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Abstract

Background: Studies addressing posttraumatic stress disorder (PTSD) have demonstrated that PTSD patients exhibit
structural abnormalities in brain regions that relate to stress regulation and fear responses, such as the hippocampus,
amygdala, anterior cingulate cortex, and ventromedial prefrontal cortex. Premotor cortical areas are involved in preparing to
respond to a threatening situation and in representing the peripersonal space. Urban violence is an important and pervasive
cause of human suffering, especially in large urban centers in the developing world. Violent events, such as armed robbery,
are very frequent in certain cities, and these episodes increase the risk of PTSD. Assaultive trauma is characterized by forceful
invasion of the peripersonal space; therefore, could this traumatic event be associated with structural alteration of premotor
areas in PTSD?

Methodology/Principal Findings: Structural magnetic resonance imaging scans were acquired from a sample of individuals
that had been exposed to urban violence. This sample consisted of 16 PTSD patients and 16 age- and gender-matched
controls. Psychometric questionnaires differentiated PTSD patients from trauma-exposed controls with regard to PTSD
symptoms, affective, and resilience predispositions. Voxel-based morphometric analysis revealed that, compared with
controls, the PTSD patients presented significant reductions in gray matter volume in the ventral premotor cortex and in the
pregenual anterior cingulate cortex.

Conclusions: Volume reduction in the premotor cortex that is observed in victims of urban violence with PTSD may be
associated with a disruption in the dynamical modulation of the safe space around the body. The finding that PTSD patients
presented a smaller volume of pregenual anterior cingulate cortex is consistent with the results of other PTSD neuroimaging
studies that investigated different types of traumatic events.
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Introduction

Post-Traumatic Stress Disorder (PTSD) is an anxiety disorder

following an exposure to a traumatic event. The diagnostic criteria

for PTSD require experiencing, witnessing, or being confronted

with an event or events that involve actual or threatened death or

serious injury, or a threat to the physical integrity of self or others

(criterion A1). It also requires that the person experience intense

fear, helplessness, or horror during the traumatic event (criterion

A2). PTSD is characterized by a series of symptoms, including

intrusions (e.g., nightmares or flashbacks), hyperarousal (e.g.,

insomnia or an exaggerated startle response), numbing (e.g.,

restricted affect or anhedonia), and avoidance of trauma-related

stimuli. A diagnosis of PTSD requires these symptoms to last for a

minimum of one month and disrupt the normal functioning of the

patient [1]. Lifetime prevalence of PTSD in the general population

of the United States was estimated at 7.8% [2]. PTSD follows a

chronic course that causes patients to experience significant

functional impairment and increase their usage of healthcare

resources, resulting in substantial personal and societal costs [3,4].

Over the past several years, neuroimaging studies of PTSD

subjects have focused on elucidating the brain circuits that mediate

this disorder [5–8]. Several PTSD studies have reported structural

abnormalities in brain regions related to stress regulation and fear

circuits [8], such as the hippocampus, anterior cingulate cortex,

ventromedial prefrontal cortex, and amygdala. The hippocampus,

a structure shown to contribute to PTSD etiology [9,10], plays a

role in the fear conditioning and extinction aspects of contextual

memory [11,12], as well as in stress regulation [13,14]. Different

meta-analyses revealed significantly smaller hippocampal volumes

PLOS ONE | www.plosone.org 1 August 2012 | Volume 7 | Issue 8 | e42560



in PTSD patients than control subjects [15–17]. It has been

suggested that the ventromedial prefrontal/anterior cingulate

cortex, and the amygdala take part in a model of PTSD

pathogenesis in which the cortical regions fail to inhibit a

hyperactive amygdala [18,19]. A meta-analysis of structural

abnormalities in PTSD found significantly smaller amygdala

volumes in adults with PTSD compared with both healthy and

trauma-exposed controls [15]. Recent structural studies found that

ventromedial prefrontal/anterior cingulate cortex are reduced in

PTSD subjects [20–26].

