe) repeated-measures ANOVA on

the error rates and RTs for only the four filtered stimuli. Because

we had a priori predictions regarding differences between low and

high spatial frequencies, we computed planned orthogonal t tests

comparing these two conditions within the moderate and severe

conditions regardless of whether there was an omnibus interaction

(see [42]).

Following from the results yielded in the main analysis

mentioned above, we carried out an exploratory gesture item

analysis based on response time (RT) differences between the HSF

and LSF filtered gesture video conditions. The results of the item

analysis were regressed against a physical analysis of the range-of-

motion (further described in the Results section) for each gesture

video (un-filtered). The findings from the range-of-motion analysis

motivated us to subsequently explore the role of motion cues in the

different spatial frequency bands with a standard motion energy

analysis (further explained in the Results section).

Conclusion
In conclusion, we have for the first time demonstrated that hand

gestures exploit a wide range of spatial frequencies, and depending

on what frequency carries the most motion energy, different visual

pathways (i.e., parvocellular and magnocellular) are likely maxi-

mized to quickly and optimally extract meaning. This novel

finding not only provides insights into the type and amount of

visual information necessary to process hand gestures during early

stages of visual processing, but it also represents an important step

to better understanding how people visually process complex and

dynamic multimodal information in face-to-face communicative

contexts.

Supporting Information

Figure S1 Frame-by-frame graphical illustrations of
motion energy for each of the 16 gestures. Averaged

motion energy is plotted on the ordinate, and sequential frames in

the videos are plotted on the abscissa.

(TIF)

Figure S2 Averaged LSF and HSF motion energy values
for each of the 16 gestures. They are sorted according to

Table 1.

(TIF)

Table S1 Range of motion values (cm2) for each of the 16

gestures.

(DOCX)
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