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Abstract

High-throughput biological data offer an unprecedented opportunity to fully characterize biological processes. However,
how to extract meaningful biological information from these datasets is a significant challenge. Recently, pathway-based
analysis has gained much progress in identifying biomarkers for some phenotypes. Nevertheless, these so-called pathway-
based methods are mainly individual-gene-based or molecule-complex-based analyses. In this paper, we developed a novel
module-based method to reveal causal or dependent relations between network modules and biological phenotypes by
integrating both gene expression data and protein-protein interaction network. Specifically, we first formulated the
identification problem of the responsive modules underlying biological phenotypes as a mathematical programming model
by exploiting phenotype difference, which can also be viewed as a multi-classification problem. Then, we applied it to study
cell-cycle process of budding yeast from microarray data based on our biological experiments, and identified important
phenotype- and transition-based responsive modules for different stages of cell-cycle process. The resulting responsive
modules provide new insight into the regulation mechanisms of cell-cycle process from a network viewpoint. Moreover, the
identification of transition modules provides a new way to study dynamical processes at a functional module level. In
particular, we found that the dysfunction of a well-known module and two new modules may directly result in cell cycle
arresting at S phase. In addition to our biological experiments, the identified responsive modules were also validated by two
independent datasets on budding yeast cell cycle.
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Introduction

High-throughput biological technologies allow the simultaneous

measurement of the expression of thousands of genes or proteins,

which offers an unprecedented opportunity to fully characterize

biological processes [1]. Nevertheless, extracting a comprehensive

overview from the huge amount of information is a significant

challenge [2]. During the last decade, high-throughput analysis

mainly focused on dissecting the individual genes responsible for

specific phenotypes, and some biomarkers for human diseases

have successfully been identified through analysis of genome-wide

expression profiles [3,4,5,6]. However, it is well accepted that

genes or proteins within a cell do not function alone, and they

interact with each other to form networks or pathways so as to

carry out biological functions [7,8,9,10,11]. Therefore, it is crucial

to reveal the essential biological mechanisms from a system

perspective, and pathway-based analysis is becoming a popular

method of analyzing high-throughput data. Several approaches

have been proposed to score known pathways by the coherency of

expression changes among their member genes [12,13,14,15,16].

Generally, a known pathway is drawn from sources such as the

Gene Ontology (GO) [17] and KEGG [18] databases. In contrast

to the documented pathways, however, it is a more difficult task to

identify novel sub-networks or pathways responsive to phenotypes

from biomolecular networks. Recently, gene-set-based or path-

way-based analysis has been extended to perform classification of

microarray data by exploiting the phenotype difference [19,20,21]

and a number of approaches have been demonstrated for not

scoring known pathways but extracting relevant sub-networks

based on coherent expression patterns of the corresponding genes

in the protein-protein interaction (PPI) networks [22,23,24,25].

However, these approaches are mainly molecule-complex-based

[23,25] or individual-gene-based analysis, such as [19], in which

the authors indicated that candidate sub-networks are seeded with

a single protein and iteratively expanded to add other proteins into
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the sub-networks. Note that, in biology, a complex is a cluster of

genes or proteins so closely related that they intergrade [26], while

a pathway is a group of genes or proteins that are interacted (or

related) [1].

In contrast to existing works, in this paper we first developed a

novel module-based method to identify phenotype-based respon-

sive modules by integrating gene expression data and high-quality

PPI networks, which are able to reveal the potential causal or

dependent relations between network modules and biological

phenotypes. Specifically, we formulated the problem to identify

phenotype-based responsive modules as a multi-classification

problem of modules on phenotypes by a mathematical program-

ming model, rather than identifying individual genes and gene

sets, where the modules are resulted from the topological structure

of the PPI networks. Then, the proposed method was applied to

the cell-cycle process of budding yeast Saccharomyces cerevisiae (S.

cerevisiae) to identify phenotype-based responsive modules and

further examine their regulation roles in the phase transition

process based on the microarray data of our biological experi-

ments.

The cell cycle process, by which one cell grows and divides into

two daughter cells, is a vital biological process, the regulation of

which is highly conserved among the eukaryotes [27,28]. Although

extensive studies have been conducted on the cell cycle process

[29,30], in particular by modeling the budding yeast [31,32,33],

many detail regulations still remain unclear from network

viewpoint. Generally, there are mainly two ways to perturb a

biological system, that is, external stimulus, such as exposure to

DNA-damaging agents, methyl methanesulfonate (MMS)

[34,35,36], and internal stimulus, such as knocking out some

genes [34,37]. To functionally relate network modules to different

phenotypes, we designed biological experiments by combining

these two types of stimuli so as to create various phenotypes for the

cell cycle process. In our biological experiments, when adding

MMS at 15 min (G1 phase) or knocking out elg1 at the beginning

of the cell cycle process, the cell cycle continues, nevertheless,

when adding MMS at 15 min (G1 phase) to elg1 mutant strains,

the cell cycle arrests at S phase.

