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Abstract

The employment of anti-epidermal growth factor receptor (EGFR) antibodies represents a backbone of the therapeutic
options for the treatment of metastatic colorectal cancer (mCRC). However, this therapy is poorly effective or ineffective in
unselected patients. Mutations in KRAS, BRAF and PIK3CA genes have recently emerged as the best predictive factors of
low/absent response to EGFR-targeted therapy. Due to the need for efficacious treatment options for mCRC patients
bearing these mutations, in this short report we examined the antitumoral activity of the protease inhibitor gabexate
mesilate, alone and in combination with the anti-EGFR monoclonal antibody cetuximab, in a panel of human CRC cell lines
harbouring a different expression pattern of wild-type/mutated KRAS, BRAF and PIK3CA genes. Results obtained showed
that gabexate mesilate significantly inhibited the growth, invasive potential and tumour-induced angiogenesis in all the
CRC cells employed in this study (including those ones harbouring dual KRAS/PIK3CA or BRAF/PIK3CA mutation), while
cetuximab affected these parameters only in CRC cells with KRAS, BRAF and PIK3CA wild-type. Notably, the antitumoral
efficacy of gabexate mesilate and cetuximab in combination was found to be not superior than that observed with
gabexate mesilate as single agent. Overall, these preliminary findings suggest that gabexate mesilate could represent
a promising therapeutic option for mCRC patients, particularly for those harbouring KRAS, BRAF and PIK3CA mutations,
either as mono-therapy or in addition to standard chemotherapy regimens. Further studies to better elucidate gabexate
mesilate mechanism of action in CRC cells are therefore warranted.
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Introduction

In the last fifteen years, the introduction of at least six key

drugs (oxaliplatin, irinotecan, capecitabine, bevacizumab, cetux-

imab and panitumumab), after the ‘‘era’’ of 5-fluorouracil as

a single agent, has improved median overall survival of

metastatic colorectal cancer (mCRC) patients up to 24 months

[1,2]. The employment of the anti-epidermal growth factor

receptor (EGFR) antibodies panitumumab and cetuximab,

either as mono-therapy or in addition to standard chemother-

apy regimens, represents a backbone of the therapeutic options

for the treatment of mCRC. However, randomized controlled

trials have provided compelling evidence that EGFR-targeted

therapy is poorly effective or ineffective in unselected mCRC

patients. In recent years, activating mutations at codons 12 and

13 in the KRAS oncogene (KRASG12V and KRASG13D) have

emerged as the best predictive factors of low/absent response to

anti-EGFR therapy in these patients, either in the first-line or

subsequent lines of treatment [3–5]. For this reason, mCRC

patients are now profiled for KRAS mutation and the

employment of cetuximab and panitumumab is currently

restricted only to those ones bearing the KRAS wild-type, as

recommended by the European Medical Agency and the

American Society of Clinical Oncology [6]. Although the

presence of wild-type KRAS seems to be a condition for

response to EGFR-targeted therapy, up to 50–65% of mCRC

patients fail to benefit from this treatment, due to additional

intrinsic resistance mechanisms [7]. In this regard, the in-

volvement of BRAFV600E and PIK3CAH1074R at exon 20

mutations in the failure of such therapy has recently emerged

[7–11]. Due to the lack of an effective targeted therapy, the

discovery of new therapeutic options for mCRC patients with

mutated KRAS, BRAF and PIK3CA genes represents therefore

an intense area of investigation.

The protease inhibitor gabexate mesilate has been shown to

exert a significant antitumoral activity in CRC cells, both in vitro

and in vivo [12]. However, the effect of this drug, alone or in

combination with cetuximab, in human CRC cells harbouring

a different expression pattern of wild-type/mutated KRAS, BRAF

and PIK3CA still remains unsettled. The present study aims at

investigating this hypothesis.
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Results

We preliminary selected a panel of human CRC cells

harbouring a different expression pattern of wild-type/mutated

KRAS, BRAF and PIK3CA genes. To this purpose, based on the

Catalogue of Somatic Mutations in Cancer (COSMIC) database

(http://www.sanger.ac.uk/genetics/CGP/cosmic/) and on the

study of Jhawer et al. [13], CACO-2, SW48, HT-29, Colo205,

SW480, SW620, RKO, LS174T and HCT-116 CRC cells were

chosen (see Table 1 for their corresponding KRAS, BRAF and

PIK3CA status). Notably, no CRC cell line with co-occurring

KRAS and BRAF mutations was found and included in the

present study, according to previous reports showing a pattern of

mutual exclusivity for KRAS and BRAF mutation in human CRC

[14]. The effect of gabexate mesilate, alone and in combination

with cetuximab, was then investigated on CACO-2, SW48, HT-

29, Colo205, SW480, SW620, RKO, LS174T and HCT-116 cell

growth, invasive potential and tumour-induced angiogenesis, as

they represents three fundamental processes in cancer onset and

progression.

