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Abstract

Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound
towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition
because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a
biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual
neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer
synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism
effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at
the position of the visual stimulus. Main results are: i) the less localized stimulus is strongly biased toward the most localized
stimulus and not vice versa; ii) amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii)
ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model
implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is,
the enduring sound shift after exposure to spatially disparate audio-visual stimuli). By adaptively changing the weights of
lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree
with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain
ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study
may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration
in the spatial realm.
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Introduction

The different senses are not treated as separate modules in our

brain, rather they interact with one another. Hence, interpretation

of data in one modality is often influenced by information from the

other modalities [1]. A useful approach to investigate cross-modal

interactions is to create conflict situations in which discordant

information are provided by two different sensory modalities.

This approach has been largely employed to study interactions

between audition and vision in spatial localization processing; in

this context, conditions of audio-visual spatial conflict are imposed.

When presenting an observer with an auditory stimulus and a

synchronous but spatially discrepant visual stimulus, the location

of the auditory stimulus is perceived shifted toward the location of

the visual stimulus [2,3]. This effect is generally known as the

ventriloquist effect [4,5], since its main manifestations are in speech

perception, when the voice from an actual source appears to come

from elsewhere. In speech perception, visual-auditory binding may

be further facilitated by additional cognitive factors. However,

several studies showed that visual bias of auditory location occurs

not only with complex and meaningful stimuli, but also with

neutral and simple stimuli, such as spots of light and tone or noise

bursts [2,6–8]. These studies suggest that the shift of auditory

location cannot be ascribed only to cognitive factors or voluntary

strategies but is due – at least partly – to a phenomenon of

automatic attraction of the sound by the simultaneous and

spatially separate visual input.

The ventriloquism effect is intuitively explained by the spatial

dominance of vision with respect to the other senses. But how this

dominance is accomplished at the neural level is still an open

question.

A traditional view [5] assumes that evolution has led to an

inherent advantage of visual input over non-visual inputs,

regardless of the stimulus conditions; this might be implemented

in the neural circuits - for example - by visual information

synaptically affecting nonvisual information but not vice versa.

An alternative view proposes that the visual dominance results

from a statistically optimal integration of the visual and auditory

information [9]. According to this hypothesis, the brain behaves as

an optimal observer that combines information derived from the

noisy auditory and visual representations to infer the most likely

location of the physical stimulus. In this computation, the optimal

observer takes into account the uncertainty of each cue

localization when deriving the combined estimate; so when one

cue localization is less certain than another the estimate is biased

toward the more reliable cue. According to this hypothesis, there is

not an intrinsic dominance of one sense over the other, but it is the

most reliable stimulus (that is, the stimulus which is best localized

in space) that dominates. As visual localization is usually far
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superior to auditory localization, vision normally dominates.

Recent experiments have strengthened this view as under

appropriate conditions (i.e., by sufficiently degrading visual spatial

information) the auditory stimulus may capture the spatial location

of the visual stimulus [10].

Exposure to audio-visual spatial conflict – besides producing the

immediate online displacement of sound toward the simultaneous

visual stimulus (ventriloquism effect) –produces an offline effect,

named ventriloquism aftereffect. That is, after a somewhat prolonged

exposure to a consistent audio-visual spatial disparity, the

localization responses to unimodal auditory stimuli are displaced

in the same direction as the previously presented visual stimulus.

The ventriloquism aftereffect has been demonstrated in a number

of paradigms [11–16] and it has been ascribed to a form of rapid

plasticity involving auditory cortical areas [14–16].

In the last decades, several studies have proposed Bayesian

probabilistic models to account for the ventriloquism effect

[10,17,18] and also aftereffect [19,20] . Whereas these models

successfully describe perceptual responses within the framework of

the Bayesian inference, they lack to relate these responses to neural

activity and neuron interconnections.

Connectionist models based on artificial neural networks have

been proven to be powerful tools to explain perceptual and

behavioural responses in terms of neural activities and architec-

ture. In recent years, we developed neural network models

investigating aspects of multisensory integration and its plasticity

properties, such as audio-visual integration in the Superior

Colliculus [21–24] and visual-tactile interaction for peripersonal

space representation [25–27].

Here, we propose a neural network model that may contribute

to elucidate the neural mechanisms at the basis of the ventrilo-

quism effect and aftereffect. Complexity of the model is

intentionally maintained at a minimum level, in order to provide

a simplified - although biologically plausible - scenario where the

role of the involved mechanisms can be easily outlined and

understood. The model consists of two chains of unisensory

neurons, visual and auditory respectively. Neurons communicate

via lateral intra-layer synapses and via inter-layer synapses. The

only a-priori difference between the two layers concerns the spatial

resolution (i.e., the width of the receptive field), the auditory

resolution being smaller than the visual one. The model

demonstrates that this assumption explains the main features of

ventriloquism effect and produces – when the lateral intra-layer

synapses are subjected to Hebbian plasticity – post-adaptive shifts

in auditory localization (ventriloquism aftereffect).

Results

Two sets of results are presented. First, the model was used in its

basal (i.e., pre-training) configuration to simulate conditions

leading to ventriloquism effect. Second, the model was trained

via Hebbian learning rules that modify intra-layer synapses, and

then tested in the after-training configuration to assess its ability to

reproduce ventriloquism aftereffect. In this section, short qualita-

tive descriptions of the neural network and Hebbian rules

anticipate presentation of results. A quantitative description with

all equations and parameter assignment can be found in

‘‘Materials and Methods’’ section.

The Basal Model
The model consists of two chains of N auditory and N visual

neurons (N = 180), respectively (Fig. 1). Each neuron codes for

information at a specific position of space, and all neurons are

topologically aligned, i.e., proximal neurons in the array code for

proximal positions in space. We assumed a distance of 1u between

adjacent neurons, so that each layer covers an area of 180u in the

visual and acoustic space. Neuron response is described with a first

order differential equation, that simulates the integrative proper-

ties of the cellular membrane, and a steady-state sigmoidal

relationship, that simulates the presence of a lower threshold and

an upper saturation for neural activation. The saturation value is

set at 1, i.e., all activities are normalized to the maximum.

Neurons within each layer are connected via lateral synapses;

moreover neurons in the two layers are reciprocally connected via

inter-area synapses. Hence, the net input that reaches a neuron is

the sum of three contributions: an external input, a lateral input

coming from other neurons in the same unisensory area, a cross-

modal input from neurons in the other modality.

The visual and auditory inputs are represented as Gaussian

functions that mimic spatially localized external stimuli (such as

‘‘beeps’’ and ‘‘flashes’’), filtered by neurons receptive fields (RFs).

The central point of the Gaussian function corresponds to the

position of stimulus application in the external world (pa and pv, for

the auditory and visual stimulus respectively); the standard

deviation of the Gaussian function (sa, sv) is related with the

width of neurons RF. A fundamental assumption of the present

model is that the visual RF is much smaller than the auditory one,

i.e. sv,sa
.

The lateral input originates from lateral connections within the

same unimodal layer. These include both excitatory and inhibitory

lateral synapses. Before training they are arranged with a classical

Mexican-hat disposition (a central excitatory zone surrounded by

an inhibitory annulus, see Fig. 1): thus, each neuron excites (and is

excited by) its proximal neurons, and inhibits (and is inhibited by)

more distal neurons. Hence, distal stimuli of the same modality

tend to suppress reciprocally (i.e., interact via a competitive

mechanism).

The cross-modal input is computed assuming that neurons of

the two areas are reciprocally connected via one-to-one excitatory

synapses. Hence, a neuron receives excitation only from the

neuron of the other modality placed at the same spatial position.

Except for standard deviation of external input (see above), all

other parameters have been set at the same basal value in the two

layers (see Table 1 for parameter values and section ‘‘Materials

and Methods’’ for parameter assignment criteria).

To assess network behavior in terms of stimuli localization, we

need a quantity which represents the perception of the stimulus

location from neuron population activity. We adopted the

population vector metric [28,29] in which each neuron provides

a vector with magnitude corresponding to its firing rate and

direction corresponding to twice its preferred position; then, these

vectors are summed up and half the direction of the final vector

signals the perceived position of the stimulus (see ‘‘Materials and

Methods’’ for more details). Two alternative methods (the

barycenter method and the winner-takes-all method) were tested

(see Material and Methods and Fig. S1 in Supporting Information)

Basal model results
All results are obtained by applying external stimuli starting

from the resting (no stimulation) condition and maintaining them

constant throughout the entire simulation. Network response was

evaluated at the new-steady-state condition reached by the

network. If not otherwise specified, the visual and auditory inputs

have the same strength (Ev
0 = Ea

0 = 15) and different standard

deviations (sv = 4u, sa = 32u) , as listed in Table 1. The position of

the auditory and visual stimulus application is denoted as pa and pv,

respectively.

