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Abstract

Viruses are a crucial component of the human microbiome, but large population sizes, high sequence diversity, and high
frequencies of novel genes have hindered genomic analysis by high-throughput sequencing. Here we investigate
approaches to metagenomic assembly to probe genome structure in a sample of 5.6 Gb of gut viral DNA sequence from six
individuals. Tests showed that a new pipeline based on DeBruijn graph assembly yielded longer contigs that were able to
recruit more reads than the equivalent non-optimized, single-pass approach. To characterize gene content, the database of
viral RefSeq proteins was compared to the assembled viral contigs, generating a bipartite graph with functional cassettes
linking together viral contigs, which revealed a high degree of connectivity between diverse genomes involving multiple
genes of the same functional class. In a second step, open reading frames were grouped by their co-occurrence on contigs
in a database-independent manner, revealing conserved cassettes of co-oriented ORFs. These methods reveal that free-
living bacteriophages, while usually dissimilar at the nucleotide level, often have significant similarity at the level of encoded
amino acid motifs, gene order, and gene orientation. These findings thus connect contemporary metagenomic analysis with
classical studies of bacteriophage genomic cassettes. Software is available at https://sourceforge.net/projects/optitdba/.
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Introduction

Advances in DNA sequencing technology have made it possible

to characterize microbial communities using extremely large

numbers of short sequence reads [1–3]. This offers a powerful tool

for interrogating complex communities of uncultured organisms,

but analyzing the shotgun sequence data from mixtures of

organisms poses considerable computational challenges [4–7].

Here we address the problem of assembling genomes from

complex viral communities to investigate conserved features of

gene content and order.

Viral communities influence microbial populations and human

health, but their study is hampered by a large degree of

uncharacterized sequence diversity. It has been estimated that

0.0002% of the global viral gene pool has been sequenced [8] and

deep sequencing of viruses purified from the environment typically

yields a large majority of unidentified sequences [2,3,9–11]. Thus

efficient studies of viral populations using sequence-based surveys

depends on the efficient computational assembly of individual

reads into large genome fragments without reference to known

genomes.

The assembly of mixed viral reads presents a number of

challenges. Viral genomes are small but range widely in size, from

5 kb to .1 Mb [12–14], so size cannot easily be used to assess

genome completion. Different viral genomes can be present in

widely differing proportions [15,16], complicating the use of

coverage to judge correct assembly. Viral genomes can also evolve

quickly, including frequent recombinational exchange of protein-

coding cassettes [17–19] and high rates of nucleotide substitution

[11], further confusing assembly.

However, many viral genomes are either circular, such as

QX174 [20], or are circularly permuted, such as T4, which

includes 1.02 genome copies in each viral head [21]. Thus

assembly of reads into circles indicates probable completion of the

genome sequence of a circular virus. Circularity not been

previously been used widely to improve viral sequence assembly,

probably because most previous virome studies did not acquire

enough sequence data to allow routine closure of circular

assemblies.

The problem of de novo assembly of high-throughput sequencing

datasets has been greatly aided by the development of de Bruijn

graph assemblers [22–27]. In the de Bruijn graph method,

extremely large sets of short sequences (such as those generated by

Illumina HiSeq technology) can be assembled into complete and

partial genomes by mapping them onto a de Bruijn graph (Fig 1A)

[24,28]. Each read is computationally fragmented into sequences

of length k (the so-called ‘kmer’), then each kmer is used to form an

edge between nodes corresponding to sequences of length k-1. By

drawing such edges for every read in the dataset, one constructs a

de Bruijn graph, which contains the information necessary to

reconstruct the genome sequences that gave rise to the graph. In a

subsequent step, a consensus contig sequence is constructed from

the de Bruijn graph, which involves ‘popping’ (condensing)
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bubbles into linear segments, trimming branches, resolving

repeats, and more complex operations to generate a linear graph

[4]. Assembly by this method scales linearly with increasing

sequence number, while the more familiar overlap method of

assembly scales exponentially, explaining why the de Bruijn graph

method is used for very large data sets [22].