By the proposed module-based method with exploiting high-

throughput data of various phenotypes resulted from our

biological experiments, we identified phenotype-based responsive

modules and dynamical transition modules of budding yeast cell

cycle. A responsive module means that the module potentially

plays an important role in some phenotypes, while a transition

module indicates that the module is potentially responsible for the

transition from one phenotype to another from a dynamical

perspective. After the identification of phenotype-based and

transition-based responsive modules for the cell cycle phases and

their transitions, the identified responsive modules were also

validated by classifying the cell cycle phases of two independent

datasets on budding yeast cell cycle.

Based on the computational and experimental results, the main

contributions of this work can be summarized as follows. First, our

method is able to identify phenotype-based and transition-based

responsive network modules, drawn from the topological structure

of a biomolecular network, instead of dissecting complexes or

individual gene-based pathways. Second, the identified modules

lead to new insights into the cell cycle process and provide

biological interpretations on the functional roles of network

modules. In particular, according to the validation on the other

two independent datasets and also the functional validation, the

phenotype-based responsive modules are potentially signatures or

network biomarkers of the cell cycle process. We revealed the

reason of arresting cell cycle at S phase under both internal and

external stimuli from a network viewpoint, that is, we identified

one well-known module ‘‘CLN1 CLN2 CLN3 BUD2’’ involved in

cell cycle process and two new modules ‘‘PKC1 TOS2 KEL2 PPZ2

SKN7’’ and ‘‘SSD1 LST8 TOR1 KOG1 TOR2’’, whose dysfunction

results in cell cycle arresting. Third, our method is also a new

theoretical model for multi-classification analysis, which was used

to study the cell cycle process by relating network modules to

different phenotypes and even phase transitions from a dynamical

perspective. In addition, we showed that the identified responsive

modules can also be directly used to annotate functions of genes or

proteins.

Methods

Microarray Experiment
The biological experiment was performed on S. cerevisiae. SH521

strain was used as the wild-type source (WT). Since elg1 involves in

DNA replication and genome integrity, we knocked out elg1 gene

of SH521 using PCR based one-step gene replacement [38,39].

WT and elg1 mutant were cultured in rich YPD medium (1% yeast

extract, 2% peptone, and 2% glucose) at 30uC as described [40].

Cells were synchronized to early G1 phase by adding 20 ng/ml

alpha factor (US Biology) as described [41], and exposed to 0.01%

DNA-damage reagent methyl methanesulfate (MMS, Sigma) after

being released into pre-warmed YPD medium. Cells at the

indicated time points shown in Figure 1 were harvested for flow

cytometry analysis [42] and total RNA isolation [43]. RNA

samples were subjected to gene-microarray analysis with Affyme-

trix GeneChipH Yeast Genome S98 arrays and Scanner

GeneChipH 3000. Two biological replicates have done for each

condition. The microarray data are available at http://www.

aporc.org/doc/wiki/CellCycle.

Data Preprocessing
The microarray data of our experiment contains 5714 genes

and 20 samples. The CEL files were preprocessed by RMA

algorithm in R bioconductor package (www.bioconductor.org).

Probe sets were mapped to NCBI Entrez gene symbols using the

Affymetrix annotation. If there are multiple probe sets corre-

sponding to the same gene, we average them individually. First,

because of the fact that many genes of microarray data were

irrelevant or redundant [44], we applied ANOVA method to

identify genes that were differentially expressed on one or more of

the ten groups relative to the others (p-value ,0.05). As a result,

4443 genes from microarray data were finally retained for further

analysis. Second, we downloaded a curated PPI network of

S. cerevisiae from MIPS [45], and we only considered those PPIs, of

which both interacted proteins are contained in our microarray

data.