As shown in Figure 1, 24 and 48 hrs of treatment with

cetuximab (100 mg/ml) were found to affect cell viability only in

CRC cells harbouring wild-type KRAS, BRAF and PIK3CA

genes (CACO-2 and SW48), as expected. Conversely, gabexate

mesilate (0.1–1 mM) induced a significant time and dose-de-

pendent decrease of this parameter in all the CRC cell lines

included in the study (CACO-2: IC50 48 hrs = 0.3160.01; SW48:

IC50 48 hrs = 0.3360.01; HT-29: IC50 48 hrs = 0.5560.03 mM;

Colo205: IC50 48 hrs = 0.4660.02; SW480: IC50 48 hrs

= 0.4560.02 mM; SW620: IC50 48 hrs = 0.3960.02; RKO:

IC50 48 hrs = 0.4960.01 mM; LS174T: IC50 48 hrs

= 0.5960.03; HCT-116: IC50 48 hrs = 0.5660.0 3 mM). We

observed that the effect elicited on cell viability by gabexate

mesilate alone was similar to that observed when this drug was

administered in combination with cetuximab 100 mg/ml (Figure 1).

Next, we investigated the effect of these two drugs on CACO-2,

SW48, HT-29, Colo205, SW480, SW620, RKO, LS174T and

HCT-116 invasiveness. Treatment for 6 hrs with gabexate

mesilate 1 mM significantly decreased the invasive potential in

all the CRC cell lines tested (CACO-2:53%; SW48:42%; HT-

29:45%; Colo205:43%; SW480:55%; SW620:69%; RKO: 63%;

LS174T: 54%; HCT-116:52%) (Figure 2). Notably, such a de-

crease was not due to a cytotoxic effect of this drug, as confirmed

by a parallel experiment in which no significant change of cell

viability between control and treated cells was observed at this

time of treatment (data not shown). Conversely, 6 hrs of treatment

with cetuximab 100 mg/ml induced no significant changes on

CRC cell invasive potential, except on CACO-2 and SW48 cells,

where a 25% and 22% of inhibition was observed, respectively.

Again, when this drug was employed in combination with

gabexate mesilate, the effect elicited was similar to that observed

with gabexate mesilate as single agent (Figure 2).

Lastly, we assessed the effect of cetuximab and gabexate

mesilate on tumour-induced angiogenesis. A very strong inhibitory

effect on this parameter was observed when we examined the

action of gabexate mesilate alone. Indeed, 24 hrs incubation of

EA.hy926 cells with the conditioned medium of CACO-2, SW48,

HT-29, Colo205, SW480, SW620, RKO, LS174T and HCT-

116 cells, previously treated for 6 hrs with this drug at the dose of

1 mM, almost completely inhibited endothelial cell differentiation

in capillary-like structures, as indicated by the presence of an

interconnected network of anastomosing cells in control samples

and of spherical cells, isolated or aggregated in small clumps, in

treated ones (Figure 3). Also on this parameter, cetuximab alone

(100 mg/ml) was found to be moderately effective only in CRC cell

lines with wild-type KRAS, BRAF and PIK3CA genes (inhibition

of tube formation index, 22% and 20% on CACO-2 and

SW48 cells, respectively). Due to the strong inhibition of tumor-

induced angiogenesis by gabexate mesilate alone at the dose

1 mM, the effect of this drug alone and in combination with

cetuximab was also assessed at the dose of 0.1 and 0.5 mM.

However, also at these doses, the anti-angiogenic effect displayed

by gabexate mesilate plus cetuximab was not superior than that

observed with gabexate mesilate employed as single agent (data

not shown).

Overall these findings, besides confirming the lack of response

to cetuximab in CRC cells with KRAS, BRAF and PIK3CA

mutations, indicate that gabexate mesilate is able to exert

a significant antitumoral activity in CRC cells harbouring either

wild-type or mutated KRAS, BRAF and PIK3CA genes, with an

efficacy comparable to that observed when it is used in

combination with anti-EGFR antibodies.