However, complexities within the sequence population, such as

nucleotide polymorphisms or short sequence repeats, can intro-

duce misleading connections in the de Bruijn graph [5,29]. In

Figure 1 we demonstrate how the optimal kmer – i. e. one that

minimizes misleading connections – depends on the nature of the

underlying sequence. A set of genomes with three independent

SNPs separated by 25 bp (Figure 1B) will produce a de Bruijn

graph with three isolated bubbles at a kmer of 23, while it will

produce a much more complex structure at a kmer of 27. In

contrast, two unrelated genomes with 25 bp of identical sequence

(Figure 1C) will be joined together at a kmer of 23 bp, but not at

one of 27 bp. These examples demonstrate how the difficulty of

parsing a de Bruijn graph depends both on the nature of the

underlying polymorphism and the kmer value used.

Thus in a mixture of multiple microbial genomes, it is likely that

the optimal kmer value for assembly will vary [5,30]. One group

[5] found that combining the assemblies constructed across a

range of kmer values yielded a large number of long contigs, but

that these contigs did not faithfully represent the underlying

genomes. Another group developed IDBA, which performs

sequential assemblies while stepping through kmers of increasing

lengths [30]. At each kmer value, IDBA removes the best contigs

and the reads used to make those contigs. A metagenomic version

of this program, MetaIDBA, has been developed [29].

In this paper our goal is to find patterns of genome conservation

in the highly diverse collection of viruses found in the human gut

[2,3,11,31,32]. We implement an optimized iterative de Bruijn

graph assembly approach, significantly increasing the length and

depth of the assembled contigs compared with previous virome

studies. We present results for 5.6 Gb of Illumina paired-end

sequence data from six human gut virome samples (a subset of

samples reported initially in [11]). While only a minority of the

assembled ORFs in the sample could be annotated – emphasizing

the vast diversity of gut viral populations – the annotated ORFs

tended to group by predicted function. Moreover, many ORFs

could be clustered into inferred cassettes with conserved gene

order and orientation. Thus our analysis emphasizes the extreme

variation in gut bacteriophage populations across individuals, and

that viral genomes are organized in conserved multi-gene cassettes.

Results

Assembly of viral contigs
In order to analyze protein conservation among viruses derived

from mixed environmental samples, it is necessary to generate

contigs that most closely approximate complete viral genomes. To

generate long contigs that faithfully represent the underlying

genome structure, we developed and employed an optimized

Figure 1. The de Bruijn graph assembly method and the
influence of genomic variation on de Bruijn graph complexity.
A) Shotgun sequences are produced from two different genomes
(shown in blue and red at the top). Those sequences are used to
construct a de Bruijn graph, where nodes are formed by all possible
sequences of length k-1 (in this case 4 bases), which are connected by
edges of length k (5 bases). Since there are no 4mers shared between
these two example genomes, the resulting de Bruijn subgraphs are
separate. B) Nucleotide polymorphisms are better resolved by short
kmers. We consider a mixture of four genomes, each with three
polymorphic positions separated by 25 bp. The identity at each
polymorphic position is represented by either blue or red to indicate
different nucleotides. At all other positions the genomes are identical.
The de Bruijn graph that is constructed from this mixture of genomes
using a kmer of 23 is shown on the left, where three independent
bubbles form around each polymorphic position. The equivalent graph
at k = 27 is shown on the right, where three independent sets of
bubbles overlap, forming a more complex and suboptimal graph
structure. C) Short regions of similarity are better resolved by long

kmers. We consider a mixture of two genomes which are entirely
different except for a 25 bp region of sequence identity (shown in
black). The de Bruijn graph that is constructed from this mixture at
k = 23 is shown on the left, where the two resulting subgraphs intersect
at the 23mer of similarity. The de Bruijn graph at k = 27 is shown on the
right, where the two resulting subgraphs (corresponding to the two
genomes) do not intersect, since they have no 26mer in common. The
examples in B and C together illustrate how different kmers can be
optimal for assembling graphs with different types of polymorphisms.
doi:10.1371/journal.pone.0042342.g001

Conserved Gene Cassettes in the Human Gut Virome
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iterative de Bruijn graph assembly approach (OPTITDBA). We

compared this assembly method to two previously published

methods (SOAPdenovo and MetaIDBA) using 5.6 Gb of Illumina

HiSeq data (100 bp paired end reads) derived from stool virome

samples from six healthy human subjects [11]. An example of

assembly for samples from one of the six subjects is shown in Fig.