Identifying Responsive Modules by a Mathematical
Programming Model

Figure 2 illustrates the schematic flowchart of our method. On the

one hand, given the microarray data with m genes and n samples,

gene expression values gij were normalized to z-transformed scores

zij , which for each gene i has mean m~0 and deviation s~1 over all

samples j. On the other hand, we decomposed the PPI network into l

modules by the Markov Clustering (MCL) algorithm [46]. To

integrate the gene microarray data and PPI modules, we mapped the

normalized expression values of each gene on its corresponding

protein in the modules, and then we defined the module responsive

value as a combined z-score [19] for k~1, � � � , l and j~1, � � � , n,

Identifying Phenotype-Based Responsive Modules
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Mkj~
1ffiffiffiffiffiffiffiffiffiffiffiffi

DNMk
D

q
X

gp[Mk

zpj,

where DNMk
D is the number of proteins in the module Mk. In this

way, we obtained the responsive matrix with element Mkj

representing the responsive value of module Mk in the case of

sample sj . To identify responsive modules under different pheno-

types or conditions, we defined rkj~Mkj
:xk, where xk is 1 if module

Mk is selected, otherwise 0. Therefore, nonzero rkj means that

module Mk is selected, while we do not select module Mk if rkj is

zero.

Assume that there are K phenotypes among n samples, to relate

n samples to K phenotypes, we aimed to classify the n samples into

K clusters. Meanwhile, we intended to identify the minimum

number of responsive modules in this multi-classification process.

In this study, we exploited the idea of K-means clustering to

formulate such a multi-classification problem as a mathematical

programming model, which aims to minimize the within-cluster

error sum of squares, that is,

arg min
S

XK

q~1

X
sj[Sq

sj{mq

�� ��2
,

where mq is the mean of sample points sj in the sample cluster Sq.

Based on this framework, we calculated the values ofPK
q~1

P
sj[Sq

sj{mq

�� ��2
for all possible classifications, and denot-

ed these values as T1,T2, � � � ,Ta, respectively (Note that a in Ta

corresponds to all the classifications). On the other hand, for the

targeted classification, the value is written as T�. Hence, if all

conditions (T�{T1,T�{T2, � � � ,T�{Ta)t
ƒ0are satisfied, we

have successfully classified the samples, where superscript t means

the transpose of a vector or a matrix. By expanding T�{Tr, which

is the function of Mkj and xk, we can further express the

conditions as

(T�{T1,T�{T2, � � � ,T�{Ta)t~C:(x1,x2, � � � xl)
t
ƒ0

(see Supporting Information S1 for more details), where Cis a

matrix function of Mkj with element C(r,k) representing the k-th

module’s contribution to the r-th condition. From the above

analysis, we formulated the module-identification problem as the

following binary integer programming:

min
x1,x2,���,xl

Xl

k~1

xk

s:t: C:(x1,x2, � � � xl)
t
ƒ0,

Xl

k~1

xk§1, xk~0,1, k[ 1,2, � � � ,lf g:

Algorithm of Solving Binary Integer Programming
Problem

Clearly, the formulated integer programming problem is NP-

hard. Therefore, we have to adopt other techniques to obtain an

approximate solution due to the computational complexity of this

problem.

In the integer programming problem, we aimed to identify the

number of modules as small as possible but with high accuracy of

Figure 1. Schematic illustration of our experiment design. The cell cycle is decomposed into three phases, G1, S and G2/M, corresponding to
time points of 15 min, 30 min and 45 min, respectively. In the figure, ‘‘0 min’’ means the starting point of cell cycle. ‘‘Control’’ implies WT, while ‘‘-
elg1’’ implies elg1 mutant. ‘‘+MMS’’ refers to adding MMS to yeast strains at 15 min, and ‘‘+15 min’’ and ‘‘+30 min’’ signify after 15 min and 30 min’s
MMS exposure, respectively. Note that when knocking out elg1 and then adding MMS at 15 min, cell cycle arrests at S phase. The experiment has two
biological repeats for each condition.
doi:10.1371/journal.pone.0041854.g001

Identifying Phenotype-Based Responsive Modules

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e41854



the classification. Therefore, we defined an index to evaluate the

effect of classification, that is, the average power of classification of

modules. For the purpose, an approximate algorithm is designed

as follows:

Step 1). Rank the modules according to their scores,

maxkC( : ,k), increasingly, which evaluate the power of classifi-

cation of the k-th module individually, where C( : ,k) means the k-

th column of matrix C.

Step 2). Add the module one by one to compute the average

power of classification of modules,

max
X

k[I
C( : ,k)=card(I),

where I is the set of chosen modules and card(I) is the cardinality

of set I , according to the ranking in Step 1). When the minimum

value of max
P

k[I C( : ,k)=card(I) is achieved, we select the

ahead card(I) number of modules in the ranking in Step 1) as the

responsive modules.

