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Abstract

Neisseria gonorrhoeae is the second most common sexually transmitted bacterial pathogen worldwide. Diseases associated
with N. gonorrhoeae cause localized inflammation of the urethra and cervix. Despite this inflammatory response, infected
individuals do not develop protective adaptive immune responses to N. gonorrhoeae. N. gonorrhoeae is a highly adapted
pathogen that has acquired multiple mechanisms to evade its host’s immune system, including the ability to manipulate
multiple immune signaling pathways. N. gonorrhoeae has previously been shown to engage immunosuppressive signaling
pathways in B and T lymphocytes. We have now found that N. gonorrhoeae also suppresses adaptive immune responses
through effects on antigen presenting cells. Using primary, murine bone marrow-derived dendritic cells and lymphocytes,
we show that N. gonorrhoeae-exposed dendritic cells fail to elicit antigen-induced CD4+ T lymphocyte proliferation. N.
gonorrhoeae exposure leads to upregulation of a number of secreted and dendritic cell surface proteins with
immunosuppressive properties, particularly Interleukin 10 (IL-10) and Programmed Death Ligand 1 (PD-L1). We also show
that N. gonorrhoeae is able to inhibit dendritic cell- induced proliferation of human T-cells and that human dendritic cells
upregulate similar immunosuppressive molecules. Our data suggest that, in addition to being able to directly influence host
lymphocytes, N. gonorrhoeae also suppresses development of adaptive immune responses through interactions with host
antigen presenting cells. These findings suggest that gonococcal factors involved in host immune suppression may be
useful targets in developing vaccines that induce protective adaptive immune responses to this pathogen.
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Introduction

There are approximately 60 million cases of N. gonorrhoeae

infection each year worldwide [1]. N. gonorrhoeae generally infects

the female cervix or male urethra, where the local inflammatory

response to mucosal invasion by the organism leads to symptoms

of urethritis or cervicitis. Additionally, asymptomatic infection or

colonization of mucosal surfaces with minimal inflammatory

response occurs in approximately half of all infected individuals

[2,3]. N. gonorrhoeae infections significantly impact female re-

productive health, as ascending infections of fallopian tubes are

associated with infertility and perinatal infection can be trans-

mitted to the neonate during birth. Furthermore, infection with N.

gonorrhoeae is associated with increased risk of HIV transmission

through effects on both HIV-infected and HIV-uninfected

individuals. HIV-infected individuals with N. gonorrhoeae co-

infection have increased levels of HIV virus in their blood, genital

secretions, and semen [4,5]. HIV-uninfected individuals with

gonorrhea have increased numbers of inflammatory cells in their

genital mucosa, some of which are susceptible to HIV infection,

thereby increasing the risk that N. gonorrhoeae-infected individuals

will acquire HIV from HIV-infected partners. Thus, prevention of

N. gonorrhoeae infection is an important public health issue.

Despite experiencing localized inflammatory responses to N.

gonorrhoeae, which can be very robust, most infected individuals do

not develop protective adaptive immune responses to N. gonorrhoeae.

This is clearly demonstrated by a high-frequency of recurrent

infections caused by the same strain of N. gonorrhoeae in STD clinic

patients [6]. Additionally, titers of anti-gonococcal antibodies are

low and transient in patients with uncomplicated natural N.

gonorrhoeae infection [7,8] as well as experimentally-induced

gonococcal urethritis [7,8]. Mechanisms leading to this ineffective

adaptive immune response are likely multifactorial including both

antigenic variation of major surface molecules and active

suppression of host immune signaling by this highly adapted

human pathogen.

Neisseria species are known to induce inflammatory signaling in

host cells through activation of innate pattern receptor molecules,
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including Toll-like receptors (TLR), TLR2 and TLR4, as well as

C-lectin receptors, including dendritic-cell-specific ICAM-3 grab-

bing non-integrin [9,10,11]. N. gonorrhoeae also engages immuno-

suppressive signaling pathways in mammalian cells including B

and T lymphocytes [12,13]. A number of outer membrane

adhesin proteins encoded by opa genes from N. gonorrheoae and N.