S1. We found that assembly using our iterative method

(OPTITDBA) resulted in fewer reads mapped to contigs less than

1 kb in length, and more reads mapped to contigs in each of the

three longer size classes (1–3 kb, 3–10 kb, and .10 kb) (Fig 2),

performing better than either SOAPdenovo or MetaIDBA

(p,0.05; Wilcox signed-rank test).

In order to measure the accuracy of this method, we used

synthetic viral communities composed from previously sequenced

virome samples. Of the 6 subjects in this dataset, one contained

sequences that align closely to Human Papilloma Virus type 6b (as

reported previously in [11]). These reads were added in varying

amounts to a collection of reads from a subject completely lacking

HPV reads, and the resulting synthetic datasets were used to assess

quality of assembly. We assembled these synthetic viral commu-

nities using OPTITDBA, MetaIDBA, or SOAPdenovo and

compared the efficiency of HPV recovery (measured in this case

as the length of the longest HPV contig as a proportion of the

whole HPV genome). For every level of sequencing (6, 13, 19, and

23X coverage), the HPV genome was better assembled using this

pipeline than using the single pass SOAPdenovo assembly

(p,0.0005; Wilcox signed-rank test) (Fig. S2). On average, this

pipeline performed 61% better than the corresponding single

assembly using SOAPdenovo. There was no significant difference

in HPV genome recovery between MetaIDBA and OPTITDBA,

though our pipeline was better than MetaIDBA in producing

contigs that recruited the maximum number of reads. In

summary, OPTITDBA assembled viral reads into longer contigs

at no cost to accuracy in the reconstruction of the control genome.

Network analysis of bacteriophage proteins
In order to characterize the assembled viral genomes, we

predicted open reading frames (ORFs) using Glimmer, yielding

29,017 ORFs longer than 100 bp from the 6 datasets. Of these,

only 3,066 had similarity at a cutoff of E,10210 to the RefSeq

collection of viral proteins (10.6%). At a more stringent cutoff of

E,10250, only 690 ORFs were similar (2.4%). Searching for

conserved amino acid motifs contained within the Conserved

Domain Databases (CDD) yielded 3,374 ORFs with a match in

the CDD at E,10210 (11.6%), but only 777 with a match at

E,10250(2.7%).

In order to investigate which of these RefSeq annotations were

shared among contig-encoded ORFs, we carried out a network

analysis (Fig. 3). The nodes in this network represent either contigs

(orange circles) or RefSeq viral proteins (smaller black circles).

Edges (connections) are drawn between contigs and RefSeq

proteins when an ORF (encoded by a contig) is highly similar to a

RefSeq protein (E,10250). Groups of RefSeq proteins that are

similar to multiple contigs are highlighted by light blue ovals.

While in some cases these groups of reference proteins encode only

a single function (in which case they are likely all similar to a single

ORF on each of the indicated contigs), in others there are multiple

predicted functions (in which case there is a similar collection of

genes found on all of the indicated contigs). For example, multiple

contigs are linked by genes encoding both capsid and terminase

proteins, while others are linked by genes encoding transcription

and DNA packaging functions. These examples parallel classical

studies which showed that bacteriophage genomes are often

organized into cassettes of functionally related genes [33–35].