Neural Network Modeling of Ventriloquism
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Figure 1. Overview of network architecture. (A) Schematic diagram of the neural network. Each red (blue) circle represents an auditory (visual)
neuron. Each line represents a synaptic connection: lines ending with an arrow indicate excitatory connections; lines ending with a solid point
indicate inhibitory connections. The Gaussian patterns mimic the external visual and auditory inputs; the Gaussian functions are centered at position
pm (m = v visual, m = a auditory), which represent the location of stimulus application, and have standard deviation sm and strength Em

0 . The

Neural Network Modeling of Ventriloquism
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Unimodal stimulation. First, the network was stimulated

with a single unimodal (auditory or visual) stimulus to check the

absence of phantom effects (i.e., to check that a single stimulus in

one modality does not induce an appreciable response in the other

modality). Results are displayed in Fig. 2A. Each stimulus

produces a population activity centered on the position of stimulus

application; population activity is broader and lower in the

auditory area as a consequence of the larger input combined with

lateral inhibitory competition. Worth noticing is that the model,

with basal parameter values, responds to a single unimodal

stimulus without any phantom in the other modality.

Cross-modal stimulation. Spatially coincident

stimuli. Fig. 2B shows network response when a visual stimulus

and an auditory stimulus were simultaneously applied at the same

spatial position (pv = pa = 120u). Due to the inter-area excitatory

connections, activities in the two areas reinforce reciprocally; as a

main consequence, auditory area exhibits a stronger and narrower

activation with respect to unimodal auditory stimulation (compare

with Fig. 2A). This result agrees with data observed in vivo that

auditory detection and localization is enhanced by a concomitant

spatially congruent visual stimulus [30].

Cross-modal stimulation. Spatially disparate stimuli: the

ventriloquism effect. A visual stimulus and a simultaneous

auditory stimulus, in disparate spatial positions (pv = 120u and

pa = 100u), were presented to the network. The steady-state

response in the two layers is displayed in Fig. 3A. Whereas visual

activation is unaffected by the auditory stimulus, activation in the

auditory area is remarkably biased towards the position of the

visual stimulation. The perceived position of the auditory stimulus

(computed with the vector metric) is 108.6u, resulting in a

perception shift (perceived position minus original position) as

great as 8.6u. In order to better understand the nature of this

phenomenon, panels from B to G in Fig. 3 show different

snapshots of neural activity in the auditory and visual areas at

different instants in time, during the presentation of the two

stimuli. Immediately after the presentation of the two stimuli

(snapshots B and C), a large portion of the auditory network is

activated, with a maximum of activity centered at the location pa of

the auditory input; conversely, just a small number of visual

neurons is active. This is the consequence of the assumed RFs of

the two areas. It is worth noting that the auditory neuron located

at the position pv is moderately active, whereas the visual neuron

located at the position pa does not show any appreciable activation.

Then (snapshot D), a positive feedback reinforcement occurs – via

inter-area excitatory connections - between the visual and the

auditory stimuli at the position pv; this rapidly leads to a

strengthening of the auditory activity in that position which

competes via lateral inhibition with the original auditory activity at

position pa. When the auditory activity at position pv becomes

stronger (snapshots F and G), it almost completely abolishes the

auditory activity at the surrounding positions, leaving just some

residual activity at greater distances.

In the subsequent simulations, we investigated how the two

stimuli influence reciprocally by changing their angular separa-

tion, as frequently done in in-vivo studies. In particular, the visual

stimulus was maintained in a fixed position (pv = 120u), while the

position of the auditory stimulus (pa) was varied from 60u to 180u.
Fig. 4A shows the shift in the perception of the auditory stimulus

and of the visual stimulus (i.e., the difference between the

perceived position and the original position of the stimulus)

computed with the population vector metric in steady–state

conditions (at the end of any transient response) as a function of

the distance pv–pa. If the two stimuli are far in space (above 40u
distance), they behave as individual stimuli without any apprecia-

ble interaction. If the two stimuli are placed at a moderate distance

(below approximately 35u), the auditory stimulus is displaced

toward the visual one (ventriloquism effect), showing a shift as

large as 7u–9u at visual-auditory separation between 15u–30u
(similarly to what occurs in Fig. 3). Conversely, perception of the

visual stimulus exhibits a very mild shift in the direction of the

auditory stimulus, lower than 0.3u–0.4u. Values predicted by the

model are within the range of behavioral data [2,6,8], as shown in

Fig. 4B.

Results presented in Fig. 4 were obtained with the population

vector metric. When we tested the other two metrics (the

barycenter and the winner-takes-all metric), we found that the

barycenter method provides results similar to the vector metric,

whereas the winner-take-all metric provides unreliable values of

ventriloquism (see Fig. S1 in Supporting Information). This

justifies our adoption of the vector metric.

Sensitivity analysis. The previous results were attained

assuming specific model parameters (see Table 1). However

ventriloquism is a robust property of the model, when tested with

different parameters values. Fig. 5 shows visual bias of sound

location (same simulation as in Fig. 4) obtained by changing the

value of one parameter at a time, while maintaining the others at

their basal setting.

Results may be summarized as follows. i) (Panels A, B, C, D) –

Inter-area synapses are critical for ventriloquism effect to occur:

their elimination totally nulls ventriloquism and their augmenta-

fundamental assumption is sa.sv. Neurons between layers are connected via excitatory inter-area synapses (strength W). Neurons within each layers
are connected via lateral (excitatory and inhibitory) synapses. For simplicity, only lateral synapses emerging from one neuron are displayed. In basal
conditions, each neuron receives and sends symmetrical lateral synapses. (B) Pattern of the lateral synapses targeting (or emerging from) an
exemplary neuron in either layer, in pre-training condition. Lateral excitatory (Lex) and inhibitory (Lin) synapses have a Gaussian pattern with excitation
stronger but narrower than inhibition. Auto-excitation and auto-inhibition are excluded. Net lateral synapses (L) are obtained as the difference
between excitatory and inhibitory synapses and assume a ‘‘Mexican hat’’ disposition.
doi:10.1371/journal.pone.0042503.g001

Table 1. Basal value of model parameters.

External stimuli E0 = 15 sv = 4 deg sa = 32 deg

Individual neuron response h = 12 s = 0.6 ty = 3 ms

Synaptic connections Lex0 = 2.4 sex = 2 deg Lin0 = 1.4 sin = 24 deg W = 5

Hebbian rules aex0 = 0.015 ain0 = 0.025 hpost = 0.5 Lmax = 2.4

Symbols without superscript m (m = a, v) denote parameters that assume the same value in the visual and auditory layers.
doi:10.1371/journal.pone.0042503.t001

Neural Network Modeling of Ventriloquism
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Figure 2. Network response to unimodal stimulation and to cross-modal spatially coincident audio-visual stimulation. (A) A
unimodal stimulation was applied to the network and maintained constant throughout the entire simulation. Neural activity is shown in the new
steady-state reached by the network. Left panels - Neuron activity in the auditory and visual areas in response to an auditory stimulus of amplitude
Ea

0 = 15 applied at position pa = 120u. No activity is elicited in the visual area. Right panels - Neuron activity in the auditory and visual areas in response
to a visual stimulus of amplitude Ev

0 = 15 applied at position pv = 120u. No significant activity is elicited in the auditory area. (B) An auditory stimulus
and a visual stimulus are simultaneously applied at the same spatial position (pa = pv = 120u) and maintained constant throughout the simulation.
Network response is shown in steady-state condition. Auditory and visual stimuli have the same strength (Ev

0 = Ea
0 = 15). Strong reinforcement and

narrowing of auditory activation occurs (compare with Fig. 2A, left panels).
doi:10.1371/journal.pone.0042503.g002
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tion enhances the amount of sound shift. Conversely, lateral

synapses are not essential for ventriloquism to occur: mild shift of

sound location is still present when they are removed. However,

the amount of ventriloquism increases if the extension of the

lateral synapses is augmented, reflecting a wider competition

between unimodal neurons. ii) (Panels E and F) - Visual bias of

sound location persists (although to a lesser extent) even when the

strength of the visual stimulus is reduced or the strength of the

auditory stimulus is increased. Increasing the intensity of the visual

stimulus enhances the effect. ii) (Panels G and H) – The shift of

sound location increases as the width of the auditory stimulus (i.e.

ambiguity in auditory localization) increases. Furthermore, a less

localized visual stimulus still attracts the sound until visual

localization is better than auditory localization. When visual

spatial information is further degraded (the visual stimulus is

blurred over a large region of space) vision does not dominate over

audition, rather the sound may even capture the visual stimulus. In

particular, when the two stimuli have the same width (same

localization ambiguity, sv = sa = 32u), neither sense dominates and

the two stimuli attract reciprocally by the same extent (see Fig.