meningitidis have been shown to engage host surface receptors

known as carcinoembryonic antigen-related cellular adhesion

molecules (CEACAMs) [14]. Ligation of CEACAM1 and

CEACAM3 on human B and T cells by N. gonorrhoeae Opa

proteins inhibits antibody production and cellular proliferation

and can induce apoptosis [12,15,16,17]. At high bacteria to T cell

ratios, Opa-expressing Neisseria do not inhibit human T cell

proliferation induced by mitogen exposure in vitro [18]. The

gonococcal type IV pilus has also been implicated in T cell

interaction. The gonococcal pilus has been shown to interact with

CD46 and induce production of IL-10, an immunoregulatory

cytokine. Piliated N. gonorrhoeae and isolated pilin also induce T cell

proliferation [19]. The significance of direct effects of N. gonorrhoeae

on T cells, through Opa-CEACAM and pilus-CD46 interactions,

and the physiologic consequences of gonococcal engagement of

this signaling system on infection, pathogenesis and immunity

remain to be fully determined.

Recent studies have also demonstrated that immunologic

response to N. gonorrhoeae is not only blunted but also skewed

towards non-protective responses. In mice, infection with N.

gonorrheoae induces differentiation of IL-17-producing CD4+
lymphocytes known as TH17 cells [20]. IL-17 levels are increased

in both mice and humans infected with N. gonorrheoae [20,21].

TH17 activation drives induction of localized inflammation

including recruitment of host neutrophils, which is relatively

ineffective in protecting against N. gonorrhoeae infection because the

bacteria are relatively resistant to neutrophil mediated killing

[22,23]. Liu and Russell also demonstrated that blockade of host

TGF-b during infection inhibits TH17 skewing and promotes the

development of protective immune responses to N gonorrhoeae,

suggesting that both inhibition and skewing of immunologic

responses likely contribute to the host’s inability to mount effective

immunologic responses to this organism [24].

Prior to this report, the potential for N. gonorrhoeae to manipulate

host immunologic response through antigen presenting cells,

which act as the bridge between the innate and adaptive immune

systems, was largely unexplored. We now show that N. gonorrhoeae

potently inhibits the ability of antigen-primed dendritic cells to

trigger T cell proliferation by inducing expression of both

immunosuppressive cytokines and tolerance-inducing cell surface

proteins.

Results

N. gonorrhoeae inhibits DC antigen-induced T cell
proliferation
We sought to assess the effects of N. gonorrhoeae on antigen

presenting cell-directed T cell proliferation. Because there is no

known immunologic correlate of protection for gonorrhea, and the

immunologic response to N. gonorrhoeae is weak in the human host,

we sought to study the effect of gonococci on dendritic cell-T cell

interactions in a system with a defined MHC class II-antigen-T-

cell receptor combination. We co-cultured ovalbumin-treated

murine C57BL6 bone marrow-derived dendritic cells (BMDC)

with lymphocytes from OT-II mice. OT-II mice express a trans-

genic recombinant T cell receptor that recognizes amino acids 322

to 339 of the ovalbumin protein in the context of the MHC Class

II I-A2 allele [25]. After seven days of differentiation, BMDCs

were pulsed with ovalbumin, N. gonorrhoeae (strain FA1090), or the

combination of both. To eliminate the possibility that N. gonorrhoeae

might exert direct effects on the cultured T cells, extracellular N.

gonorrhoeae in the culture medium were killed by addition of

gentamicin after four hours, and gentamicin was left in the culture

medium overnight. Quantitative culture of both medium and lysed

dendritic cells confirmed that no viable N. gonorrhoeae were present

24 hours after antibiotic exposure (data not shown). Survival of

dendritic cell-associated N. gonorrhoeae was measured after the initial

four-hour incubation of N. gonorrhoeae and murine dendritic cells.

At multiplicities of infection (MOI) of 1 or 10 cfu/dendritic cell,

less than 1% of the initial N. gonorrhoeae inoculum was associated

with dendritic cells (Figure S1). In dendritic cells exposed to N.

gonorrhoeae at an MOI of ,1, intracellular bacteria were not

detectable even one hour after administration of extracellular

gentamicin. In dendritic cells exposed to a higher inoculum, more

than 99% of intracellular N. gonorrhoeae were eliminated by 1 hour,

and no intracellular N. gonorrhoeae were detectable at 24 hours,

even when extracellular gentamicin was removed from the culture

(Figure S1). After 24 hours of exposure to ovalbumin or

ovalbumin with N. gonorrhoeae, dendritic cells were washed to

remove excess bacteria and bacterial products, and these cells were

then co-cultured with carboxyfluorescein succinimidyl ester

(CFSE)-labeled, enriched T lymphocytes from OT-II mice.