Discussion

Personalized therapy represents an attractive goal in oncology.

To date, cancer genome sequencing has become a powerful tool to

identify cancer-related mutations and to select patients who could

Table 1. KRAS, BRAF and PIK3CA status of the CRC cell lines included in the study.

Cell line KRAS BRAF PIK3CA

CACO-2* wild-type wild-type wild-type

SW48* wild-type wild-type wild-type

HT-29* wild-type mutation at exon 15 (V600E) wild-type

Colo205* wild-type mutation at exon 15 (V600E) wild-type

SW480** mutation at exon 2 (G12V) wild-type wild-type

SW620* mutation at exon 2 (G12V) wild-type wild-type

RKO* wild-type mutation at exon 15 (V600E) mutation at exon 20 (H1074R)

LS174T* mutation at exon 2 (G12V) wild-type mutation at exon 20 (H1074R)

HCT-116* mutation at exon 2 (G13D) wild-type mutation at exon 20 (H1074R)

KRAS, BRAF and PIK3CA status of the CRC cell lines included in the study.
*from COSMIC database (http://www.sanger.ac.uk/genetics/CGP/cosmic/).
**KRAS/BRAF from COSMIC database; PIK3CA from Jhawer et al. 2008.
doi:10.1371/journal.pone.0041347.t001
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benefit from a specific therapeutic regimen. In this context,

analysis of KRAS mutation has rapidly increased the therapeutic

index of EGFR-targeted therapy in mCRC patients, restricting

this treatment only to those ones harbouring KRAS wild-type.

Although further validation is required before a possible applica-

tion in clinical practice, it has become clear that BRAF and

PIK3CA additional genotyping could significantly improve the

objective response rate in these patients. Indeed, activating KRAS,

BRAF and PIK3CA mutations are able to bypass EGFR

pharmacological inhibition, thereby resulting in a constitutive

activation of the mitogen-activated protein kinase and AKT

pathways, known to play a central role in cancer onset and

progression [15]. In terms of therapeutic implications, this suggests

that also mCRC patients with mutated BRAF and PIK3CA genes

Figure 1. Effect of gabexate mesilate and cetuximab, alone and in combination, on CRC cell viability. Evaluation by MTT assay of CACO-
2, SW48, HT-29, Colo205, SW480, SW620, RKO, LS174T and HCT-116 cell viability after 24 and 48 h of treatment with cetuximab 100 mg/ml and
gabexate mesilate 0.1–1 mM, alone and in combination. Three independent experiments were performed. For each cell line, the mean value of
untreated samples was assumed as 100% and mean values of treated cells were plotted as percentages with respect to their matched controls. Cetux:
cetuximab; GM: gabexate mesilate. *p,0.05; **p,0.001; ***p : not significant.
doi:10.1371/journal.pone.0041347.g001
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should gain little or no benefit from EGFR-targeted therapy.

Notably, KRAS, BRAF and PIK3CA mutations are commonly

activated (up to 50–60% as a whole) in CRC patients [14]. For this

reason, the discovery of new treatment options effective in mCRC

patients bearing such mutations currently represents an intensive

area of investigation [11,16–18].

The protease inhibitor gabexate mesilate is a drug routinely

employed in clinical practice in Italy, Japan and Korea for the

treatment of acute pancreatitis and disseminated intravascular

coagulation, together with the prophylaxis of post-endoscopic

retrograde cholangiopancreatography pancreatitis [19,20]. Nota-

bly, gabexate mesilate toxicological profile has been tested in

humans and severe side-effects have seldom been described.

Interestingly, in previous preclinical studies, this drug demonstrat-

ed a potent antitumoural activity, including inhibition of CRC

primary tumour growth and liver metastases in nude mice [12].

This preclinical study aimed to investigate the putative

antitumoral efficacy of gabexate mesilate, alone and in combina-

tion with the anti-EGFR monoclonal antibody cetuximab, in

a panel of human CRC cell lines harbouring a different expression

pattern of wild-type/mutated KRAS, BRAF and PIK3CA genes.