Studies of the neurobiology of PTSD had focused on a narrow

spectrum of trauma. Indeed, combat veterans and survivors of

childhood physical and sexual abuse accounted for 85% of all

subjects recruited to PTSD neuroimaging studies [27]. Thus far,

no study has investigated the structural brain changes associated

with PTSD elicited by urban violence. Urban violence is an

important and pervasive cause of human suffering, especially in

the large population centers of the developing world [28]. Violent

events, such as armed robbery, are very frequent in certain cities,

and these episodes increase the risk of developing PTSD [29]. In

fact, an epidemiologic study has revealed that being threatened

with a weapon accounted for 32.6% of the risk of PTSD

development in women [2].

Assaultive trauma is characterized by forceful invasion of the

peripersonal space, which is defined as a margin of safety around

the body [30–32]. The invasion of this margin of safety is often

experienced as a threat to an individual’s psychological or

biological integrity and may lead to intense discomfort and

anxiety [30–33]. A number of functional studies in PTSD have

shown altered activity in premotor cortical areas [34–37]; these

areas are involved both in preparing to respond to a threatening

situation and in peripersonal space representation [38–41].

A recent structural study in PTSD victims of child sexual/

physical abuse, a traumatic event that involves forceful invasion of

personal space, observed volume reduction in premotor cortical

region [25]. Structural abnormalities in hippocampus, anterior

cingulated/ventromedial-prefrontal cortex and amygdala, but not

in premotor areas, were observed in studies assessing traumatic

situations such as terrorism [42], disaster [20,43,44], war [21–23]

and disease [45]. These traumatic situations can be very

heterogeneous and do not necessarily involve an invasion of

peripersonal space.

Recently, an experimental study provided evidence that life-

threatening urban violence events are a major trigger for motor

defensive reactions in humans [46]. Neurobiology studies have

suggested that the premotor cortex incorporates both a represen-

tation of peripersonal space and defensive-like motor repertories

[38–41]. Could PTSD resulting from forceful invasion of

peripersonal space be associated with structural alteration in

cortical premotor areas? In this study, we address this question by

examining PTSD patients exposed to the trauma of urban

violence. We expect to observe a volumetric reduction in the

premotor cortex in these particular patients, in addition to the

structural alterations in the hippocampus, anterior cingulate/

ventromedial-prefrontal cortex and amygdala that are typically

observed in PTSD patients.

Materials and Methods

Participants
In total, 32 patients with current PTSD were recruited from an

outpatient university clinic that specialized in the posttraumatic

stress assessment and treatment of urban violence victims. The

diagnosis of PTSD was obtained using the Structured Clinical

Interview for DSM-IV Axis I [47], which had previously been

translated and adapted to Portuguese [48]. For the following

reasons, 16 patients were excluded from the study: history of

alcohol/substance dependence or abuse (n = 9); psychosis (n = 2);

risk of suicide (n = 1); claustrophobia (n = 3); and bullet lodged in

the head (n = 1).

We acquired structural magnetic resonance imaging scans of the

remaining 16 patients. These patients were under pharmacological

treatment with antidepressant drugs in adequate doses according

to the recommended guidelines for PTSD [49] and presented

major depression co-morbidity. The control group was selected

from a list of approximately 300 employees of the Federal

University of Rio de Janeiro. From this list, 21 victims of urban

violence matched by age, education level and gender with the

patients were selected for an interview. After the administration of

the Structured Clinical Interview for DSM-IV Axis I, 4

participants were excluded because they presented a past history

of PTSD (n = 2), obsessive compulsive disorder (n = 1), or

depression (n = 1). The remaining 16 trauma-exposed participants

were scanned as controls. They met criteria A1 and A2 (DSM-IV)

and had no past or current history of mental disorder. The

predominant traumatic event for both patients and controls was

armed robbery. The characteristics of the sample are described in

Table 1.

Ethics statement
This study was approved by the Ethics Review Board of the

Institute of Psychiatry of the Federal University of Rio de Janeiro.

Written informed consent was obtained from all of the participants

after a detailed description of the study.

Psychometric Assessment
All subjects included in our study were victims of urban

violence. To characterize the contrast between the test group of

patients with PTSD and the control group of trauma-exposed

individuals without PTSD, an analysis of PTSD symptomatology,

Table 1. Characteristics of the sample population.