Following seven days of co-culture with ovalbumin (OVA)-pulsed

dendritic cells, OT-II transgenic T cells (CD4+,Vb5+) showed
significant proliferation, which was demonstrated by antigen-

dependent dilution of CFSE-fluorescence in these cells (Figure 1 C)

compared to cells exposed to dendritic cells treated with medium

or N. gonorrhoeae in the absence of OVA (Figure 1 B and D). The T

cell proliferative response to OVA-pulsed dendritic cells was

essentially ablated by exposure of the DCs to N. gonorrhoeae (Figure 1

E). The inhibition of T cell proliferation was studied across a range

of bacterial concentrations (MOI from 0.1 to 100 cfu/dendritic

cell) and was found to be quite potent, with a noticeable effect

often seen with a ratio of bacteria to dendritic cells as low as 1 to

10 (MOI 0.1). Nearly complete inhibition was usually noted at

MOI of 1.0 (Figure 1 E). Similar inhibitory effects were noted

when dendritic cells were treated with N. gonorrhoeae strain MS11 or

F62 (Figure 1G). A similar lack of proliferative response to antigen

was noted when an ovalbumin peptide was expressed in a surface–

exposed loop of the N. gonorrhoeae outer-membrane protein OpaB,

demonstrating that inhibition was not an artifact of co-adminis-

tration of exogenous antigen and bacteria (Figure S2) [26]. These

results suggest that N. gonorrhoeae exerts an immunosuppressive

effect on CD4 T cells through antigen presenting cells that are

exposed to the bacteria.

Several lines of investigation were pursued to better define the

mechanism by which N. gonorrhoeae exerted this anti-proliferative

effect on T cells cultured with antigen-pulsed DCs. To determine

whether N. gonorrhoeae was simply blocking the uptake or processing

of ovalbumin antigen in the murine DCs, DCs were incubated

with ovalbumin covalently linked to both a fluorescent reporter

and a fluorescent quenching molecule (DQ-OVA). When DCs

take up and proteolytically process DQ-OVA, they exhibit

a characteristic shift in fluorescence intensity (Figure 2 A). When

N. gonorrhoeae was added to the culture medium with DQ-OVA,

uptake and processing of DC-OVA by the dendritic cells,

measured by flow cytometry, was not altered (Figure 2 A).

Dendritic cells were clearly recognizing N. gonorrhoeae, as they

robustly secreted proinflammatory cytokines and chemokines

including KC (the murine equivalent of IL-8) and MIP1b after

treatment with N. gonorrhoeae for 24 hours at MOI of 1 or 10.

Antigen presentation and induction of T cell proliferation by DCs

N. gonorrhoeae Suppresses Adaptive Immune Response
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requires expression of both MHC class II and co-stimulatory

surface molecules that interact with receptors on T cells, including

CD80, CD86, and CD40 [27]. DCs that were pulsed with

ovalbumin and N. gonorrhoeae upregulated expression of each of

these co-stimulatory molecules equal to or greater than upregula-

tion seen after exposure to ovalbumin alone. Additionally,

expression of both MHC class II and CD86 increased with

increasing doses of N. gonorrhoeae while the ability of the dendritic

cells to stimulate T-cell proliferation was decreased (Figure 2 C–F).

Overall, these data indicate that N. gonorrhoeae does not prevent

antigen-pulsed DCs-induced T cell proliferation by blockade of

DC maturation, expression of MHC class II or co-stimulatory

molecules. IL-2 is an important cytokine in T cell proliferation that

is initially expressed by DCs and later by stimulated T cells [27].

Despite dramatic reductions in proliferating T cells, the levels of

IL-2 in culture supernatants from DC-T cell co-cultures were

equivalent to levels from co-cultures with DCs pulsed with

ovalbumin or ovalbumin with N. gonorrhoeae (Figure S3).

N. gonorrhoeae inhibits DC-mediated, antigen-induced T
cell proliferation through multiple mechanisms
We next determined whether N. gonorrhoeae-treated DCs

inhibited T cell proliferation through secretion of soluble factors.