S2A in Supporting Information). When the width of the visual

stimulus overcomes the width of the auditory stimulus (e.g.

sv = 40u, sa = 32u), a reverse ventriloquism occurs characterized by

a moderate visual bias of auditory localization and a strong

auditory bias of visual localization (see Fig. S2B in Supporting

Information).

Figure 3. Network response to audio-visual stimulation with spatially disparate stimuli. An auditory stimulus and a visual stimulus are
simultaneously applied at two different spatial positions (pa = 100u, pv = 120u) and maintained constant throughout the simulation. Auditory and
visual stimuli have the same strength (Ev

0 = Ea
0 = 15). Dashed red line represents activity in the auditory area; continuous blue line represents activity

in the visual area. (A) Network activity in the final steady-state reached by the network. (B–G) Different snapshots of network activity during the
simulation. First snapshot (B) depicts network activity immediately after the stimuli presentation; last snapshot (G) corresponds to the final state
reached by the network.
doi:10.1371/journal.pone.0042503.g003
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Model Hebbian Rules
In order to explain the ventriloquism aftereffect, we assumed

that lateral synapses are plastic and can be trained during

experimental trials. In particular, we adopted a Hebbian rule with

a threshold for the post-synaptic activity: excitatory synapses

increase (up to a maximum saturation value) and the inhibitory

synapses decrease (down to zero) in case of correlated input-output

activity, provided that post-synaptic activity overcomes a given

threshold. Furthermore, as often adopted in the neurocomputa-

tional literature [31], we implemented a normalization rule: the

sum of excitatory and inhibitory synapses entering a given neuron

must remain constant. Hence, if some excitatory synapses increase,

other excitatory synapses must be depressed to maintain a constant

excitatory synaptic input; similarly, if some inhibitory synapses

decrease, other inhibitory synapses must be augmented to

maintain a constant inhibitory synaptic input.

Training paradigms and trained model results
Network was trained starting from its basal configuration

(parameter values as in Table 1). Different simulations were

performed consisting in exposing the network to repeated

stimulations (in unimodal or cross-modal condition) during which

lateral synapses in each layer are subjected to plasticity. Then, the

aftereffects were assessed by presenting unimodal (or cross-modal)

stimuli to the trained network and computing the shift in the

perceived location.

Unimodal training. First, we checked that exposing the

network to repeated unimodal stimulation (either visual or

auditory) does not induce an appreciable aftereffect. Lateral

Figure 4. Visual bias of auditory location and auditory bias of visual location. (A) Biases predicted by the model - computed as perceived
stimulus location minus original stimulus location – are displayed as a function of the angular separation between the location of the visual stimulus
and the location of the auditory stimulus. The biases were computed with the vector metric when the network was in the new steady-state condition
reached following stimuli presentation. The visual stimulus was maintained fixed at position pv = 120u, while the position of the auditory stimulus was
ranged between 60u and 180u (visual-auditory angular separation ranging between 260u and +60u). In each simulation, stimuli have the same
strength (Ev

0 = Ea
0 = 15). (B) Comparison between model predictions and in-vivo data. Biases predicted by the model (same results as (A)) are zoomed

between 0u and 30u of visual-auditory angular separation for comparison with in-vivo data.
doi:10.1371/journal.pone.0042503.g004

Neural Network Modeling of Ventriloquism
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Figure 5. Results of sensitivity analysis. Visual bias of sound location as a function of the visual-auditory angular separation (same simulation as
Fig. 4), obtained using different values for the parameters characterizing synaptic connections (panels A, B, C, D) and external stimuli (panels E, F, G,
H). One parameter at a time was changed, by maintaining the others at their basal value. (A) Selective elimination of synaptic mechanisms
(elimination of inter-area synapses, elimination of lateral synapses). (B) Changes in the weight of inter-area connections (W). (C) Changes in the
extension of lateral inhibitory synapses (sin). (D) Changes in the extension of lateral excitatory synapses (sex). It is worth noting that here the balance
between lateral excitation and inhibition was varied by modifying the width of lateral synapses. Similar results can be obtained by acting on the
strength of lateral synapses (parameters Lex0, Lin0). (E) Changes in the strength of the auditory stimulus (Ea

0 ). (F) Changes in the strength of the visual
stimulus (Ev

0). (G) Changes in the width of the auditory stimulus (sa). (H) Changes in the width of the visual stimulus (sv).
doi:10.1371/journal.pone.0042503.g005
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synapses in the stimulated area may exhibit mild changes, but no

aftereffect occurs in this condition.

Cross-modal training. The model was trained with repeat-

ed cross-modal stimuli, in constant spatial relationship. Two kinds

of experiments were performed; for each of them we examined the

effects of network exposure to spatially disparate stimuli and to

spatially coincident stimuli. In the following, we will comment only

the aftereffects in the auditory modality, as no visual aftereffect was

presented by the trained network.

Training paradigm 1: Two cross-modal stimuli with

assigned spatial difference and fixed locations. Case 1.a:

Spatially disparate stimuli (audiovisual spatial

difference = 206). In these trials, an auditory stimulus at

position pa = 100u and a visual stimulus at pv = 120u were

repeatedly given to the network. The duration of each trial was

200 ms and a total of 10 trials was performed; during each trial,

stimuli were maintained constant and lateral synapses were

trained.

The main consequence of synapses training is that the auditory

neurons at position close to pv = 120u (which are strongly active

due to the ventriloquism effect, see Fig. 3) receive strengthened

lateral synapses especially from neurons located around pa = 90u
(which maintain residual activity due to the original auditory

stimulus, see Fig. 3). At the same time, the normalization rule

causes a decrease (i.e., less excitation, greater inhibition) of the

synapses coming from inactive neurons located at positions greater

than pv = 120u. The pattern of lateral synapses entering the

auditory neuron at position pv = 120u, at the end of training, is

presented in Fig. 6A-upper panel: this neuron is now excited

(instead of being inhibited) by distal neurons located at about 30u
on the left, and is more strongly inhibited by neurons located at its

right.

The behavior of the trained network was tested using a

unimodal auditory stimulus placed at different positions; the

location of the testing stimulus was varied between 40u and 160u in

10u steps and the shift in sound location (perceived location of the

auditory stimulus minus original location) was computed as a

function of the test location (Fig. 6A-lower panel). Auditory stimuli

located at the left of position 120u (around 80u–110u) exhibit a

significant rightward shift, since now they generate more

excitation at their right. Auditory stimuli located at the right of

position 120u (around 125u–140u) exhibit a small rightward shift

since now they generate more inhibition at their left. Worth noting

is that the auditory shift remains localized in the region of space

where the auditory and visual stimuli were originally presented

during the training period, and does not extend to the entire space,

in agreement with observations by Bertelson et al. [11].

Case 1.b: Spatially coincident stimuli (audiovisual spatial

difference = 06). In these trials, the network was repeatedly

exposed to a visual stimulus and an auditory stimulus at the same

fixed spatial position pa = pv = 100u. Results are presented in Fig. 6

panels B.

After training, the auditory neuron at position 100u receives

reinforced excitatory synapses by nearby neurons (that were

strongly activated during training, see Fig. 2B), and slightly

strengthened inhibitory synapses by more distant neurons (silent

during training, see Fig. 2B), as depicted in Fig. 6B – upper panel.

The trained network was tested by presenting a single auditory

stimulus at different positions between 40u and 160u in 10u steps.

At variance with case 1.a, an auditory stimulus located nearby the

trained position, both at its left or right (within 610u), is now

significantly attracted towards that position (Fig. 6B-lower panel).

At more distant locations no shift occurs.

Training paradigm 2 - Two cross-modal stimuli with

assigned spatial difference but variable locations. Case 2.a:

Spatially disparate stimuli (audiovisual spatial

difference = 206). In these trials, the networks was trained with

an auditory stimulus in variable position (pa, spanning from 20u to

180u in 20u increments, i.e. nine possible positions) joined with a

simultaneous visual stimulus presented in a consistent spatial

relationship (i.e., constant spatial difference: pv = pa+20u). The

overall training procedure consists of ten trials. In each trial, the

nine different positions were trained once, in a random order.