Results

Sample Clustering
The microarray data of our biological experiment totally

contains 5714 genes and 20 samples. The first batch of 10 samples

are composed of 5 control samples and 5 elg1 mutant samples (see

Figure 1), and the other batch of 10 samples are biological

replicate of the first batch. There are totally ten phenotypes in our

experiment and we will identify responsive modules to these

phenotypes as well as their transitions. We extracted 4443 genes

with differential information underlying these phenotypes by

ANOVA (see Methods). To group these samples from a global

respective, we implemented the hierarchical clustering on these

genes and the results are shown in Supporting Information S2. We

found that the 20 samples are almost successfully classified into ten

classes of phenotypes, that is, the biological replicates and three

time points of cell cycle phases are clustered together. The various

phenotypes of our experiment are correlated with the genome-

wide gene expression profiles. Therefore, we focus our subsequent

analyses on these 4443 genes for identifying responsive and

transition modules corresponding to these phenotypes.

Figure 2. Schematic flowchart of the proposed method. First, gene expression values were normalized over all samples, and PPI network was
decomposed into modules by clustering algorithm. Then a responsive value can be defined for each module by combining the z-scores of genes in
the corresponding module, i.e., the responsive matrix is formed. To select responsive modules for different phenotypes, we defined a variable xk

representing whether a module is selected, and further formulated this problem by an integer programming model. Finally, we identified the
responsive modules by solving the integer programming problem to classify the phenotypes.
doi:10.1371/journal.pone.0041854.g002

Identifying Phenotype-Based Responsive Modules
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Responsive Modules of Cell Cycle Phases for Each Group
of Conditions

For our experiments, we categorized the 20 samples into four

groups, i.e., control group, MMS group, elg1 mutant group, and elg1

mutant MMS group. By implementing our method, we identified

14, 17, 8 and 23 responsive modules for the control group, MMS

group, elg1 mutant group and elg1 mutant MMS group, respectively

(see Supporting Information S2). In the control group, we arranged

the responsive modules on the corresponding cell cycle phases, at

which the maximum responsive values of the modules are achieved.

The results of 14 responsive modules of three cell cycle phases are

shown in Figure 3. The three cell cycle phases can be discriminated

by these responsive modules according to our method. In our integer

programming model, they are the minimal number of modules with

the maximum average discrimination power for distinguishing the

different phenotypes. The discrimination power underlying these

modules indicates that they are subnetwork biomarkers of reflecting

the progression status during the cell cycle process.

In Figure 3, for instance, as a network-based biomarker for S

phase, in which the DNA is synthesized and chromosomes

replicated, the identified responsive module ‘‘POL2 DPB11 DPB2

SLD2 OYE2’’ contains the genes performing these kinds of functions,

which are consistent with the biological functions of S phase.

Specifically, POL2 is a catalytic subunit of DNA polymerase (II)

epsilon, a chromosomal DNA replication polymerase that exhibits

processivity and proofreading exonuclease activity, and also

involved in DNA synthesis during DNA repair [47]. DPB11 is a

replication initiation protein that loads DNA pol epsilon onto pre-

replication complexes at origins and a checkpoint sensor recruited to

stalled replication forks by the checkpoint clamp complex where it

activates Mec1p [48]. DPB2 is the second largest subunit of DNA

polymerase (II) epsilon, and is required for normal yeast chromo-

somal replication, whose expression peaks at the G1/S phase

boundary [49]. SLD2 is a protein required for DNA replication, and

is phosphorylated at S phase by S-phase cyclin-dependent kinases

(CDKs) [50]. As a member of the module, it implicates that OYE2

may be also involved in the S phase. Moreover, the identified

module ‘‘NUF2 NNF2 SMC4 BRE1 YEL043W’’ possesses the

consistent function in G2/M phase, in which the chromosomes

are separated and the cell is divided into two daughters. NUF2 is

involved in chromosome segregation, spindle checkpoint activity

and kinetochore clustering [51]. NNF2 plays a role in chromosome

segregation [52]. SMC4 reorganizes chromosomes during cell

division [53]. BRE1 is found to be required for double-strand break

repair (DSBR), transcription, silencing, and checkpoint control [54].

Furthermore, as an illustration for other groups, the module

‘‘SIF2 PIB2 HOS4’’ in elg1 mutant MMS group is involved in the

negative regulation of meiosis [55], which is consistent with the

phenotype of elg1 mutant MMS group. In this module, SIF2 is a

Figure 3. The identified responsive modules in the control group. The responsive modules for different cell cycle phases in the control group
are shown. The modules are arranged on the phase in which their maximum responsive values are achieved. The colors of blue, yellow and pink
correspond to cell cycle phases, G1, S and G2/M, respectively.
doi:10.1371/journal.pone.0041854.g003

Identifying Phenotype-Based Responsive Modules
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WD40 repeat-containing subunit of the SET3C histone deacetylase

complex, which represses early/middle sporulation genes and

antagonizes telomeric silencing [56], PIB2 is a protein binding

phosphatidylinositol 3-phosphate, involved in telomere-proximal

repression of gene expression [57], and HOS4 is a subunit of the

SET3 complex, which is a meiotic-specific repressor of sporulation

specific genes that contains deacetylase activity [56].