DCs pulsed with ovalbumin and/or N. gonorrhoeae were co-cultured

Figure 1. N. gonorrhoeae inhibits BMDC antigen-induced T cell proliferation. BMDCs were exposed to N. gonorrhoeae at different MOIs with
or without OVA for 24 hours and then co-cultured with CFSE-loaded OT-II T cells for seven days. T cell proliferation to OVA was assessed by flow
cytometric analysis. A) Representative gating strategy of CD4+ Vb5+ OT-II T cells. B) Representative T cell proliferation following co-culture with
medium only-treated BMDCs. C) Representative T cell proliferation following co-culture with OVA (100 mg/mL) pulsed BMDCs. D) Representative T
cell proliferation profile following co-culture with N. gonorrhoeae (MOI = 1) exposed BMDCs. E) Representative T cell proliferation following co-culture
with N. gonorrhoeae (MOI = 1) plus OVA (100 mg/mL) pulsed BMDCs. F) Percentage of OT-II T cell OVA-induced proliferation with a dose range of N.
gonorrhoeae (0.01–10 MOI)-exposed BMDCs. Data are mean 6 standard deviation (N= 8–32). G. OVA (100 mg/mL) pulsed BMDC were treated with
different N. gonorrhoeae strains (White bars: FA1090; Gray bars: MS11; Black bars: F62) at the indicated doses (MOI 0.1–10). Antigen-induced T cell
proliferation was assessed after co-culture of the N. gonorrhoeae and OVA treated BMDC with CFSE-loaded OT-II T cells for seven days as noted above.
The percentages of proliferated T cells are plotted. Data are mean 6 standard deviation (N= 3).
doi:10.1371/journal.pone.0041260.g001
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with OT-II lymphocytes in transwells, with a pore size of 0.4 mm,

to allow diffusion of soluble factors while preventing translocation

of dendritic cells between cultures (Figure 3 A–C). Whereas co-

incubation with N. gonorrhoeae completely abrogated T cell

proliferation in wells occupied by N. gonorrhoeae-treated DCs, there

was only partial inhibition of ovalbumin-pulsed DC induced-T cell

proliferation in the inserted transwell. These data suggest that

soluble factors produced by N. gonorrhoeae-treated dendritic cell-T

cell co-culture contributed to inhibition of T cell proliferation, but

these soluble factors were insufficient to recapitulate the entire

inhibitory effect.

We examined DC production of known immunomodulatory

cytokines IL-10, IL-35, and TGF-b after treatment with N.

gonorrhoeae. Secreted IL-10 protein was detected in supernatants of

dendritic cell cultures treated with N. gonorrhoeae or N. gonorrhoeae

with ovalbumin (Figure 3 D). IL-35 protein was undetectable by

ELISA in dendritic cell culture supernatants (data not shown). IL-

35 is comprised of two subunits, the a chain of IL-12 (encoded by

Il12a) and the Epstein Barr virus induced gene-3 (Ebi3). While

Figure 2. N. gonorrhoeae does not impact OVA uptake and processing by BMDCs, but does induce maturation and co-stimulatory
molecule expression and inflammatory cytokine/chemokine production on BMDCs. A) Flow cytometric analysis of DQ-OVA endocytosis
by BMDCs exposed to N. gonorrhoeae versus control (MOI = 1). B) Gating strategy of BMDCs used for surface marker expression analysis (B2202
CD11c+). C–F) Representative histograms from 3–4 independent experiments showing BMDC expression of CD80, CD86, CD40 and MHC class II
24 hours post stimulation with medium only, OVA (100 mg/mL), or N. gonorrhoeae (MOI = 1, 10) with OVA (100 mg/mL). BMDCs were exposed to N.
gonorrhoeae at MOI of 1 or 10, alone or with OVA and cytokine and chemokine secretion was determined using multiplex bead-based assay analysis
of the culture supernatants as described in the experimental procedures. G) KC, H) MIP-1b Data shown are mean 6 standard deviation (N= 4).
doi:10.1371/journal.pone.0041260.g002
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mRNA for Il12a was greatly upregulated by N. gonorrhoeae

treatment, Ebi3 upregulation was modest at the steady-state

mRNA level (Figure 3 E). mRNA encoding TGF-b1, TGF-b2,
and TGF-b3 were not induced in N. gonorrhoeae-treated dendritic

cells relative to ovalbumin treated dendritic cells (Figure 3 F).