Training of each position lasted 200 ms; at the end of the overall

training procedure, each position was trained ten times.

After this training, all auditory neurons receive excitatory lateral

synapses from distal neurons located approximately 20u–30u to the

left, and greater inhibition from neurons located to the right;

hence, all auditory neurons have asymmetrical lateral input

(stronger from left, weaker from right). Pattern of the trained

synapses entering an exemplary auditory neuron is shown in

Fig. 7A-upper panel. This synaptic pattern results in a constant

rightward shift of the perceived position of the auditory stimulus

independently of the original stimulus position.

This behavior of the trained network was tested using a

unimodal auditory stimulus placed at different positions from 0u to

180u in 10u increments (Fig. 7A-lower panel). Results show that an

average offset as great as ,7.5u occurs between the perceived

stimulus position and the original position after training,

independently of the location of the stimulus. Such network

prediction is in agreement with results of behavioral studies using

training paradigms similar to the simulated one [14,15]. In

particular, the magnitude of the aftereffects predicted by the model

(about 37% of the cross-modal spatial disparity used during

adaptation) falls within the range reported in the literature

(generally, between 20% and 60% of the adapting visual-auditory

disparity) [12–14].

Case 2.b: Spatially coincident stimuli (audiovisual spatial

difference = 06). The network was trained with an auditory

stimulus in variable position (pa, spanning from 20u to 180u in 20u
increments) joined with a simultaneous visual stimulus in the same

spatial position (pv = pa). The overall training procedure was the

same as case 2.a, but with the two stimuli in spatial coincidence.

Fig. 7B-upper panel shows lateral synapses entering an

exemplary auditory neuron in a trained position. Synapses modify

similarly to case 1.b, that is an increase in nearby excitation

associated with an increase in distant inhibition (such modifica-

tions occur in any trained position). However, in post-training

conditions, sounds do not exhibit a systematic shift in auditory

localization, as illustrated in the Fig. 7B-lower panel (the same

auditory test as case 2.a was performed). Indeed, in this case, when

the sound was located in one of the trained position, it was not

displaced from that position; conversely, when the sound was

located between two trained positions, it could be subjected to

either a leftward or a rightward shift in a random fashion,

depending on a prevalence of attraction by one of the two adjacent

positions consequent to the random training. The final result is

that the regression line for the post-training data is almost

indistinguishable from the pre-training line. This network result

agrees with data by Recanzone [15] who performed the same

training paradigm as the simulated one: no systematic shift of

auditory localization was observed in vivo after training, when no

visual-auditory spatial disparity was present during training.

Audio-visual stimulation after training. A last set of

simulations was performed, to test the visual bias of sound location

after training. Only the trainings performed with the spatially

disparate stimuli (paradigms 1.a and 2.a) were considered. An
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auditory stimulus at a fixed position, joined with a second visual

stimulus at different positions, were given to the trained network,

and the same curve as in Fig. 4 was computed (visual bias of sound

location). A comparison between the two curves, obtained before

training and after training with paradigm 1.a is shown in Fig. 8A.

The auditory stimulus was applied at position 100u (the same used

during the training), while the location of the simultaneous visual

stimulus was varied from 40u to 160u. When the visual stimulus is

located at a distance greater than 40u from the auditory stimulus

(i.e., where a negligible ventriloquism effect occurred before

training) no clear interaction occurs between the visual and the

auditory stimulus, and so the sound location shift remains the same

as in Fig. 6A lower panel (i.e. about 8.5u for test location in 100u):
this can be entirely ascribed to the change in lateral synapses

within the auditory region. When the visual stimulus is located at

120u (which was the same position used during training in

paradigm 1.a) a moderate increase is evident in the sound location

shift (about 10u). Conversely, if the visual stimulus is located at the

left of the sound, when a leftward shift occurred before training,

the sound location shift is reduced. In this condition, in fact, two

opposite mechanisms are operating: i) the classic aftereffect (due to

a change in lateral synapses within the auditory region) which

moves the sound perception to the right; ii) the attraction by the

visual stimulus, which moves sound location to the left. When the

visual stimulus is at 70u–80u (20u–30u to the left of the auditory

stimulus) the two effects almost completely balance.

A similar result can be obtained when the network is trained

with the paradigm 2.a (see Fig. 8B); in this case, however, the

alteration in sound shift is independent of the position of the

auditory stimulus.

Discussion

In this work we propose that a simple neural network, consisting

of two spatially organized unimodal layers with different receptive

fields and connections in spatial register can explain the

ventriloquism effect. Moreover, Hebbian training of the lateral

synapses within each layer can account for the ventriloquism

aftereffect. The present model makes use of a minimum number of

mechanisms to explain the origin of ventriloquism and the

subsequent aftereffect phenomenon.

Neural network architecture and mechanisms
In the following, neural network mechanisms and architecture

will be commented and relationships with biological mechanisms

outlined.

Figure 6. Results of training paradigm 1. (A) Case 1.a: training with spatially disparate stimuli in fixed position (pv = 120u, pa = 100u). Upper panel:
Lateral synapses entering the auditory neuron in position 120u before and after training. Lower panel: Behavior of the trained network in response to
auditory unimodal stimulation. The test auditory stimulus had strength Ea

0 = 15, and was applied at different positions. For each position of the test
stimulus, the shift in sound localization (perceived stimulus location minus original stimulus location) was computed in steady-state condition (after
the transient response was exhausted) and reported as a function of the actual location of the test auditory stimulus (aftereffect). (B) Case 1.b:
training with spatially coincident stimuli in fixed position (pv = 100u, pa = 100u). Upper panel: Lateral synapses entering the auditory neuron in position
100u before and after training. Lower panel: Behavior of the trained network in response to auditory unimodal stimulation. The same unimodal
auditory test as panel A was performed to compute the aftereffect.
doi:10.1371/journal.pone.0042503.g006
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1) Unimodal layers. The model assumes the presence of an

auditory area and a visual area spatially organized (i.e., proximal

neurons code for spatially proximal inputs), with the spatial

resolution of auditory neurons smaller than the spatial resolution

of the visual ones (this is the only difference between the two layers

assumed a-priori in the model). Although we do not aspire to

establish a definite correspondence between model areas and brain

areas, some regions may be proposed as possible candidates, as

also discussed in recent review papers [32,33]. It is well known that

the primary visual system contains a topographic representation of

the visual space and it is characterized by a high spatial resolution,

individual neurons having sharply tuned receptive fields. A role of

the primary visual cortex in mediating ventriloquism is supported

also by psychophysical data on human subjects (see point 2 below).

Spatially sensitive neurons [34,35] have also been found in the

auditory primary area (AI); these neurons are characterized by

broad spatial tuning (above 40u–60u) that can easily accommodate

the ventriloquism effect. Also secondary auditory cortical areas

(such as the caudomedial (CM) field) may be involved in the

ventriloquism; in particular, CM field neurons have better spatial

sensitivity than AI neurons [35,36], but still lower than primary

visual neurons.

An important point is that the model does not impose strict

constrains on RF dimensions for ventriloquism effect to occur.

Indeed, results of sensitivity analysis evidence that the ventrilo-

quism effect is quite robust when tested with different dimensions

of the RFs: even a moderate difference is sufficient for the more

localized stimulus to attract the less localized one. Moreover,

experimental manipulations [10] show that the auditory stimulus

can capture the visual one if the visual stimulus is spatially

degraded. The model can simulate this effect very well, using a

spatial input for the visual stimulus wider than for the auditory one

(see Fig. 5H and Fig. S2 in Supporting Information).