Figure 2. Comparison of assembly methods by read alignment. The vertical axis indicates the number of reads from each dataset that align
to contigs of different size classes (either less than 1 kb, between 1 kb and 3 kb, between 3 and 10 kb, or longer than 10 kb). The horizontal axis
separates assembly method. Each dataset is indicated by color (see key on right; numbers indicate gut virome communities from different human
subjects). * indicates p,0.05 by Wilcoxon signed-rank test for the indicated pair of assembly methods.
doi:10.1371/journal.pone.0042342.g002

Conserved Gene Cassettes in the Human Gut Virome
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Bacteriophage genomes contain conserved cassettes
encoded by divergent nucleic acid sequences

After finding only a low frequency of similarities between ORFs

in viral contigs and database sequences, we searched for conserved

gene cassettes in a database-independent manner. ORFs were

compared within the assembled sequences to find encoded amino

acids sequences that were repeated among multiple contigs, which

we refer to as protein-coding families. Of the 29,007 predicted

ORFs, 16,944 (58%) were found to be members of families, that is,

ORFs on different contigs showed alignments with at least 30%

identity. The degree to which proteins cluster into families strongly

depends upon the alignment cutoff that is used. The limit of 30%

was chosen to include dissimilar but related groups of proteins,

close to the limit of detection of homology. Identifying specific

organisms in metagenomic data would typically use a much higher

threshold to yield high confidence assignments. A total of 2,961

families contained 2 ORFs each. The largest family contained 25

ORFs. Of these 5,135 protein-coding families, only 1,287 (25%)

had any similarity to the Conserved Domain Database, empha-

sizing the amount of unexplored diversity in genes of the gut

virome.

Relationships among these protein-encoding families were

interrogated by grouping families into cassettes, consisting of

different families that were found on the same group of contigs.

We found 28 types of cassettes that contained from 2 to 8 protein-

coding families. On average, the amount of each contig that was

covered by each cassette was 1.6 kb, ranging from 105 bp to

11.5 kb. The mean proportion of each contig that was covered by

a cassette was 27%, ranging from 1% to 90%. The most common

cassette was found on 20 contigs generated from all six subjects

studied. Of the 16,944 ORFs found in families, 651 (4%) were

found in cassettes (Table 1). While a small proportion of the total

number of predicted ORFs were grouped into cassettes, this

accounted for a disproportionately large amount of the input

sequence reads. The contigs containing at least one ORF

accounted for 3.1*107 reads. The contigs containing a cassette

accounted for 5.9*106 reads, or 18% of all contigs (Table 2).

Therefore while the proportion of contigs that harbor cassettes is

relatively small, contigs with cassettes represent highly abundant

lineages.

Bacteriophage cassettes commonly show conserved gene orien-

tation as well as conserved gene type, so we investigated

orientation as well. The degree of co-orientation among protein-

coding regions in cassettes was found to be high, with an average

co-orientation score of 99% (compared to 25% co-orientation

expected by chance), providing strong support for cassette

structure.

In a few cases, the proteins encoded within a cassette showed

potentially related annotations, such as N-6 DNA methylase and

DEAD-like helicase (Fig S3) or phage portal and terminase

(Fig. 4A). In many cases, specific unannotated ORFs were

repeatedly found near ORFs annotated as phage proteins. In

Figure 3. Network based annotation of viral contigs. Orange circles represent viral contigs no shorter than 3 kb. Black circles represent
proteins in the RefSeq viral database. RefSeq proteins are connected to viral contigs when an ORF encoded by that contig resembles that protein at
E,10250 (blastp). Blue outlines indicate groups of RefSeq proteins and ORFs from contigs that share the function indicated by the adjacent label.
doi:10.1371/journal.pone.0042342.g003

Conserved Gene Cassettes in the Human Gut Virome
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one case, proteins with less than 30% amino acid identity between

them (resulting in their being grouped in different families) were

assigned the same functional annotation (Phage Mu F: morpho-

genesis-related protein) and located in the same functional cassette

(Fig. 4B), suggesting preservation of protein function and genetic

organization despite nucleotide and amino acid divergence

(Fig. 4B).

Discussion

One difficulty of studying viruses in the environment is that

high-throughput sequencing data is difficult to interpret when high

proportions of reads are unknown or unrecognizable. One way to

address this problem is through de novo assembly, generating

complete and partial genome sequences. For environmental

bacteriophage this is usually necessary because previously

sequenced and closely related genomes are generally not available.