Because TGF b exerts immunomodulatory effects in the murine

gonococcal infection model [24], these results suggest that TGF-

b is either being produced in response to N. gonorrhoeae by other cell

types in the genital tract or that it is produced constitutively in the

antigen presenting cells, and other factors induced by N. gonorrhoeae

exposure work in conjunction with TGF-b to suppress immune

responses to this pathogen.

In addition to secreted cytokines, dendritic cells are also known

to produce small molecules (e.g. retinoic acid) that promote

immunosuppressive T regulatory cell production. The synthesis of

retinoic acid is regulated by expression of the retinaldehyde

dehydrogenase enzyme (RALHD2, encoded by the Aldh1a2 gene)

[28]. N. gonorrhoeae-treated dendritic cells did not show any

significant change in Aldh1a2 mRNA (Figure 3 G).

We sought to further characterize the role of IL-10 secretion in

the N. gonorrhoeae-induced suppression of dendritic cell-mediated T

cell proliferation. First, purified, recombinant IL-10 was added to

OVA-pulsed dendritic cells during antigen exposure as well as co-

culture with OT-II T cells. This treatment did reduce T cell

proliferation, indicating that IL-10 was capable of the suppressive

effect observed in these cultures (Figure 4A). Second, dendritic

cells derived from mice with a genetically disrupted Il10 gene

(Il102/2) were treated with N. gonorrhoeae and cultured in transwells

adjacent to OVA-pulsed dendritic cell/OT-II T cell co-cultures, as

described in figure 4B. N. gonorrhoeae-treated dendritic cells from

Il102/2 mice did not inhibit T cell proliferation in adjacent

transwells as well as wild type control dendritic cells treated with N.

gonorrhoeae (Figure 4 B and C). Overall, these results indicate that

IL-10 is upregulated in dendritic cells after N. gonorrhoeae exposure,

and that IL-10 released by N. gonorrhoeae-treated dendritic cells is

one of the soluble factors that inhibits T cell proliferation.

Interestingly, OVA-induced proliferation was equally inhibited by

N. gonorrhoeae treatment of wild-type C57/BL6 and Il102/2

BMDCs (Figure S4). These data, combined with the fact that

Figure 3. Soluble factors in BMDC/T cell co-culture partially inhibit OVA-induced T cell proliferation. A–C) CFSE proliferation profiles for
OT-II T cells co-cultured with BMDCs under indicated conditions. Representative CFSE profiles for T cells from transwell insert (gray) and transwell
itself (open) are shown (from three independent experiments). D) IL-10 protein production by BMDCs cultured with Medium, OVA, N. gonorrhoeae
(MOI = 1, 1). Mean pg/mL 6 SD, N = 3. E) Il12a, Il12b, Il23a and Ebi3 mRNA steady-state expression in BMDCs cultured with OVA, N. gonorrhoeae
(MOI = 1), or N. gonorrhoeae (MOI = 1) with OVA. Mean fold regulation 6 SD, N= 3. F) Steady-state expression of mRNA encoding TGF-b 1, 2 and 3 in
BMDCs cultured with OVA, N. gonorrhoeae (MOI = 1), or N. gonorrhoeae (MOI = 1) plus OVA. Mean fold regulation 6 SD, N = 3. G) Aldh1a2 mRNA
steady-state expression in BMDCs cultured with OVA, N. gonorrhoeae (MOI = 1), or N. gonorrhoeae (MOI = 1) with OVA. Mean fold regulation (decrease)
6 SD, N = 3.
doi:10.1371/journal.pone.0041260.g003
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transwell experiments demonstrate that dendritic cell-derived

soluble factors alone are insufficient to fully mediate N. gonor-

rhoeae-induced suppression of T cell proliferation in this co-culture

system, indicate that surface inhibitory factors, and possibly other

soluble inhibitory factors, can compensate for the loss of BMDC

IL-10. Therefore, we sought to determine whether N. gonorrhoeae

induced expression of known inhibitory cell surface molecules on

dendritic cells.