From the above analyses, we concluded that the identified

responsive modules indeed characterize the corresponding phe-

notypes, which confirms the effectivenss of our method. Each

module can be regarded as a network-based biomarker for the cell

cycle process, which is not individual-gene-based or molecule-

complex-based, but rather a functional-module-based signature

decomposed from the PPI network. This feature is quite different

from conventional pathway-based analysis, which is still based on

individual genes, and then extended to subnetworks. To some

extent, the identified discriminative phenotype-based responsive

modules reflect the endogenous dynamics of the cell cycle, which

also indicate that the different responses and similar drivers

correspond to various phenotypes in the progression of develop-

ment phases.

Transition Modules between Different Phases of
Cell Cycle

The transition modules refer to those modules that are

potentially responsible for the dynamical transition of phases in

the cell-cycle process. We identified these modules by our method

based on the classification of the dynamics and these phenotypes.

Compared to the control condition, we identified these transition

modules from G1 phase to S phase and from S phase to G2/M

phase under internal stimulus, external stimulus and both,

respectively. The procedure of identifying the transition modules

from G1 phase to S phase under external stimulus is performed by

classifying the samples of G1 phase and S phase under external

stimulus and the control condition. The similar procedures were

also implemented for other phase transitions in other groups. The

identified transition modules between these phases are shown in

Figure 4. The significant differences between these modules in

these phases indicate that they are biological signatures and

changeover markers for the cell-cycle phase transition.

By relating network modules to phenotypes shown in Table 1,

we noted that two modules ‘‘PKC1 TOS2 KEL2 PPZ2 SKN7’’ and

‘‘RKI1 COS10 YEH1’’, are responsive for the transition from S

phase (30 min) to G2/M phase (45 min) under internal stimulus

(Figure 4A) or external stimulus (Figure 4B), but they are not

identified under both stimuli (Figure 4C). Furthermore, we also

found three specific transition modules in Table 1 for phase

arresting under both stimuli (Figure 4C), that is, ‘‘SSD1 LST8

TOR1 KOG1 TOR2’’, ‘‘ERG26 ERG25 ERG28 ERG27’’ and

‘‘CLN1 CLN2 CLN3 BUD2’’.

In the module ‘‘PKC1 TOS2 KEL2 PPZ2 SKN7’’, PKC1 is a

protein serine/threonine kinase essential for cell wall remodeling

during growth [58], TOS2 is a protein involved in localization of

CDC24p to the site of bud growth [59], KEL2 is a protein that

functions in a complex with KEL1p to negatively regulate mitotic

exit [60], PPZ2 is a serine/threonine protein phosphatase Z, and is

involved in regulation of potassium transport, which affects cell

cycle progression [61]. The analysis on the functional module of

marking the transition concludes that the cooperation of these

genes in the subnetwork plays an important role for the dynamical

transition from S phase to G2/M phase.

Furthermore, identification of the transition modules provides

more evidence of the differences of cell-cycle-phase phenotypes

and indicates the causal units for the cell development, especially

Figure 4. The identified transition modules. Part of the transition
modules from G1 phase to S phase, and from S phase to G2/M phase
under external stimulus (A), internal stimulus (B) and both stimuli (C) are
presented. The pink corresponds to the transition from G1 phase to S
phase, while the deep green indicates the transition from S phase to
G2/M phase.
doi:10.1371/journal.pone.0041854.g004

Identifying Phenotype-Based Responsive Modules
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in the phase-transition points. In our experiment, we paid a special

attention to the identified transition modules shown in Figure 4C,

which correspond to the transition from S phase (30 min) to S

phase (45 min). With the aim of identifying the functional modules

of critical transition and development of these phases, our

experiment generated various phenotypes by stimuli. When we

implemented the internal stimulus of gene mutant and external

stimulus of DNA damage, the cell cycle would arrest at the S

phase. With this in mind, the identified modules potentially play

essential roles in the process of cell cycle arresting at S phase

caused by the double stimuli. In the modules, ‘‘CLN1 CLN2 CLN3

BUD2’’ and ‘‘SSD1 LST8 TOR1 KOG1 TOR2’’, CLN1, CLN2 and

CLN3 are well-known cyclins involved in regulation of the cell

cycle [62], and BUD2 is a GTPase activating factor for RSR1p/

BUD1p required for both axial and bipolar budding patterns [63].