Characteristics PTSD Controls

N % N %

Gender

Women 9 56.2 9 56.2

Men 7 43.8 7 43.8

Relationship status

Single 1 6.3 2 12.4

Married/living with partner 12 75.0 13 81.2

Divorced/widower 3 10.8 1 6.3

Type of traumatic event

Armed violence 13 81.2 12 75.0

Motor vehicle accidents 3 10.8 2 12.4

Assault without gun - 1 6.3

Sexual abuse - 1 6.3

Mean SD Mean SD

Age 43.3 5.78 44.9 6.60

Education level (years) 10.5 2.59 11.8 3.56

Time elapsed since trauma (in years) 3.0 4.8 11 9.8

doi:10.1371/journal.pone.0042560.t001
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affective dispositions and resilience traits was conducted. PTSD

symptom severity was assessed using the Post-Traumatic Stress

Disorder Checklist - Civilian Version (PCL-C) [50], translated and

adapted to Portuguese by [51]. The PCL is a standardized self-

report rating scale for PTSD and is composed of 17 items that

correspond to the key symptoms of PTSD. The participants

indicate how much they have been bothered by a symptom over

the past month using a 5-point scale that ranges from 1 (Not at All)

to 5 (Extremely). Affect traits were assessed using the Positive and

Negative Affect Schedule scale (trait version, PANAS-T) [52],

which uses 10 positive and 10 negative adjectives describing mood.

The participants rated each mood adjective on a scale from 1 (very

slightly or not at all) to 5 (extremely). The Ego-Resilience scale

(ER-89) [53] was used to assess how each individual subject

manages the challenges and experiences of daily life. The scale has

14 items, each of which are rated on a scale from 1 (does not apply

at all) to 4 (applies very strongly).

MRI acquisition
All participants were scanned at the LABS-D’Or Network

outpatient MRI unit using a 1.5-Tesla MR scanner (Philips

Medical Systems, the Netherlands). High-resolution structural T1-

weighted volumetric images were acquired with full head

coverage. In total, 160 contiguous sagittal slices were acquired

for each participant, using the following parameters:

TR = 8.11 ms, TE = 3.7 ms, flip angle = 8u, field of

view = 256 mm, slice thickness = 1.00 mm.

Pre-processing of images
Voxel-based morphometry (VBM) was conducted using SPM5

statistical parametric mapping software (Wellcome Department,

University College London; http://www.fil.ion.ucl.ac.uk/spm/)

running in MATLAB 7 (Mathworks, Sherborn, MA). The images

were segmented by gray matter (GM), white matter (WM) and

cerebrospinal fluid (CSF). Next, we applied the DARTEL toolbox

for normalization of the data. This methodological approach

provided improved inter-subject alignment accuracy [54].

DARTEL warps images from individual subjects to the group

template, and an initial group average is created as the beginning

target with rigidly aligned images. Then, individual images are

warped to match the average. After a few iterations of warping, a

shaper average is created. This procedure was repeated six times.

At each stage, the regularization is reduced; hence, the amount of

warping increases at each iteration. Additionally, Jacobian-scaled

(‘‘modulated’’) warped tissue class images were created to conserve

the total volume within the voxels. Then, segmented, normalized

and modulated GM images were smoothed with an 8-mm FWHM

Gaussian kernel. The data were subsequently warped to MNI

space.

Statistical Analyses
We compared psychometric measures between PTSD and

controls groups using Student’s t-test for independent samples.

Statistical comparisons of gray matter volume between PTSD and

controls groups were performed using t-tests with statistical

parametric mapping (SPM5). Total brain volume was treated as

a confounding variable. The resulting set of voxel values for each

contrast constituted a statistical parametric map of t-statistics

SPM(t). The SPM(t) values were converted into z-scores SPM(z).

Significance was set at a voxel level of p,0.05, which was FDR-

corrected for multiple comparisons.

Additionally, as the hippocampus and amygdala have been the

focus of many studies in PTSD, we performed a region of interest

(ROI) analysis restricted to these structures. These ROIs were

defined using the Wake Forest Pickatlas, version 1.04 [55], and the

analysis was performed using the Marsbar toolbox (http://

marsbar.sourceforge.net/) for SPM5.