Expression of several DC surface proteins known to induce T

cell anergy or tolerance was determined after treatment with N.

gonorrhoeae. Some tolerogenic DCs express Programmed Death

Ligand 1 and 2 (PD-L1 and PD-L2), which can activate the

receptor, Programmed Death-1 (PD1), found on activated T cells

to promote differentiation of immunosuppressive T regulatory

cells [29]. DCs treated with N. gonorrhoeae with or without

ovalbumin upregulated surface expression of both PD-L1 and

PD-L2 (Figure 5 A–C). Using flow cytometry, PD1 was detected

on the surface of about 10% (10.11+/22.4%, N=3) of CD4+ T

cells used in the co-culture system (Figure 5 D). Activation of PD1

by PD-L1 and PD-L2 can induce apoptosis of activated T cells as

well as promote anergy [30]. Consistent with this mechanism of

action, increased activation of the apoptotic proteinase Caspase-3

was observed in T cells incubated with N. gonorrhoeae-treated DCs

(Figure 5 E and Figure S5). Inhibition of T cell proliferation by N.

gonorrhoeae was tested in the presence of anti-PD-L1 neutralizing

antibodies or an isotype antibody control. Addition of PD-L1

neutralizing antibody to N. gonorrhoeae-treated, OVA-pulsed

dendritic cells partially restored their ability to stimulate T cell

proliferation (Figure 5 G and H). Other surface molecules that

have been implicated in tolerogenic responses include ILT3/4 and

ICOSL. Steady-state levels of mRNA encoding ILT3 and ICOSL

were not modulated by exposure to N. gonorrhoeae (data not shown)

[31,32]. These data indicate that N. gonorrhoeae promoted up-

regulation of at least two immunomodulatory surface proteins

(PD-L1 and PD-L2). Further, N. gonorrhoeae-induced expression of

PD-L1 is capable of attenuating antigen-specific CD4 T cell

responses. In total, it appears that N. gonorrhoeae blocks DC

induction of T cell proliferation through multiple mechanisms.

This may represent functional redundancy or may indicate that

significant suppression of the immune system requires cumulative

effects on several regulatory pathways.

N. gonorrhoeae induces tolerogenic responses in human
DC
Because mice are not natural hosts of N. gonorrhoeae, we sought to

determine whether N. gonorrhoeae could also induce PD-L1

expression and IL-10 secretion in human dendritic cells. Primary

human dendritic cells were generated by in vitro differentiation of

CD34+ cells from peripheral blood for 14 days. These cultured

cells upregulated HLA-DR, CD11c in response to N. gonorrhoeae

treatment (Figure 6 A), just as we observed in murine BMDC.

Under these conditions, primary human dendritic cells also

secreted IL-10 and upregulated surface PD-L1 expression

(Figure 6 B and C). N. gonorrhoeae-treated human DC were co-

cultured with heterologous CFSE labeled lymphocytes and other

non-adherent cells. As observed in the murine co-culture system,

N. gonorrhoeae-treatment inhibited the ability of dendritic cells to

stimulate CD4+ T cell proliferation (Figure 6 D). Thus, N.

gonorrhoeae inhibits murine and human dendritic cell-induced T cell

proliferation.

Discussion

It has long been recognized that N. gonorrhoeae has the capacity to

modulate host immunologic responses to prevent protective

adaptive immunity. Though T and B lymphocyte populations

are generally responsible for mediating adaptive immunity,

dendritic cells serve as the primary host cell involved in presenting

pathogen-derived molecules to lymphocytes in order to generate

adaptive immune responses. Both stimulatory and inhibitory

effects have been observed in T and B lymphocyte function

following exposure to N. gonorrhoeae. However, the effects of N.

gonorrhoeae on lymphocyte function through antigen presenting

cells, dendritic cells in particular, has not previously been reported.

Recent studies by Russell and colleagues demonstrate that N.

gonorrhoeae drives CD4+ T cell differentiation in vivo and in vitro

towards the TH17 lineage [20,24]. This process is dependent on

host TGF-b, and inhibition of this cytokine permits the in vivo

development of protective TH1 and TH2 immunologic responses

in a murine model of N. gonorrhoeae [24]. Here we showed that, in

addition to skewing the CD4+ T helper cell phenotype in a TGF-

b dependent fashion, N. gonorrhoeae can also inhibit antigen specific

CD4+ T cell proliferation through effects on host dendritic cells.

The majority of experimental evidence is from murine immune

cells because of the immunologic tools available for studying

antigen specific stimulation and homogeneity of the host cells from

inbred mouse strains. In addition, we showed that N. gonorrhoeae

also mediates similar effects in human cells, highlighting the likely

clinical relevance of these findings. The effects of N. gonorrhoeae on

antigen-dependent T cell proliferation are not unlike those

reported for Lactobacillus, a commensal organism of the lower

female genital tract [33]. N. gonorrhoeae closely resembles other

commensal Neisseria species in morphology and genetic make-up

[34]. Interestingly, the gonococcus actually often appears to

behave as a commensal in the setting of asymptomatic coloniza-

tion of the vaginal mucosa, which occurs in over half of female

patients with gonorrhea [35]. It is therefore not surprising that N.

gonorrhoeae suppresses host adaptive immune responses that might

aid the host in clearing bacteria through interactions with antigen

presenting cells.