We demonstrated that optimizing the assembly process according

to the characteristics of viral genomes improves the degree of

assembly at no cost to accuracy. Using our assemblies, we found

that the viral open reading frames often cluster in related cassettes,

but that the cassettes show considerable sequence divergence

among genomes.

In our assembly pipeline we have improved on iterative kmer

based de Bruijn graph assembly for use with viral samples in three

ways. 1) We picked the optimal kmer value to use at each iteration,

rather than cycling once through kmers of increasing length. 2) We

removed at each iteration the set of reads that aligned to the best

contigs, not those reads that were used to construct those contigs,

because due to the nature of the de Bruijn graph assembly process,

the set of reads used to construct a contig may not fully contain the

set of reads that align well to that contig. 3) We reasoned that

circular sequences would represent complete viral genomes, either

as circular genomes or circularly permuted genomes, and so used

this also as a criterion for calling finished contigs.

We found in our analysis that the selected kmer value had a

large influence on the resulting assembly, likely due to complexities

in the underlying sequences (as shown in Fig. 1). For using a de

Bruijn graph method to assemble single genomes, this emphasizes

the importance of comparing multiple kmer sizes. The iterative

method that we describe tests a range of all possible kmer values

and retains the contigs that are best assembled at each step.

As a measure of the quality of assembly, we monitored correct

assembly of Human Papillomavirus Type 6b (HPV), the one

known virus in our data set. We found that our pipeline was better

able to assemble a single contig matching HPV across a range of

sequencing depths than was SOAPdenovo (the underlying

assembly algorithm used in our pipeline) by ,61%. Both our

pipeline and MetaIDBA reconstructed HPV about equally well

(however, as described below, our method yielded contigs

explaining a larger proportion of the reads). The ability to

reconstruct viral genomes present at low abundance is particularly

important when trying to detect pathogens in sequence mixtures,

such as in efforts to identify novel pathogens in samples from

outbreaks of infectious diseases.

A more complicated challenge is assessing the quality of

assembly of unknown viral genomes. One common metric for

assessing assembly quality is the length of contigs produced (N50).

However, a recent study [5] found that for one implementation of

De Bruijn graph assembly of short sequences from known

genomes, the method that yielded the highest N50 yielded the

lowest similarity to the known genomes. Therefore we chose to

measure how well the contigs explain the input data by mapping

reads back to contigs, and counting the number of reads that

mapped to contigs of different size classes, thereby generating an

estimate of how well the assembly process reconstructed the

primary data. We found that our pipeline performed better than

MetaIDBA or SOAPdenovo.

Analysis of protein conservation emphasized the cassette

structure of the viral genomes in our samples. We annotate the

viral contigs by aligning new ORFs to available databases, and by

identifying ORFs of unknown function that aligned with other

ORFs in our data set. We found that viral ORF families often

clustered in cassettes, where genes with similar sequences were

almost always in the same orientations. Cassette structure has been

well documented in many bacteriophage families [13,33–37]–here

we show that these structural patterns are accessible after assembly

of metagenomic data.

A conjecture to explain the observed phage genome structure

invokes pressure for sequence diversification from the CRISPR

system. Many bacterial genomes harbor a series of repeated

sequences spaced by short sequences derived from phage or

plasmids, called CRISPR arrays [38]. The CRISPR arrays are

transcribed, then the spacer sequence RNAs are used as

recognition elements to program degradation of incoming

sequence-complimentary DNA. Thus bacteriophages that infect

CRISPR-containing hosts are regularly under pressure to alter

their DNA sequences to evade attack. Assisting this, bacteriophage

replication cycles can be as short as 20 minutes and burst sizes

large, allowing rapid evolution. There are also a variety of other

mechanisms that bacteria use to resist bacteriophage infection and

may also promote viral escape through mutation. Constraining the

allowable DNA substitutions, of course, is the requirement for

proper function of the encoded proteins. In a few cases three

dimensional structures have been determined for multiple phage

proteins encoded in syntenic regions from functionally inter-

changeable cassettes, and the structures can be surprisingly similar

Table 1. ORFs in families and cassettes.