Figure 7. Results of training paradigm 2. (A) Case 2.a: training with spatially disparate stimuli in variable position with fixed audio-visual spatial
disparity (20u) The auditory stimulus could be located in one among nine positions (from 20u to 180u with 20u step), and the simultaneous visual
stimulus was located in fixed spatial relationship (pv = pa+20u). The overall training procedure consists of ten trials; in each trail, the nine positions
were trained once (for 200 ms, each) in a random order. Upper panel: Lateral synapses entering an exemplary auditory neuron (neuron in position 80u,
one of the trained position) are shown before and at the end of the overall training procedure. Lower panel: Behavior of the trained network in
response to auditory unimodal stimulation. The test auditory stimulus had strength Ea

0 = 15, and was applied at different positions. The perceived
sound location, computed in steady-state condition, was reported as a function of the original location of the test stimulus (values represented by
circles). For comparison, the behavior of the untrained network was shown too (dashed line). The regression line for the post-training data
(continuous line) has slope 1 and offset ,7.5u (r2 = 0.9990, p,0.0001). (B) Case 2.b: training with spatially coincident stimuli in variable position. The
auditory stimulus could be located in one among nine positions (from 20u to 180u with 20u step), and the simultaneous visual stimulus was located in
the same spatial position (pv = pa). The overall training procedure was the same as panel A (but with spatially coincident stimuli). Upper panel: Lateral
synapses entering an exemplary auditory neuron (neuron in position 80u, one of the trained position) are shown before and after the training. Lower
panel: Behavior of the trained network in response to auditory unimodal stimulation. The same auditory unimodal test as in panel A was performed.
In this case, the regression line for the post-training data is almost indistinguishable from the pre-training line.
doi:10.1371/journal.pone.0042503.g007
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Finally, it is worth noting that the spatial topography adopted

for each layer should be intended mainly as a functional

topography rather than as a merely anatomical topography. In

other words, we meant that neurons coding for proximal spatial

positions - although not necessarily proximal in the anatomical

space – tend to excite reciprocally and to show correlated activities

(i.e. they are functionally proximal); conversely, neurons coding for

different spatial positions - although not necessarily distant in the

anatomical space - tend to be negatively correlated and to inhibit

reciprocally (i.e., they are functionally distant). In our model,

functionally proximal (distant) neurons were set at adjacent

(remote) locations in each layer, as this choice largely simplifies

numerical implementation; however, the model may be rede-

signed by removing this constraint (e.g., by disposing neurons in a

random fashion within the layer, yet preserving their functional

connectivity pattern) and results will still hold. In particular, this

might be done for the auditory layer, as an anatomical

topographic organization of spatially tuned neurons seems to be

absent in the auditory cortices [35].

2) Inter-area connections. A fundamental mechanism in

the model is the existence of a direct excitatory link between the

auditory and visual neurons coding for the same spatial position.

The value of these connections was set so that a single unimodal

stimulus provided in one area does not evoke any phantom activity

in the other unstimulated area. The role of this mechanism

becomes evident in case of cross-modal stimulation (Figs. 2B and

3): a moderate activity in the auditory area, even below the

activation threshold (e.g. as in Fig. 3), is initially reinforced by the

visual stimulus via the inter-area connections. Then, the simulta-

neous visual and acoustic activities at the same position are

reciprocally amplified by the presence of a positive loop, leading to

a strong reinforcement.

Multisensory interactions in unimodal (even primary) auditory

and visual areas is supported by electrophysiological and

neuroimaging studies [37–39]. For example, Martuzzi et al.

[39], analyzing the BOLD signal, found a facilitation of the

hemodynamic response in case of audio-visual stimulation - with

respect to unisensory stimulation - both in the primary visual area

Figure 8. Visual bias of sound location after training. (A) Visual bias of sound location predicted by the model after training paradigm 1.a. The
auditory stimulus was maintained fixed at position 100u (the position used during training), while the visual stimulus was located at different
positions from 40u to 160u (visual-auditory angular separation ranging from 260u to 60u). The shift in sound location, computed in steady-state
conditions, is displayed as a function of the visual-auditory angular separation. For the sake of comparison, results obtained before training are
displayed too. (B) Visual bias of sound location predicted by the model after training paradigm 2.a. The same audio-visual stimulation as in panel A
was performed, to compute the sound shift for different audio-visual disparities. The meaning of the symbols was the same as in panel A. Since
training paradigm 2 involved all the acoustic space, the results displayed in the figure remain substantially unaltered for any position of the auditory
stimulus.
doi:10.1371/journal.pone.0042503.g008
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and primary auditory area. Visual modulation of auditory cortex

was observed during studies of audiovisual communications both

in humans and monkeys [38]. Especially relevant, Bonath et al.

[37] in a combined ERP-fMRI study, demonstrated that spatially

discrepant auditory and visual stimuli (e.g. a central sound and a

left flash) – that produced ventriloquism illusion - were associated

with an activation in the auditory cortex biased toward the

hemisphere contralateral to the perceived sound shift (i.e., the

right hemisphere in our example).

An important question, not completely clarified in the literature

yet [32,37] is whether the audio-visual interaction occurs via a

direct link between the two areas (as hypothesized in our model) or

rather arises via a positive feedback from a higher multimodal

area. Here, the ventriloquism effect was reproduced by imple-

menting the first assumption. This choice, besides limiting model

complexity (avoiding the introduction of a third multimodal layer),

is supported by some data in the literature. First, recent works

[40,41] show that damages to the primary visual area abolished

ventriloquism, whereas damages to parietal cortex did not produce

any modulation of ventriloquism. These results suggest that

multisensory areas in parietal cortex do not play a prominent

role in ventriloquism, and emphasize the role of the primary visual

area in this phenomenon. Moreover, the absence of ventriloquism

effect in case of primary visual area lesion seems to exclude a

prominent role of subcortical multisensory areas (such as superior

colliculus) which were spared in the examined brain damage

patients. Second, several studies indicate the existence of direct

connections among modality-specific areas (such as visual and

auditory) at an early processing stage [38,39,42].

3) Lateral intra-area synapses. A third mechanism in the

model is implemented via lateral intra-area synapses, which realize

a sort of competitive mechanism: spatially proximal stimuli of the

same modality reinforce reciprocally whereas more distal stimuli

are inhibited. The presence of this synapse arrangement is well

documented in many perceptive and motor areas [43–45].

According to the sensitivity analysis (Fig. 5A), lateral synapses

are not obligatory to generate the ventriloquism effect: when

eliminated, some ventriloquism persists due to inter-area connec-

tions. However, lateral synapses have two important roles: i) They

contribute to reinforce auditory activity at visual stimulus position

and to attenuate the auditory response at the original sound

position, thus increasing the amount of the perceived shift. ii) The

plasticity of lateral synapses constitutes the basis for the

ventriloquism aftereffect.

4) Synapse learning. In building the model, we assumed that

only lateral intra-area synapses are trained during the ventrilo-

quism effect through a Hebbian rule. An alternative possibility

might be training the inter-area synapses still using an Hebbian

paradigm. We discarded this choice since potentiation of these

synapses, to explain aftereffect, would necessarily imply a phantom

effect: a single auditory stimulus should evoke, via cross-modal

synapses, a phantom visual stimulus at a different position; the

latter, in turn, should attract the auditory activity. We are not

aware of any data suggesting the presence of visual phantom

activity evoked by the auditory stimulus during the test phase of

ventriloquism aftereffect.

The Hebb rule we adopted in the model has two particularities

that are often adopted in the neurocomputational literature and

deemed to be neurobiologically plausible [31,46,47]. First, the

Hebbian rule includes a threshold for the post-synaptic activity,

ensuring that, during ventriloquism, auditory neurons at position

pa (that are only slightly activated) reinforce excitation towards

neurons at position pv (that area strongly activated) but not vice-

versa. Second, the learning rule includes a normalization factor

that warrants that inactive synapses (i.e., from silent neurons)

become more inhibitory. Both these features are fundamental to

reproduce data of ventriloquism aftereffect (Fig. 6 and 7).

Comparison with previous models
The proposed approach differs from previous models by many

aspects. Some previous studies interpreted results of audio-visual

integration in the spatial realm within the Bayesian framework of

optimal multisensory integration [10,17,18]. Such models are

mainly conceptual; they can predict psychophysical data of audio-

visual integration with good agreement, but neglect neural

implementation of optimal integration. Moreover, in those studies,

only the on-line ventriloquism effect was considered. Some recent

papers [19,20] used Bayesian models also to describe ventrilo-

quism aftereffect; still, the underlying neural activity, circuitry and

mechanisms are not elucidated. Some theoretical studies [48–50]

overcame previous limitations proposing a neural implementation

of optimal Bayesian integration (gain-encoding scheme [49]). In

those models, main assumptions are that neural activity is

corrupted by Poisson noise (so that an input produces a noisy

hill of activity across the neural population) and that cue reliability

is encoded in the height of the hill of activity (i.e. in the gain of the

sensory input). Noisy hills with high gain entail high signal-to-noise

ratios, corresponding to more reliable cues. Neural networks based

on this approach were proven to perform cue integration

efficiently, however they have never been applied to ventriloquism.

An important point is that our model may produce ventriloquism

even by encoding cue reliability only in the gain of the sensory

input and not in its width (see Fig. S3 in Supporting Information).