Results obtained (besides confirming the lack of response to

cetuximab in CRC cells bearing such mutations) showed that

gabexate mesilate was able to exert a broad antitumoral effect in

such cells, being able to significantly affect the cell viability,

invasive potential and tumour-induced angiogenesis in all the cell

lines tested in this study, including those ones harbouring dual

KRAS/PIK3CA or BRAF/PIK3CA mutation. The effectiveness

of gabexate mesilate as single agent was found to be comparable to

that observed when this drug was used in combination with

cetuximab, thus indicating that the antitumoral efficacy of these

drugs in combination was not superior than that of gabexate

mesilate employed as single agent.

Notably, cell growth, a high invasive potential and tumor-

induced angiogenesis are three pivotal processes for cancer

development and metastatisation, thus representing an attractive

target for cancer treatment. As a matter of fact, many therapeutic

strategies based on the integration of selective inhibitors of these

pathways are now being widely explored in preclinical and clinical

studies. In this context, also taking into account the good

toxicological profile, the preliminary results showed in this short

report suggest that gabexate mesilate could represent a promising

therapeutic option for mCRC patients, particularly for those ones

bearing mutated KRAS, BRAF and PIK3CA genes, either as

mono-therapy or in addition to standard chemotherapy regimens.

Further studies to better elucidate gabexate mesilate mechanism of

action in CRC cells are therefore warranted.

Figure 2. Effect of gabexate mesilate and cetuximab, alone and in combination, on CRC invasive potential. Evaluation by Boyden
chamber invasion assay of CACO-2, SW48, HT-29, Colo205, SW480, SW620, RKO, LS174T and HCT-116 invasive potential after 6 hrs of treatment with
cetuximab 100 mg/ml and gabexate mesilate 1 mM, alone and in combination. For each cell line, the mean value of untreated samples was assumed
as 100% and mean values of treated cells were plotted as percentages with respect to their matched controls. Photographs of invading cells are
representative of three independent experiments with similar findings. Cetux: cetuximab; GM: gabexate mesilate. Scale bar: 50 mm. *p,0.05; ***p :
not significant.
doi:10.1371/journal.pone.0041347.g002
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Materials and Methods

Cells and Cell Culture
The human CRC cell lines HT-29, LS174T and HCT-116, as

well as the human immortalized endothelial-like EA.hy926 cell

line, were obtained from American Type Culture Collection

(ATCC, Manassas, VA, USA). RKO, CACO-2, SW480 and

SW48, SW620 and Colo205 human CRC cell lines were

a generous gift of Dr. Luigi Ricciardiello (Department of Clinical

Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna,

Bologna, Italy) and Prof. Massimo Derenzini (Clinical Department

of Radiological and Histopathological Sciences, Sant’Orsola-

Malpighi Hospital, University of Bologna, Bologna, Italy), re-

spectively. All cell lines were cultured in Dulbecco’s modified

Eagle’s Medium with 4.5 g/L glucose (Euroclone, Milan, Italy),

supplemented with 10% (v/v) heat-inactivated FBS (Euroclone),

2 mM L-glutamine, 100 U/ml penicillin and 100 mg/ml strepto-

mycin (Sigma-Aldrich, St. Louis, MO, USA). Cells were grown at

37uC in a humidified atmosphere of 95% air and 5% CO2 and

routinely passaged using trypsin-EDTA 0.025% (Sigma-Aldrich).

For each cell line employed in this study, a cell line authentication

test by evaluating DNA short tandem repeat (STR) profile was

performed, in order to exclude a contamination or misidentifica-

tion with other cell lines.

Drug Treatments
Gabexate mesilate (Foy, Sanofi Aventis, Milan, Italy) and

cetuximab (Erbitux, (Merck, Darmstadt, Germany) were diluted

into the medium to obtain the required final concentration before

each experiment. For both drugs, the doses employed (100 mg/ml

for cetuximab and 0.1–1 mM for gabexate mesilate) were chosen

according to previous in vitro studies [12,13,21,22]. As gabexate

mesilate has been reported to be partially degraded by serum

albumin [23], all experiments were performed in serum-free

medium. In experiments conducted with the conditioned medium

of CRC cell lines, cells were treated with drugs, alone and in

combination, for 6 hrs and then conditioned medium was

harvested, centrifuged at 5006g for 5 min at 4uC to remove cells

and debris, and frozen at 280uC until use.