Dataset

1 2 3 4 5 6 Total

Contigs 8403 13258 4755 6067 4375 2415 39273

ORFs 9507 4508 3143 5618 4009 2232 29007

ORFs in families 5980 3056 2139 3648 2825 1527 16944

ORFs in cassettes 118 135 106 116 107 74 651

The number and proportion of ORFs predicted in each dataset that belong to
protein-coding families (i.e. are not unique), and/or belong to cassettes (groups
of protein-coding families that are found on the same set of contigs.
doi:10.1371/journal.pone.0042342.t001

Table 2. Contigs and reads that form cassettes.

Contig Criteria Contigs
Reads that align to
those contigs

With at least 1 ORF 10032 31883951

With at least 1 ORF family 7024 29697888

With at least 1 cassette 326 5886117

The number of contigs, and the number of reads that align to those contigs,
that contain at least 1 ORF, more than 1 ORF, at least 1 ORF family, and/or at
least 1 cassette. The percentage of the total number of reads that align to
contigs with at least 1 ORF is shown in parentheses.
doi:10.1371/journal.pone.0042342.t002

Conserved Gene Cassettes in the Human Gut Virome
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given the low DNA and protein similarity. For example, the

repressor and Cro proteins of Lambda, 434, and P22 show little

similarity at the nucleic acid level (median identity 34%) or amino

acid level (median identity 17%) [39], but share common alpha-

helical structures and helix-turn-helix motifs [40,41]. Thus the

modules emerging from the metagenomic assembly may represent

functionally similar gene sets that have diversified to elude anti-

phage systems encoded by the host or other phage, perhaps

helping to explain why bacteriophage populations show such

extreme variation.

Methods

Iterative assembly pipeline
Here we first describe the basic steps of the optimized iterative

de Bruijn graph assembly pipeline (available at https://

sourceforge.net/projects/optitdba/), and then describe the imple-

mentation of each step in more detail. For each iteration,

OPTITDBA 1) selects the optimal kmer, 2) generates a de Bruijn

graph for the optimal kmer length, 3) removes the reads that map

to the most highly abundant contigs from the dataset or reads that

map to circular contigs, and 4) starts another iteration using all of

the reads that do not map to those contigs. The loop ends when

there are no highly abundant contigs meeting the criteria outlined

below. At that point, all of the remaining reads will be assembled

and mapped using the optimal values from the final iteration.

Selecting the optimal kmer. OPTITDBA assembles over a

range of kmer values (63, 59, 55, 51, 47, 43, 39, 35, 31, 27, 23, and

19) using SOAPdenovo v1.05 [25] (flags: -p 10 -d 1 -M 3 -u -G 200

-R). All the steps taken to simplify the de Bruin graph, clipping

tips, removing low-coverage links, resolving tiny repeats, and

merging bubbles, were implemented as described in [25]. Each

assembly is queried for whether any circular contigs longer than

2 kb were generated, suggesting complete assembly. If multiple

kmer values resulted in circular genomes, than the largest such

kmer value is selected.

If no such circles are generated, then the kmer values are scored

by the length and depth of sequencing of its most abundant

Figure 4. Two examples of phage cassettes. Contigs are shown as horizontal black lines, ORFs on those contigs are shown by black arrows
above and below those lines, and the organization of those ORFs into protein-coding families is shown with colored boxes. The subject that each
contig was assembled from is shown on the left of each panel. When a protein-coding family was functionally annotated according to its similarity
with the CDD, that annotation is listed in the legend. Otherwise a unique identification number is shown (e. g. Family 591). The co-orientation score
describes the proportion of gene pairs that, when occurring together on multiple contigs, do so in the same relative orientation.
doi:10.1371/journal.pone.0042342.g004

Conserved Gene Cassettes in the Human Gut Virome
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members. For each assembly, the contigs are sorted by the number

of reads used to construct them and the cumulative length of the

top 20 contigs is recorded. All contigs ,1 kb in length are

excluded. The kmer value with the longest cumulative length of its

20 most abundant is selected as the most optimal for that loop.

The number of contigs selected (20) is arbitrary, can be specified

by the user, and is used to balance computational resources against

thorough assembly.