Results

The PTSD group presented significantly greater symptom

severity scores than the control group (p,0.0001). In addition,

psychometric analysis indicated that the PTSD group had lower

positive affect scores (p,0.0001) and higher negative affect scores

(p,0.0001) than the control group. Moreover, the PTSD subjects

had lower ego-resilience scores than the control subjects

(p,0.0001).

VBM analysis revealed decreased gray matter volume in the

premotor cortex of the PTSD group compared to the traumatized

control group, p,0.05 corrected. We also observed a gray matter

volume reduction in the anterior cingulate cortex in PTSD

subjects, p,0.05 corrected (Table 2 and Figure 1). Neither the

hippocampus nor the amygdala differed in volume between the

PTSD and control groups.

We estimated the cluster at the anterior cingulate cortex to be

centered at the pregenual BA 32, according to the subdivision of

the cingulate described by Vogt [56]; and the cluster at the

premotor cortex to be centered at ventral BA 6, according to the

subdivision of motor areas described by Rizzolati et al [40].

ROI analysis showed that the hippocampal and amygdala

volumes of traumatized victims with PTSD did not differ from

controls.

Figure 1. Statistical parametric mapping (SPM) showing
clusters in the left pregenual anterior cingulate cortex and
the right ventral premotor cortex. There are significant differences
in gray matter volume between the PTSD and control groups.
doi:10.1371/journal.pone.0042560.g001
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Discussion

The goal of this study was to investigate gray matter volume

alteration in PTSD victims of urban violence, a traumatic event

characterized by forceful invasion of peripersonal space. We found

reduced gray matter volume in the ventral premotor cortex in

PTSD patients compared to traumatized controls. We also found a

reduction in the anterior cingulate cortex.

The present results suggest that structural alteration in the

ventral premotor cortex may contribute to PTSD pathophysiology

in victims of interpersonal violence. Graziano and Cooke [39]

showed that the premotor cortex is involved in protective

mechanisms that are essential in extreme, life-threatening situa-

tions [39]. These authors suggested that this region is involved in

the representation of the peripersonal space as a margin of safety

around the body, as well as in the selection and coordination of

defensive behavior [39]. Studies of social interactions have

indicated that individuals instinctively dynamically regulate the

interpersonal distance between themselves and others to avoid

discomfort [57] and that the invasion of peripersonal space can

lead to anxiety on the part of the victim [33].

Premotor cortex structural abnormalities observed in PTSD

patients may be associated with inappropriate construction of a

margin of safety around the body, as well as inefficient selection

and coordination of defensive responses. Restoring the margin of

safety around the body in the aftermath of violence may be an

essential aspect of the recovery from these traumatic events. The

integrity of the premotor cortex is likely a critical factor for these

restorative mechanisms.

Structural abnormalities in premotor cortex observed in PTSD

patients may be associated to inappropriate construction of a

margin of safety around the body as well as inefficient selection

and coordination of defensive responses. Restoring the margin of

safety around the body in the aftermath of violence may be an

essential part of the recovering processes from these traumatic

events. The integrity of the premotor cortex is likely important for

these restorative mechanisms.

We observed significantly gray matter volume reduction in the

anterior cingulate cortex in PTSD patients compared to trauma-

tized controls. Previous VBM studies also observed volumetric

reductions in this region in PTSD patients [20–25].

A review of functional imaging studies in PTSD detected less

activation in this region as well as more activation in amygdala in

response to emotional stimuli in patients compared to participants

without PTSD [58]. These functional results are in accordance

with a current model for PTSD; this model proposes that the

anterior cingulate is hyporesponsive and that the amygdala is

hyperresponsive in PTSD patients [58].