Cell Viability Assay
Cell viability experiments were carried out by 3-[4,5-

dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) as-

say. Briefly, CACO-2, SW48, HT-29, Colo205, SW480, SW620,

Figure 3. Effect of gabexate mesilate and cetuximab, alone and in combination, on CRC conditioned medium-induced
angiogenesis. Evaluation by in vitro Matrigel angiogenesis assay of EA.hy926 endothelial cell differentiation in capillary-like structures after
24 hrs incubation with the conditioned medium of CACO-2, SW48, HT-29, Colo205, SW480, SW620, RKO, LS174T and HCT-116 cells, previously treated
for 6 hrs with cetuximab 100 mg/ml and gabexate mesilate 1 mM, alone and in combination. Tube formation index was assessed as described in
Material and Methods section. For each cell line, the mean value of untreated samples was assumed as 100% and mean values of treated cells were
plotted as percentages with respect to their matched controls. Photographs are representative of three independent experiments with similar
findings. Cetux: cetuximab; GM: gabexate mesilate. Scale bar: 50 mm. *p,0.05; **p,0.001; ***p : not significant.
doi:10.1371/journal.pone.0041347.g003
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RKO, LS174T and HCT-116 cells (16104 cells/well) were plated

in a 96-well plate in quadruplicate and allowed to adhere for

24 hrs. Then cells were treated with cetuximab and increasing

concentrations of gabexate mesilate for 24 and 48 hrs. At the end

of incubation, MTT was added to each well and cells incubated at

37uC for 4 hrs. Formazan crystals were then dissolved by DMSO

addition. Absorbance was then measured at 570 nm in a 96-well

spectrophotometric microplates reader (Bio-Rad, Hercules, CA,

USA). For each cell line, the IC50 value was calculated by

nonlinear regression analysis using PRISM 5.01 software version

(GraphPad Software, San Diego, CA, USA).

Chemoinvasion Assay
The invasive potential of CACO-2, SW48, HT-29, Colo205,

SW480, SW620, RKO, LS174T and HCT-116 cells was assessed

by chemoinvasion assay [24]. Briefly, polyvinylpyrrolidone-free

polycarbonate filters (Millipore, Co. Cork, Ireland) with 12 mm
pores were coated with Matrigel (Sigma-Aldrich). Fresh DMEM

supplemented with 10% heat-inactivated FBS was placed in the

lower chamber as chemoattractant and 16105 cells were then

seeded in the upper chamber and incubated for 6 hrs with

gabexate mesilate and cetuximab, alone and in combination, at

37uC in humidified 5% CO2. At the end of incubation, non

invading cells were removed from the upper surface of the filters.

Invading cells in the lower surface were then fixed for 1 min in

ethanol 95% and stained for 10 min with 0.5% w/v toluidine blue.

In the migration assay, the same procedure of invasion assay was

followed, except that filters were coated with gelatin (Sigma-

Aldrich). Photographs were taken with an Olympus CKX41

inverted microscope (Olympus Italia, Milan, Italy), equipped with

an Olympus C5060-ADU camera (Olympus Italia). For each

sample, four random optical fields at6200 of total magnification

was analyzed and the mean number of invading cells was

calculated as follows: mean number of invading cells/mean

number of corresponding migrating cells.

In vitro Angiogenesis Assay
In vitro angiogenesis was assessed by endothelial cell differen-

tiation in capillary-like structures in Matrigel. Briefly, growth-

factor-enriched Matrigel (BD Biosciences, Bedford, MA, USA) was

placed in an ice-cold 24-well plate and left to polymerize for 1 h at

37uC. EA.hy926 endothelial cells (1.26105/well) were then plated

and incubated for 24 hrs with an equal amount of CACO-2,

SW48, HT-29, Colo205, SW480, SW620, RKO, LS174T and

HCT-116 conditioned medium, obtained as described above in

the Material and Methods section. Cancer cell conditioned

medium is indeed commonly used in in vitro angiogenesis assays

to mimic what occurs during in vivo tumor angiogenesis [25]. At

the end of incubation, a three-dimensional organization was

observed through an inverted phase-contrast light microscope.

Photographs of four fields representative of each sample were

obtained at 6200 total magnification with an Olympus CKX41

inverted microscope (Olympus Italia), equipped with an Olympus

C5060-ADU camera (Olympus Italia). A semi-quantitative mea-

surement of capillary-like structures (tube formation index) was

performed as previously described [26].

Statistical Analysis
Results are expressed as percentage mean 6S.D. Data were

analysed by ANOVA followed by Bonferroni’s post hoc test, using

PRISM 5.01 software version (GraphPad Software, San Diego,

CA, USA). A p value,0.05 was considered statistically significant.
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