If more than 106 reads are used as input, OPTITDBA

randomly selects 106 reads to use for the assembly trials.

Preliminary tests indicated that this strategy reduced computation

time at no detriment to optimal kmer determination.

Removing reads that map to the most highly abundant

contigs. If no circular contigs are found, then the top 20 contigs

from the assembly with the optimal kmer value are retained. If

circular contig(s) is/are found, then the circular contig(s) and the

top 20 contigs are retained. In pilot tests it was found that reducing

the number of contigs that are retained at each step increases the

final number of iterations as well as computational time, while the

proportion of reads that were mapped was not impacted

significantly.

The reads are then mapped to those retained contigs using

BWA v0.5.8c [42]. The full set of reads is used to map, not the

random subset described above (if used). All reads not mapping to

these contigs are then used to start another iteration. The training

set consisted entirely of paired reads, and both members of the pair

were removed, even if only one mapped to a contig. We observed

that when only one read in a pair mapped, the other often covered

the junction of circular contigs, or gaps in the assembly. The cycle

ends when either zero reads map, or there are zero contigs

. = 1 kb in length.

While the iterative assembly pipeline developed here imple-

ments SOAPdenovo to perform assembly and BWA to perform

mapping, the concept is independent of both programs.

Benchmark sequences
The data used to benchmark this pipeline are those described in

[3,11]. Viral DNA was isolated from human fecal samples using

sequential filtration and CsCl density ultra-centrifugation, then

unprotected DNA was digested using DNaseI [43]. Viral DNA

was subsequently recovered from particles, yielding a sample that

was depleted in bacterial DNA by .100-fold (as measured by 16S

rDNA qPCR [11]. Three samples each from six human subjects

were extracted, pooled, and submitted for sequencing using the

Illumina HiSeq 2000 platform (100 bp paired-end sequencing).

Ten million reads were randomly selected from each dataset

(except for Subject 6, which only had 5,754,268 reads) while

preserving all read pairings, and assembled using either OP-

TITDBA, MetaIDBA v0.19 [29], or using SOAPdenovo with a

kmer value of 63 and all of the same flags as in the iterative

assembly pipeline. The kmer value of 63 for SOAPdenovo was

found in previous tests to produce the highest N50 score using this

dataset. MetaIDBA was run using default settings. See Table S1

for a summary of each dataset.

Detection of Human Papillomavirus Virus
A previous analysis of these sequences found evidence of a single

eukaryotic virus: Human Papilloma Virus type 6b [11]. Reads

mapping to the HPV genome (NCBI gi: 9626053) were extracted

and used to mix back in various quantities to a dataset that did not

previously have any detected HPV sequences. The mixing was

done by randomly selecting a total of 4*106 reads for each test.

The number of HPV reads varied across a range (500, 1000, 1500,

or 1798 reads, corresponding to 6X, 13X, 19X, or 23X coverage),

with three replicates of each. Each set of mixed reads was

assembled using OPTITDBA, MetaIDBA, or SOAPdenovo as

described above.

Network analysis of viral proteins
In order to classify the assembled viral contigs according to their

similarity with known proteins, we compared the predicted open

reading frames (ORFs) on these contigs with 1) the RefSeq [44]

collection of viral proteins, or 2) the Conserved Domain Database

(CDD) [45] of conserved amino acid motifs. ORFs were predicted

using Glimmer v3.02 [46], compared to Viral RefSeq (download-

ed on 12/16/11) using blastp [47] (v2.2.25+, build 1/3/12), and

compared to CDD [45] (downloaded on 10/18/11) using rpsblast

(v2.2.25) [47]. Because of the difficulty of manually identifying

patterns of similarity among contigs, we converted the protein

similarity data into a format that could be viewed in the interactive

network visualization tool Cytoscape [48]. In this bipartite

network scheme, there are two classes of nodes: contigs and

RefSeq proteins. When a RefSeq viral protein has a highly

significant match (E,10250) to an ORF encoded by a contig, a

connection is made between those two nodes. For ease of

visualization, we excluded all contigs that were either shorter

than 3 kb, or had fewer than 5 hits to RefSeq proteins. The nodes

and connections for all six datasets were combined and loaded into

Cytoscape. The network was arranged using the spring-embedded

layout (data available upon request).