This evidences the versatility and robustness of the proposed

scheme, model results holding for different ways of encoding cue

reliability. However, the gain-encoding scheme would require the

a priori hypothesis that the visual sensory input has a higher signal-

to-noise ratio than the auditory input, without including any clear

relationship with the spatial resolution of these neurons. We opted

for a more straightforward approach, encoding cue reliability in

the width of the input, which is directly related to the size of the

receptive field. Furthermore, although our implementation does

not require neural noise for reproduction of ventriloquism, we

predict that inclusion of random noise would further enhance the

phenomenon.

In line with our study, a recent relevant paper by Weisswange

et al. [51] explores the crucial issue of learning from cross-modal

stimulation experience. It addresses the question of how cue

integration abilities, that seem not to be innate, can be acquired

through development, so that the subject learns to weight

uncertain cues according to their respective reliabilities, in

agreement with Bayesian inference. Weisswange and colleagues

proposed a reinforcement learning algorithm, implemented via a

feedforward neural network, whose synaptic weights are updated

via a gradient descendent algorithm. Similarly to our model, that

model was able to replicate results of audio-visual interactions,

where vision dominates when more reliable, and visual dominance

is replaced by audition dominance as visual information are

degraded. Despite some common points, our approach presents

some original aspects with respect to that paper. First, our model

tackles how multisensory integration experience may produce a

long lasting and off-line effect on unisensory map representation

(ventriloquism aftereffect); an issue not faced in that paper.

Furthermore, our modeling approach is substantially different

from that by Weisswange et al., as we proposed a recurrent neural

network with feedback and feedforward connections, and Hebbian

learning rules, for potentiation and depression. This implementa-

tion seems to be more close to biology than feedforward network
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and descendent gradient algorithm; indeed, recurrent synapses are

ubiquitous in the cortex, and Hebbian forms of learning are

known to be present in the brain [52], whereas neural

implementation of gradient descendent learning is controversial

[53]. Of course, on the other hand, paper by Weisswange et al.

tackles important aspects that are neglected by ours such as

developmental acquisition of integration capabilities and causal

inference.

Our approach shares some features with a recent computational

model proposed by Witten et al [54], that explores how synaptic

plasticity can maintain spatial registry across input channels (e.g.

visual and auditory), in response to a sensory misalignment.

Similarly to our work, Witten et al found that, although the two

input channels obey to the same hebbian learning rule, the

amount of plasticity was highly asymmetric across the two input

channels depending on their RFs: the channel with the weaker or

broader RF exhibited most or all plasticity (e.g., auditory RF shifts

whereas visual RF remains unchanged). However in that model, at

variance with ours, plasticity occurs at the locus of cross-modal

integration (by training synapses projecting from the input

unimodal layers to an output cross-modal layer) and not within

the single unimodal layer. Studies of ventriloquism effect and

aftereffect in human subjects seems to exclude the participation of

cross-modal areas (both cortical and subcortical) [15,40,41] in this

perceptual change and adaptation. Our model shows that a third

cross-modal area is not necessary for the ventriloquism effects and

aftereffects to occur, and that only two communicating unimodal

layers – characterized by different RFs and combined with

synaptic mechanisms and plasticity– can explain the phenomena.

In conclusions, the present model may open new perspectives in

the field of integration of cues with different degree of spatial

reliability; in particular, due to the ubiquity of the proposed

mechanisms in the real neural circuits, the proposed scheme may

generalize to other domains and explain multisensory illusory

phenomena outside of audiovisual space perception (such as

audiotactile ventriloquism [55]).

Lines for future experimental and theoretical studies
Some new investigations, both theoretical and experimental,

may be suggested following the present research.

First, an interesting result of the model concerns the temporal

evolution of auditory activity in response to a spatially disparate

audio-visual stimulation (see Fig. 3, panels B–G). The model

predicts that auditory activation initially rises at the position where

the auditory stimulus is applied; then, with some delay, the visual

stimulus attracts the evoked auditory activity which increases at

the position of the visual stimulus, concomitantly decreasing (due

to lateral inhibition) at the position of the actual auditory stimulus.

This temporal pattern of auditory activation could be potentially

tested in auditory cortex of animals via single cell recordings. It is

worth noting that in the present work – as we mentioned below –

we did not model the temporal characteristic of the visual and

auditory receptive field. Hence the time instants we reported in the

figure (above each snapshot) do not want to represent real time but

just simulation time. Although the timing provided by the model is

fictitious, we deem that the pattern of evolution of auditory activity

might be a reliable prediction.

Moreover, the model provides two results (Fig. 6B and Fig. 8),

for which clear data in the experimental literature are still lacking.

The first concerns adaptation to spatially coincident visual and

auditory stimuli in a fixed position (Fig. 6B): after training, the

model predicts an attraction of the auditory stimuli towards the

adaptation location. The second concerns the effect of a visual

stimulus on a simultaneous auditory stimulus after adaptation to

cross-modal disparity (Fig. 8): the model predicts a pattern of

auditory shift that differs significantly from the pre-training

condition, according to the modifications of lateral auditory

synapses. Future in-vivo experiments may test for these effects:

experimental results in line with these model predictions would

further strengthen model architecture and mechanisms.

Neurophysiological data on auditory cortex [35] indicate that

neurons both in the primary auditory cortex and in the

caudomedial field (that are possible cortical sites of ventriloquism

effect) exhibit better spatial sensitivity for stimulus azimuth than

for stimulus elevation, in agreement with behavioral performances

showing that auditory localization in azimuth is better than in

elevation. This might correspond to anisotropic auditory RFs,

larger in elevation than in azimuth. Based on these data, the model

predicts that a visual stimulus should bias auditory localization at

greater distances along elevation than along azimuth (see results of

sensitivity analysis when increasing the width of the auditory RF,

Fig. 5G). This aspect may be better explored by experimental data

comparing ventriloquism effect in azimuth and in elevation, and

by models involving two- dimensional layers of neurons (rather

than unidimensional), to simulate different spatial sensitivity along

the two dimensions.

Another important aspect concerns the frequency tuning

function of auditory neurons. Primary auditory neurons exhibit

sharper tuning function compared with other auditory areas (such

as caudomedial field) having broader frequency tuning functions

[56]. More complete models including frequency tuning functions

for the auditory neurons may be used to investigate whether

ventriloquism aftereffect can transfer across all neurons [12,13], or

remain confined within neurons with the same tuning functions

[15], providing further implications on the functional site where

auditory recalibration might take place.

Finally, in this work, we focused only on the spatial properties of

the stimuli, without considering differences in timing between the

auditory and visual response. It is well known that the auditory

system has far better temporal acuity than vision, resulting in

capture of the visual stimulus by the auditory one in the temporal

realm [57]. This aspect may be investigated in future modeling

studies, including an accurate description of the temporal

responses of auditory and visual neurons.

Materials and Methods

Basal model equations
The model consists of a chain of N auditory and N visual

neurons (N = 180). Neurons within each layer are topologically

aligned. Adjacent neurons are assumed at a distance of 1u. Of

course, a single neuron in our model should be considered

representative of a population of neurons which code for a similar

spatial position. Each neuron is referenced with superscripts

indicating their array and subscripts that indicate their position

within that array (i.e., indicating their spatial position/sensitivity).

u(t) and y(t) are used to represent the net input and output of a

given neuron at time t, respectively. Thus, ym
j (t) represents the

output of a unit at position j with modality m (m = a or v, where a

means auditory and v means visual).

Each neuron response is described with a first order differential

equation and a steady-state sigmoidal relationship. Hence, the

following differential equation can be written for a neuron with

modality m (m = a or v) at position j (j = 1, 2, …, 180):

ty

dym
j (t)

dt
~{ym

j (t)zF um
j (t)

� �
ð1Þ
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where ty is the time constant and F(u) represents a sigmoidal

relationship:

F(um
j )~

1

1ze
{s(um

j
{h)

ð2Þ

s and h are parameters which establish the slope and the central

position of the sigmoidal relationship, respectively. We used the

same time constant and the same sigmoidal relationship for visual

and auditory neurons, although it is possible that these neurons

exhibit different characteristics (in particular, the auditory

response is prompter than the visual one, i.e., auditory neurons

have better temporal resolution). This choice has been adopted to

reduce the number of ad hoc assumptions in the model to a

minimum. Moreover, according to Eq. 2, the saturation neuron

activity is set at 1, i.e., all activities are normalized to the

maximum.

The net input, um
j (t) , that reaches a neuron is the sum of three

contributions: an external input, em
j (t), a lateral input coming from

other neurons in the same unisensory area, lm
j (t),and a cross-modal

input from neurons in the other modality, cm
j (t).