Moreover, TOR1 and TOR2 are two PIK-related protein kinases

and constitute a complex, which is involved in meiosis, SSD1 is a

translational repressor and cooperates with Tor complex to

maintain cellular integrity, and LST8 and KOG1 are known to

play roles in TOR signaling pathway [64].

From the above analysis of these transition modules (Table 1),

we concluded that it is the dysfunctions of these modules that

possibly contribute to cell cycle arresting at S phase responsive to

gene mutant of elg1and DNA damage of MMS. The details of the

transition modules under different stimuli are shown in Supporting

Information S1 and S2.

Functional Analysis of Responsive Modules
We detected various responsive modules for the multiple

phenotypes of cell cycles individually. A part of these functional

distinct modules are identified among a series of processes

contributing to cell cycle, development and DNA integrity in

budding yeast. The enriched functions of these identified modules

include DNA replication, DNA repair, checkpoint signaling,

chromosome segregation and cell division (see Table 2). The

results of GO functional enrichment analysis are shown in

Supporting Information S2.

For instance, as a responsive module in both MMS group and

elg1 mutant MMS group, module ‘‘MSH5 SWE1 HSL7 AIM10’’ is

involved in mitotic cell cycle process [55], where MSH5 is a

protein of the MUTS family which forms a dimer with MSH4p that

facilitates crossovers between homologs during meiosis [65]. SWE1

is a protein kinase that regulates the G2/M transition by inhibition

of CDC28p kinase activity [66]. And HSL7 is a protein arginine N-

methyltransferase that exhibits septin and HSL1p-dependent bud

neck localization as well as periodic HSL1p-dependent phosphor-

ylation. It is required along with HSL1p for bud neck recruitment,

phosphorylation, and degradation of SWE1p [67,68]. AIM10,

whose biological process is still unclear (http://www.yeastgenome.

org/), is a protein with similarity to tRNA synthetases [69]. From

the functional analysis of this module, we concluded that AIM10 is

related to the cell cycle process.

The functional analysis of these modules indicates that they are

the biomarkers for the phenotypes. Specially, the identified

transition modules clearly offer a potential clue to explain why

the cell cycle arrests at S phase. It is the dysfunction of the modules

‘‘PKC1 TOS2 KEL2 PPZ2 SKN7’’, ‘‘CLN1 CLN2 CLN3 BUD2’’ and

‘‘SSD1 LST8 TOR1 KOG1 TOR2’’ that result in cell cycle arresting.

On the other hand, because the functions of components of a

module are believed to be related [2], we can attribute some

functions of components in one module to those not well known

genes, i.e., annotate the functions of those genes. Based on this

idea, we concluded that the component AIM10 of the module

‘‘MSH5 SWE1 HSL7 AIM10’’ may be related with mitotic cell

cycle, although its biological process is still not known, and the

component OYE2 of the module ‘‘POL2 DPB11 DPB2 SLD2

OYE2’’ may be involved in one or more of the processes of DNA

replication, DNA repair, and mismatch repair. In addition, we

found that the identified modules contain dynamical complexes,

such as the module ‘‘CLN1 CLN2 CLN3 BUD2’’, which is

consistent with the idea of [23] to some extent, however, the

results of our method are more specific and extended in some

sense.

Responsive Modules are Informative of Classifying Cell
Cycle Phases

To validate that the identified responsive modules of various

cell-cycle phenotypes are informative and general, we conducted

the classification of cell cycle phases by these modules based on

two independent datasets. Specifically, we tested the samples of the

first cell cycle in the first dataset GSE3635 [29]. And we chose the

samples of the first cell cycle in WildType_rep1 in the second

dataset GSE8799 [30]. In addition, we also tested the samples of

the second cell cycle. The results are shown in Figures 5 and 6,

respectively, and we successfully classified the three cell-cycle

phases of the two independent datasets. Therefore, we concluded

that these responsive modules are capable of correctly identifying

their expression features in various cell-cycle phenotypes, and are

important clue of marking cell development stages. The validation

not only provides evidence on the effectiveness and advantage of

our method, but also verifies that the identified modules

functionally correspond to the phenotypes of the cell cycle process.

Table 1. Relations between transition modules and phenotypes.