Protein family organization
In order to search for conserved protein families in a database-

independent manner, we clustered the ORFs described above

using UCLUST v1.2.22q [49]. Each of those protein families was

compared to the Conserved Domain Database using rpsblast.

Those protein families were next grouped into cassettes, meaning

multiple protein families that can be found together on our

contigs. Cassette discovery proceeded in the following manner.

Each protein family was classified according to the list of contigs

that encoded it. Next, all of the protein families were compared,

seeing how many of those occurred on common contigs. A given

pair of protein coding families was grouped into a cassette when

the smaller of the two families was found on a shared contig at

least 80% of the time. This process was performed iteratively,

recalculating the overlap scores after each pair of protein families

was merged together. In subsequent iterations, protein families

could also merge in the same way with cassettes that formed

earlier.

If a pair of proteins formed a cassette found on multiple contigs,

we expect shared ORFs to be in the same relative orientations. To

calculate the consistency of orientation across contigs, we used a

simple co-orientation score, calculated in the following way. Any

two genes have four possible relative orientations. For every pair of

protein clusters in a module, we calculate the proportion of contigs

that contain the orientation found most commonly. Discovery and

analysis of protein modules was implemented in an R script that is

available along with the iterative assembly pipeline, at https://

sourceforge.net/projects/optitdba/.

Computation
Computation was carried out on a home-built computer with

192 Gb of RAM and 12 cores (24 hyperthreaded). The computer

was assembled from parts costing $16,060 (USD) (a full parts list is

available at http://microb230.med.upenn.edu/protocols/

comput_resources.html). Computation times for assembly of single

viral communities (5.7*106–107 reads) using this pipeline were

20.7 to 132.1 wall clock hours, with a median of 39.0 hours. The
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computation time may vary with the community complexity and

number of reads, as the dataset with the longest compute time (#1:

132.1 hours), also had the largest number of predicted species by

PHACCS (data not shown), the dataset with the shortest compute

time (#6: 20.7 hours) was the only one to have less than 107

sequences, and all of the other datasets ranged between 38 and

56 hours.

Supporting Information

Figure S1 Optimized iterative de Bruijn graph assem-
bly of 107 viral metagenomic sequences. A) Summary of

run statistics for each iteration of the assembly, in which reads

mapping to newly assembled contigs were removed at each

iteration. The horizontal axis indicates the iteration number. For

each of those iterations, the vertical axes indicate the number of

reads remaining at the end of the iteration, the number of reads

mapped during that iteration, the number of contigs made, the

number of circular contigs made, and the optimal kmer chosen for

that iteration. B) Characteristics of contigs by iteration of

assembly. Each point is a contig with a length shown on the

horizontal axis, depth of the assembly is shown on the vertical axis,

and the iteration at which it was assembled indicated by color. The

contigs that were assembled at earlier cycles (shown with bluer

points) are generally longer and more deeply sequenced.

(PDF)

Figure S2 Comparison of assembly methods by known
genome reconstruction. Shotgun sequences from HPV Type

6b were extracted from one dataset and added back to another

dataset lacking HPV in varying amounts, as indicated in the grey

boxes above each plot. The success of HPV reconstruction was

measured as the length of the longest HPV-matching contig as a

proportion of the total HPV length (vertical axis). The horizontal

axis indicates the three assembly methods used. Three indepen-

dent random samples were created for each level of coverage, and

the assemblies using the same dataset are connected with a line.

(PDF)

Figure S3 One additional example of phage cassette.
Contigs are shown as horizontal black lines, ORFs on those

contigs are shown by black arrows above and below those lines,

and the organization of those ORFs into protein-coding families is

shown with colored boxes. The subject that each contig was

assembled from is shown on the left of each panel. When a

protein-coding family was functionally annotated according to its

similarity with the CDD, that annotation is listed in the legend.

(PDF)

Table S1 Assembly statistics.

(DOC)
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