Hence, we can write

um
j (t)~em

j (t)zlm
j (t)zcm

j (t) ð3Þ

Expressions for the individual terms in Eq. 3 are given below.

i) The external inputs. The overall external input is

mimicked using a Gaussian function, which represents the result

of a local stimulus spatially filtered by the neuron receptive field.

Assuming a spatially localized stimulus of modality m (m = a or v)

centered at the position pm , the consequent input to the network

can be written as

em
j (t)~Em

0 e
{

(dm
j

)2

2(sm)2 ð4Þ

where Em
0 represents the strength of the stimulus, dm

j is the

distance between the neuron at position j and the stimulus position

pm, and sm is related with the width of the RF. Elements at the

extreme ends of a linear array potentially might not receive the

same inputs as other units; this can produce undesired border

effects. To avoid this complication, the array is imagined as having

a circular structure. Hence, the following definition is used for the

distance dj:

dm
j ~

Dj{pmD if Dj{pmDƒN=2

N{Dj{pmD if Dj{pmDwN=2

�
ð5Þ

We assume that visual response has a better resolution than

auditory response, that is we set sv,sa.

ii) The lateral input. This input originates from lateral

connections within the same unimodal area. To implement this

mechanism, we can write

lm
j (t)~

X
k

Lm
jk
:ym

k tð Þ ð6Þ

where ym
k is the activity of a presynaptic neuron with modality m at

position k, and Lm
jk is the strength of the lateral synapse from a

presynaptic neuron at position k to a postsynaptic neuron at

position j, both of the same modality m. Lateral synapses are the

difference between excitatory and inhibitory contribution, i.e.,

Lm
jk~Lm

ex,jk{Lm
in,jk ð7Þ

In basal conditions (i.e., before training) these synapses have a

‘‘Mexican hat’’ disposition, realized as the difference of two

Gaussian functions. Hence

Lm
ex,jk~ Lex0

:e
{

(djk)2

2s2
ex if djk=0

0 if djk~0

8><
>: ð8Þ

Lm
in,jk~ Lin0

:e
{

(djk )2

2s2
in if dik=0

0 if dik~0

0
B@ ð9Þ

where Lex0 and Lin0 are constant parameters which set the strength

of the excitatory and inhibitory synapses; sex and sin are standard

deviations, which establish the rate of synapse decrease with

distance, and djk is the distance between neurons at positions j and

k, defined using the same circularity as in Eq. 5, i.e.

djk~
Dj{kD if Dj{kDƒN=2

N{Dj{kD if Dj{kDwN=2

�
: ð10Þ

Moreover, we excluded the presence of self-loops in Eqs. 8 and

9, i.e., a neuron does not excite or inhibit itself.

Before training, lateral synapses have the same arrangement for

the two unimodal areas (i.e., Eq. 7–9 do not depend on the

particular modality m) and for all post-synaptic neurons. This

choice has been adopted to fulfill a parsimony principle, i.e., to

introduce a minimum number of hypotheses in the model. In

order to have a Mexican Hat, one needs: Lex0.Lin0 and sex,sin.

However, these synapses may depend on the particular

modality after training (see sub-section ‘‘Hebbian training rule

equations’’ below). In fact, we assumed that lateral synapses are

plastic, hence they can be reinforced or depressed on the basis of

the correlation between the pre-synaptic and the post-synaptic

activities.

iii) The cross-modal input. For the sake of simplicity, the

cross-modal input (i.e., the input that a neuron receives from

neurons in the other modality) has been given a very straightfor-

ward expression. We assumed that a neuron receives excitation

only from a neuron of the other modality placed at the same

spatial position. Moreover, these excitations are reciprocal and

have the same value (say W) for all neurons. Hence

ca
j (t)~W :yv

j tð Þ ð11Þ

cv
j (t)~W :ya

j tð Þ ð12Þ
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Hebbian training rule equations
The model adopts a classic Hebbian rule for potentiation, with a

threshold for the post-synaptic activity, i.e., the synapse is modified

only if the post-synaptic activity overcomes a given threshold (say

hpost). We have

tL

dLm
ex,jk(t)

dt
~am

ex,jk(t):ym
k (t): ym

j (t){hpost

h iz
ð13Þ

tL

dLm
in,jk(t)

dt
~{am

in,jk(t):ym
k (t): ym

j (t){hpost

h iz
ð14Þ

where tL is the time constant, am
ex,jk(t) and am

in,jk(t) are learning

factors for the excitatory and inhibitory synapses, respectively, and

[]+ denotes the function positive part (i.e., [x]+ = x if x$0; [x]+ = 0 if

x,0). According to Eq. (13) and (14) excitatory synapses increase

and inhibitory synapses decrease in case of correlated input-output

activity.

Two physiological constraints are imposed to the synapses: an

individual saturation rule and a population normalization rule.

First, each excitatory synapse cannot overcome a maximum

saturation value (say Lmax). This is obtained assuming that the

learning factor progressively decreases with the synapse strength:

am
ex,jk(t)~aex0

: Lmax{Lm
ex,jk(t)

h i
ð15Þ

where a0
:Lmax is the maximum learning factor (i.e., the learning

factor when the synapse strength is zero).

Similarly, each inhibitory synapse cannot decrease below zero.

Hence the learning rate decreases with the synapse value:

am
in,jk(t)~ain0

:Lm
in,jk(t) ð16Þ

Finally, at each simulation step, all excitatory and inhibitory

synapses entering a post-synaptic neuron are normalized, to

maintain a constant synaptic input to each neuron. Normalization

rules were applied separately for excitatory and inhibitory

synapses, since these synapses make use of different neurotrans-

mitters. We have

Lm
ex,jk(tzDt)~

Lm
ex,jk(t)zDLm

ex,jk(t)

PN
k~1

Lm
ex,jk(t)zDLm

ex,jk(t)
� � :

XN

k~1

Lm
ex,jk(0) ð17Þ

Lm
in,jk(tzDt)~

Lm
in,jk(t)zDLm

in,jk(t)

PN
k~1

Lm
in,jk(t)zDLm

in,jk(t)
� � :

XN

k~1

Lm
in,jk(0) ð18Þ

where Dt is the integration time step and DL denotes the synaptic

change computed via Eqs. 13–16 during a single integration step.

Computation of model outcome: perceived stimulus
location

To compare model behavior with the results of psychophysical

experiments, we need to compute a quantity which represents the

individual perception (say zm, m = a, v) of the stimulus location. We

tested three different metrics to calculate the individual perception

of a stimulus location.

i) The population vector metric, according to which each neuron

provides a two-dimensional vector, with its length equal to the

firing rate and phase equal to twice its label. All these vectors are

summed up, and the perceived orientation is taken as half the

orientation of the final vector. Hence

zm
vet~

1

2
arctg

PN
k~1

ym
k
:sin(2k)

PN
k~1

ym
k
:cos(2k)

0
BBB@

1
CCCA

where ym
k (m = a, v) represents the activity of the neuron at position

k with modality m (v = visual, a = auditory).

ii) The barycenter metric, according to which the perceived stimulus

location is taken as the average value (the barycenter) of the

population curve. This is computed as follows:

zm
bar~

PN
k~1

ym
k
:k

PN
k~1

ym
k

where the meaning of the symbols is the same as before.

iii) The winner takes all metric (WTA metric), according to which,

the perceived position is provided by the neuron with the

maximum response; i.e.

zm
wta~ Max

k
fym

k g

The circularity of the neurons, to avoid border effects, has been

taken into account in computing the previous metrics.

Since the WTA metric provides unreliable results of ventrilo-

quism and the barycenter metric provides similar results as the

population vector metric (see Fig. S1 in Supporting Information),

the latter one was adopted.

Numerical implementation aspects
The differential equations (Eqs. 1, 13 and 17, 14 and 18) with

the auxiliary equations (Eqs 2–12, 15, 16) were numerically solved

within the software environment MATLAB (The MathWorks,

Inc.), starting from initial null conditions and using the Euler

integration method. The integration step (0.1 ms) was small

enough to warrant a sufficient accuracy. Additional simulations,

performed by reducing the integration step down to 0.01 ms, did

not reveal appreciable differences.

To test behavior of the network before training (basal condition)

and after training, we stimulated the network with one stimulus or

a pair of stimuli, starting from the resting (no stimulation)

condition. Stimuli were maintained constant throughout the

overall simulation. Each simulation lasted sufficiently for the

network to reach a new-steady state condition, at which network

response, in terms of perceived stimulus position, was evaluated.