30 min – 45 min transition modules

phenotype Transition (from S to G2/M phase) Arresting (at S phase)

Transition modules Nodes Edges Nodes Edges

RKI1 COS10 YEH1 COS10 YEH1 RKI1 YEH1 SSD1 LST8 TOR1 KOG1 TOR2 TOR1 LST8 TOR2 LST8 TOR1
TOR2 SSD1 TOR1 KOG1 LST8
KOG1 TOR1

PKC1 TOS2 KEL2 PPZ2 SKN7 PKC1 TOS2 PKC1 KEL2 PKC1
PPZ2 PKC1 SKN7

ERG26 ERG25 ERG28 ERG27 ERG25 ERG26 ERG25 ERG27
ERG25 ERG28 ERG27 ERG28

CLN1 CLN2 CLN3 BUD2 CLN3 CLN2 BUD2 CLN2 CLN3
CLN1 CLN1 CLN2 CLN3 BUD2

Transition modules for the transition from S to G2/M phase: common transition modules from S to G2/M phase under conditions adding MMS and knocking out elg1.
doi:10.1371/journal.pone.0041854.t001
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Discussion

In this paper, by integrating high-throughput gene expression

data and PPI network, we developed a novel method to identify

responsive modules and dynamical transition modules for various

phenotypes and phase transitions under internal and external

stimulus of yeast cell cycle process. In this work, to alleviate the

problem of noisy data of protein-protein interactions, we chose a

widely-used gold standard [70,71] PPI database for S. cerevisiae, i.e.,

MIPS [45] as our source network for analysis. However, the noise

inside may also have influence on the results. Additionally, for

yeast PPI, we have checked other databases, such as IntAct [72]

and BioGRID [73]. We found that, compared to MIPS, although

these two databases contain more interactions, the overlap

between MIPS and IntAct (or BioGRID) is relatively small.

Therefore, we chose the high-quality PPIs documented in MIPS as

our reference network. Our method is network-based or functional

module-based analysis, different from the existing works, which

are mainly individual-gene-based or molecule-complex-based

study [19,23,25]. In addition, although we adopted the phenotype

difference to identify responsive modules, our method is quite

different from those exploited the similar tasks [19,20,21]. For

instance, in [21], the authors obtained gene sets by classifying

biological functions of genes and then identified the gene sets

according to their significant difference between two phenotypes,

while our method focused on functional modules and formulated

the module identification as an integer programming problem.

Our method is based on the ideas of K-means clustering and

exploits the supervised clustering to identify responsive and

transition modules. In other words, our work focuses on

identifying the functional modules (or subnetworks from the

network perspective), rather than identifying genes (or gene sets)

with similar expression values or patterns under multi-conditions

(e.g., biclustering methods [16]). Therefore, the biclustering

method and our method are quite different approaches which

are designed from two different perspectives.

Based on the experiment, we identified responsive modules for

the groups of conditions and transition modules for the dynamical

phase transitions in yeast cell-cycle process. As biological

signatures or network biomarkers for the cell cycle, functional

analyses show that some identified modules are involved in a series

of processes such as DNA replication, DNA repair, checkpoint

signaling, chromosome segregation, and cell division, which

contribute to cell cycle and DNA integrity in yeast. The transition

modules characterize a dynamical process from one phenotype to

another, and therefore our method offers a new alternative to

study dynamical processes of biological systems from the viewpoint

of network modules, which leads to new biological insights. In

particular, from a dynamical perspective, we showed that modules

‘‘PKC1 TOS2 KEL2 PPZ2 SKN7’’, ‘‘CLN1 CLN2 CLN3 BUD2’’ and

‘‘SSD1 LST8 TOR1 KOG1 TOR2’’ potentially play an essential role

Table 2. List of modules that are related to a series of processes of cell cycle, such as DNA replication, DNA repair, checkpoint
signaling, chromosome segregation, and cell division.

Module Term ID Size Node Edge P-value Description

SSD1 LST8 TOR1 KOG1 TOR2 GO: 0001558 13 5 6 6.99e-11 Regulation of cell growth

SPC110 SPC97 TUB4 SPC98
SPC72 ATP22

GO: 0005819 86 6 8 3.42e-09 Spindle

SEC31 SEC23 SAR1 HIP1 SEC24
SFB3 CYC1 SFB2

GO: 0048193 187 8 10 2.52e-08 Golgi vesicle transport

SIS2 SIT4 SAP155 HIS4 SAP185 GO: 0000082 51 5 7 2.43e-08 G1/S transition of mitotic cell cycle

POL2 OYE2 DPB11 DPB2 SLD2 GO: 0006298 17 5 4 8.42e-07 Mismatch repair

ARC18 ARC15 ARP3 ARC19 GO: 0005856 231 4 4 2.26e-06 Cytoskeleton

SIF2 PIB2 HOS4 GO: 0045835 13 3 2 1.35e-05 Negative regulation of meiosis

LCD1 RNR1 SML1 GO: 0006260 160 3 3 1.97e-05 DNA replication

CDC7 DBF4 TIF1 ARG3 TIF2 HIR3
MUB1 PTM1 DED1

GO: 0001100 6 9 12 3.11e-05 Negative regulation of exit from mitosis

MSH5 SWE1 HSL7 AIM10 GO: 0000086 35 4 3 1.02e-04 G2/M transition of mitotic cell cycle