The anterior cingulate cortex is functionally and anatomically

complex and heterogeneous [56,59]. Vogt [56], based on

cytoarchitectonic, connectivity and neurotransmitter receptor

criteria, proposed a subdivision of the anterior cingulate cortex

into subgenual and pregenual regions. The subgenual region is

heavily connected to the amygdala in both humans and non-

human primates [60,61]. This region is also critical for the

retention of fear extinction in healthy individuals [62] and is

related to fear extinction deficits in PTSD patients [63]. The

pregenual subdivision is less well connected to the amygdala

[60,61], suggesting that it plays a smaller role in fear circuit

modulation. In the present study, we observed volume reduction

in the pregenual subdivision of the anterior cingulate; one

interpretation for the abnormalities observed in the pregenual

subdivision of the anterior cingulate cortex is the following line of

reasoning. Functional studies in healthy subjects revealed

increased activity in the pregenual anterior cingulate cortex when

experiencing feelings of happiness that are induced by words [64],

films [65], recalled experiences [66–68], music [69] or faces [70–

72]. A recent study using a sensitive meta-analytic method that

analyzed a substantially large number of neuroimaging studies also

found that the pregenual anterior cingulate cortex was consistently

associated with happiness [73]. It seems reasonable to hypothesize

that reduced gray matter volumes in the pregenual anterior

cingulate cortex of PTSD patients could be associated with a

reduced ability to experience pleasurable emotions. Indeed,

impairment in the processing of pleasant cues in PTSD has been

reported [74]. In the present study, psychometric assessments

revealed that compared with trauma-exposed controls, PTSD

patients scored significantly lower on both positive affect and ego-

resilience scales, which measure two important components of the

concept of happiness [75].

A meta-analysis of structural brain abnormalities in PTSD

found significantly smaller hippocampal volumes in PTSD

compared to controls with and without trauma exposure [15].

Here, we did not observe hippocampal volume reduction in PTSD

patients compared to trauma-exposed controls, both in the whole

brain and in the region-of-interest analyses. More studies are

necessary to clarify whether the absence of hippocampus reduction

in the present study is due to distinctiveness of urban violence

trauma or to other characteristics of the sample and/or

methodology.

Amygdala volume did not differ between PTSD patients and

trauma-exposed controls. A meta-analysis of structural brain

abnormalities observed significantly smaller left amygdala volumes

in adults with PTSD compared with both healthy and trauma-

exposed controls [15]. A subsequent meta-analysis on amygdala

volume in adult PTSD patients showed no significant differences

Table 2. Results of t-tests comparing PTSD and control groups.

Brain region Laterality Coordinates Cluster size Z-score

X Y Z

Ventral premotor cortex* R 53 21 35 975 5.01

Pregenual anterior cingulate cortex* L 212 54 10 242 4.14

Superior parietal sulcus{ R 31 276 47 83 4.16

Superior temporal sulcus{ R 53 225 23 52 3.37

Stereotactic coordinates are quoted within MNI space.
*p,0.05 corrected,
{For a more lenient statistical significance threshold of p,0.001 (uncorrected).
doi:10.1371/journal.pone.0042560.t002
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between PTSD and controls [76]. The authors of the more recent

of these two meta-analyses [76] attributed this discrepancy to the

inclusion of pediatric data in the initial meta-analysis [15].

As far as we know, this study is the first to find gray matter

volume reduction in the ventral premotor cortex in PTSD

patients. This finding may be explained by the type of traumatic

event. Here, more than 80% of PTSD patients reported armed

robbery as the index trauma. In this type of trauma, the victims

were confronted with a threat represented by a weapon pointed at

them, and their peripersonal space was violated by the robber.

Other VBM studies assessed traumatic situations such as terrorism

terrorism [42], disaster [20,43,44], war [21–23] and disease [45].

These traumatic situations, as well as those that assessed

populations that experience mixed trauma, can be very hetero-

geneous and do not essentially involve an invasion of peripersonal

space. Interestingly, a VBM study that evaluated victims of

physical/sexual abuse, which also involves forceful invasion of the

personal space, observed abnormalities in the supplementary

motor area, a region adjacent to the ventral premotor cortex [25].

More studies evaluating traumatic events that violate peripersonal

space are necessary to investigate motor area involvement in

PTSD pathology.

Limitations
Our study has a number of limitations. First, the sample size is

relatively small. Second, the study lacks a second control group of

healthy subjects that were not exposed to trauma. Third, this study

is essentially cross-sectional and does not allow for causal

conclusions to be derived regarding the structural alterations

observed herein, which could have resulted from either PTSD or a

pre-trauma vulnerability factor. Longitudinal studies will be

essential for addressing this question.
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