Each training trial of the network consists in the application of a

stimulus or a pair of cross-modal stimuli to the network. During

the overall length of each training trial (200 ms), the lateral

synapses within the two layers were allowed to modify according to

the learning rules.
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Parameter assignment
Basal values for model parameters (Table 1) were given on the

basis of the following main criteria.

External inputs. As a fundamental hypothesis, the visual

standard deviation (parameter sv) was assumed smaller than the

auditory standard deviation (parameter sa) to account for the

higher spatial resolution of the visual system compared with the

auditory system [32,35]. The value of sv was assigned to produce a

narrow activation in the visual area. Then, the value of sa was

assigned on the basis of data of Alais and Burr [10]. In particular,

Alais and Burr - investigating dominance in visual-auditory spatial

interaction - showed that when the visual blob shifted from 4u
width to 32u width, behavioral results shifted from vision

dominating over audition to neither modality dominating over

the other (indicating that, in this case, the two modalities have the

same degree of uncertain). These results suggest that a ratio sa/sv

as high as 8 is consistent with significant visual biases of sound

location. Furthermore, our simulation results indicate that this

ratio is compatible with several data of visual-auditory interaction

in the literature. However, we are aware that there may be an

extreme variability in this ratio, for example depending on the

specific location of the visual stimulus (central, paracentral,

peripheral) [6] or on visual contrast. Regarding to this, the

sensitivity analysis show that the value assigned to this ratio is not

critical for ventriloquism effect to occur: indeed, even by reducing

significantly this ratio (ratio = 2, sv = 16u sa = 32u, see Fig. 5H), the

model can still reproduce visual capture of sound. Augmenting this

ratio (ratio = 10, sv = 4u , sa = 40u see Fig. 5G) may further

enhance the capture effect of vision.

The basal strength of the visual and auditory stimuli (Ev
0 and Ea

0 )

was chosen so that neuron response settles within the central part

(i.e., the linear part) of the sigmoidal static characteristic.

Moderate changes in these parameters might enhance or reduce

ventriloquism (see Fig. 5, panels E and F), too.

Parameters of individual neurons. For simplicity, param-

eters of the static sigmoidal relationship and time constant were

assumed equal for all neurons regardless of their respective area.

The central abscissa (h) was set to have negligible neuron activity

in absence of any external stimulation. The slope of the sigmoidal

relationship (parameter s) was assigned to have a smooth transition

from silence to saturation in response to external stimuli. The

value given to the time constant ty (few milliseconds) is in

agreement with those normally used in deterministic mean-field

equations [43,58].

Parameters of synaptic connections. Basal values of the

parameters characterizing lateral synapses (Lex0, Lin0, sex, sin) were

assigned so that: i) an external unimodal stimulus produces a

region of activated neurons in the corresponding area (visual,

auditory) whose extension approximately equals the dimension of

the related receptive field; ii) inhibition must be sufficiently strong

to warrant competition between two stimuli in the same area even

at distances of 20–30 deg. Parameter characterizing inter-area

synapses (W) was assigned to reach a compromise between the

following two requirements: i) it must be sufficiently low so that an

external stimulus in one modality does not induce a phantom

activation in the other non-stimulated area; ii) it must be

sufficiently high so that an input from one area can reinforce

response of neurons in the other area when these neurons are near

or just above the activation threshold.

Effects of changes in these parameters have been analyzed via

the sensitivity analysis.

Parameters of the Hebbian rules. Learning rates for the

inhibitory and excitatory synapses (parameters ain0 and aex0) were

set small enough to ensure a gradual modification of synaptic

pattern during the training phases. Value of the post-synaptic

threshold (hpost) was assigned so that changes occur only for

synapses targeting neurons activated above 50% of their maximal

response. This value is sufficiently high to warrant that reciprocal

synapses between two activated neurons modify asymmetrically,

with the synapse targeting the more active neuron changing

significantly more than the synapse targeting the less activated

neuron.

Finally, the maximum strength of the excitatory synapses in

basal conditions (Lex0 in Eq. 8) was used as the saturation value

(Lmax) for each excitatory synapse. That is, we hypothesized that in

basal conditions, excitatory synapses that each neuron sends to the

immediately near ones are already almost at their saturation value;

this hypothesis is reasonable since adjacent neurons are frequently

and repeatedly activated together in the daily perception of

external stimuli.

Supporting Information

Figure S1 Comparison of alternative metrics to com-
pute the perceived location of a stimulus starting from
population activity. We tested three different metrics to

calculate the individual perception (say zm, m = a, v) of a stimulus

location: i) The population vector metric, according to which each

neuron provides a two-dimensional vector, with its length equal to

the firing rate and phase equal to twice its label. ii) The barycenter

metric, according to which the perceived stimulus location is taken

as the average value (the barycenter) of the population curve. iii)

The winner takes all metric (WTA metric), according to which, the

perceived position is provided by the neuron with the maximum

response. To compare the three metrics, the same simulations as in

Fig. 4 were performed, that is the visual stimulus was maintained

fixed at position pv = 120u, while position of the auditory stimulus

was ranged between 60u and 180u (visual-auditory angular

separation ranging between 260u and +60u). Then, the shift in

the perception of the visual and auditory stimulus (difference

between the perceived position and the original position) was

computed, in steady-state condition, with each of the three

metrics. (A) Visual bias of auditory location computed with the

three different metrics. Results obtained with the barycenter

metric and the vector metric are quite similar, with the vector

metric providing just a moderately higher shift than the barycenter

metric; these results are in good agreement with behavioral data

(see Fig. 4B). Conversely, the WTA metric predicts much higher

values of shift for moderate distances (#30u) between the two

stimuli, and no shift at larger distances ($30u); such predictions

exhibit poor agreement with behavioral data (compare with

Fig. 4B). (B) Auditory bias of visual location computed with the

three different metrics. Both the barycenter metric and the vector

metric predict a mild shift of the perceived location of the visual

stimulus towards the sound location, according with in-vivo data

(compare with Fig. 4B); conversely, no shift is provided by the

WTA metric.

(TIF)

Figure S2 Effect of degrading visual spatial informa-
tion. This figure is at integration of the sensitivity analysis, in

particular it integrates Fig. 5H. (A) Visual bias of sound location

and auditory bias of visual location were computed when the

standard deviation of the external visual stimulus equals that of the

auditory stimulus (sv = sa = 32u). All other network parameters are

maintained at their basal value. When the two stimuli are

sufficiently close (distance below 20–25u), the two stimuli affect

reciprocally by the same extent. (B) Visual bias of sound location

and auditory bias of visual location were computed when the
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standard deviation of the external visual stimulus was set greater

than that of the auditory stimulus (sv = 40u; sa = 32u). All other

network parameters are maintained at their basal value. Sound

exerts a strong capture effect on the visual stimulus, which exhibits

a shift as large as 10u towards the sound location; conversely,

sound is only moderately attracted by the visual stimulus.

(TIF)

Figure S3 Alternative coding of cue reliability. Here we

tested network functioning when cue reliability is coded in the

strength (rather than the width) of the input. That is, here we

assumed that the visual and auditory inputs have the same

standard deviation (sv = sa = 35u) but different strengths. All other

mechanisms and parameters have been maintained unaltered. The

three parts of the figure display visual (blue line) and auditory (red

dashed line) activity in response to different stimulations. (A)

Network activity in response to an unimodal visual stimulus

applied at position pv = 120u. The visual stimulus had strength

Ev
0 = 16 (sv = 35u). The displayed activation refers to steady-state

condition (after the transient response was exhausted). (B) Network

activity in response to an unimodal auditory stimulus applied at

position pa = 100u. The auditory stimulus had strength Ea
0 = 12

(sa = 35u). The displayed activation refers to steady-state condition

(after the transient response was exhausted). (C) Different

snapshots of network activity at different instants during the

presentation of two cross-modal stimuli in spatial disparity

(pv = 120u, pa = 100u). The visual and the auditory stimuli were

the same as those presented in panels A and B (that is having same

widths but different strengths). The auditory activity and the visual

activity tend to reinforce reciprocally owing to the inter-area

synapses; due to the higher strength of the visual input, visual

activity around 120u is advantaged and shows a higher increase,

amplifying auditory activation at this same position. At the new

steady state (t$100 ms), the perceived position of the auditory

stimulus exhibits a strong shift towards the visual stimulus location

(perceived position = 109.4u), whereas the shift of the visual

stimulus is moderate (perceived position = 117.5u).
(TIF)
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