NUF2 NNF2 BRE1 SMC4 YEL043W GO: 0007059 131 5 6 1.03e-04 Chromosome segregation

DUG2 SEC21 RET3 GO: 0005798 42 3 2 1.48e-04 Golgi-associated vesicle

CLN1 CLN2 CLN3 BUD2 KEGG: 04111 125 4 5 5.56e-04 Cell cycle

ERD2 SED1 SED4 HEM13 GO: 0006888 89 4 3 1.33-03 ER to Golgi vesiclemediated Transport

PKC1 TOS2 KEL2 PPZ2 SKN7 GO: 0007346 88 5 4 3.19e-03 Regulation of mitotic cell cycle

BUD14 REF2 TVP18 ZPS1 GO: 0000903 8 4 3 5.40e-03 Cell morphogenesis during vegetative growth

WHI4 PCL6 YER156C GO: 0000307 11 3 2 5.57e-03 Cyclin-dependent protein kinase holoenzyme
complex

TPA1 LPP1 AIF1 SLH1 GO: 0042981 6 5 4 5.09e-03 Regulation of apoptosis

APM2 GAL10 YFP045W GO: 0030140 13 3 2 6.58e-03 Trans-Golgi network transport vesicle

YIR016W MOB2 YOL036W GO: 0007096 24 3 2 8.10e-03 Regulation of exit from mitosis

SPT6 HHF1 HHF2 HHT1 HHT2 GO: 0006333 51 5 8 8.62e-03 Chromatin assembly or disassembly

‘‘Size’’ refers to the number of genes or proteins in the corresponding ‘‘Term ID’’, ‘‘Node’’ and ‘‘Edge’’ indicate the number of nodes and edges in the corresponding
modules, and ‘‘P-value’’ is the statistical significance of the random overlapped nodes between ‘‘module’’ and ‘‘Term ID’’ by the hypergeometric test.
doi:10.1371/journal.pone.0041854.t002
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in phase arresting. This explains why the cell cycle arrests at the S

phase when adding MMS to elg1 mutant strains at 15 min. As

validation of generality, we tested these identified responsive

modules in two independent datasets of the cell cycle process. The

results in Figures 5 and 6 indicate that we not only presented the

expression change of modules, but also gave the corresponding cell

cycle stages from our biological experiments of internal and

external stimuli, i.e., phenotypes, thereby verifying the effective-

ness of our findings. Further biological experiment to validate the

results is our future topic.

Although we restricted our work on integrating microarray gene

expression data and PPI network, the method can be straightfor-

wardly extended to other areas, such as multi-classification

problem (e.g., disease classification), other type of high-throughput

data and biomolecular network analysis. Due to the small sample

size, we adopted with-cluster error sum of squares as an

Figure 5. Dendrogram and heat map of the first independent test dataset GSE3635 based on the identified responsive modules.
The row labels denote the module IDs in the control group (see Supporting Information S1), while the column labels indicate three cell cycle phases
G1, S, G2/M. The color legend represents the responsive value.
doi:10.1371/journal.pone.0041854.g005

Figure 6. Dendrogram and heat map of the second independent test dataset GSE8799 based on the identified responsive modules.
The row labels denote the module IDs in the control group, while the column labels indicate three cell cycle phases G1, S, G2/M in the first cell cycle
(A), in the second cell cycle (B). The color legend represents the responsive value.
doi:10.1371/journal.pone.0041854.g006
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optimization function (see Methods), but other simpler classifiers

can also be used in a similar manner to identify the responsive

modules when the sample size is reasonably large.

In summary, by formulating the identification of phenotype-

based responsive modules as a mathematical programming

problem, we proposed a general method to identify phenotype-

based responsive modules and further revealed possible causal or

dependent relations between network modules and biological

phenotypes of budding yeast cell cycle. The resulting responsive

modules provide new insight into the regulation mechanisms of

cell-cycle process from a network viewpoint. Clearly, the

identification of transition modules offers a new way to study

dynamical processes at a functional module level. In this paper, we

have considered that the changes of the module activity under

different biological conditions. However, the composition of the

modules may also vary under different conditions. Therefore, it is

also an interesting research topic for identifying the composition

variations in these modules in addition to their activities.
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