We found that N. gonorrhoeae inhibition of antigen-induced

proliferations appears to result from modulation of multiple host

factors. N. gonorrhoeae induced production of cell surface molecules

on DCs that block T cell proliferation including PD-L1 and PD-

L2. PD-L1 is known to play a role in reproductive tract immune

tolerance, where its expression is critical to maternal fetal tolerance

[36]. Further, PD-L1-mediated immunosuppression plays a role in

response to other bacteria in the genital tract. Lactococcus lactis,

a vaginal commensal bacterium, also activates tolerogenic, PD-L1-

expressing dendritic cells [37]. Similarly, PD-L1 expression

actually protects the upper genital tract from inflammatory

damage in murine models of chlamydial infection [38]. We have

now found that blockade of PD-L1 partially reverses gonococcal

inhibition of T cell proliferation, confirming the notion that PD-L1

is involved in N. gonorrhoeae-induced immunomodulation. However,

the partial reversal suggests contributions by other surface and

secreted molecules from N. gonorrhoeae exposed dendritic cells in

suppressing antigen induced T cell proliferation.

In transwell experiments, we showed that N. gonorrhoeae also

suppressed T cell proliferation through DC secretion of soluble

factors. IL-10 was upregulated and was required for full

suppressive effect of N. gonorrhoeae in transwell-based experiments.

Commensal bacteria-induced IL-10 secretion from antigen

presenting cells is important in preventing uncontrolled colonic

inflammation. Secreted IL-10 likely plays a role in preventing
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Figure 4. IL-10 inhibits OVA-DC-induced T cell proliferation. OVA-pulsed dendritic cells were co-cultured with CFSE-loaded OT-II T cells with
or without IL-10 for seven days. A) Representative histogram overlay and bar graph show T cell proliferation profiles following culture with OVA-
pulsed DCs (black) or OVA-pulsed DCs+IL-10 (red). The bar graph shows the proliferation of OT-II T cell in the presence of OVA-pulsed DCs with and
without exogenous IL-10 from three independent experiments. Data are mean 6 standard deviation (N= 3). B) Transwell experiment scheme. WT
OVA-DC with OT-II T cell co-culture was placed in all transwell plates. In the insert medium treated-DCs or N. gonorrhoeae-treated DCs from wild type
or Il102/2 were co-cultured with OT-II T cells as indicated. T cell proliferation from the transwell plate is shown in the histogram overlays. OVA-
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induced T cell proliferation in the plate was inhibited by N. gonorrhoeae-treated wild type DCs in the insert (red) but not by wild type medium
treated-DCs in the insert (blue). OVA-induced T cell proliferation in the plate was the same for N. gonorrhoeae-treated Il102/2 DCs in the insert (green)
and medium treated Il102/2 DCs in the insert (purple). C) Ratio of proliferated T cells from transwell plates with inserts supplying N. gonorrhoeae-
OVA-DCs or medium-DCs. Ratio of T cell proliferation in the plate was obtained by dividing the N. gonorrhoeae-OVA-DCs insert by medium-DCs insert.
The black bars represent proliferation ratio from transwell plate supplied with wild type BMDCs in insert (N = 8), the open bars represent proliferation
ratio from transwell plate supplied with Il102/2 BMDCs in insert (N= 4).
doi:10.1371/journal.pone.0041260.g004

Figure 5. PD-L1 and PD-L2 are induced on N. gonorrhoeae exposed BMDCs. BMDCs treated for 24 hours with medium only, OVA, N.
gonorrhoeae (MOI = 1,10) with OVA were immunostained for flow cytometric analysis of CD273 and CD274 on DCs (B2202, CD11c+). Representative
overlay histograms of: A) CD274 (PD-L1) and B) CD273 (PD-L2). C) Median fluorescence intensity (MFI) of PD-L1 and PD-L2 expression on BMDCs
treated as indicated. D) Histogram of PD1 (CD279) expression on CD4+ Vb5+ OT-II T cells prior to co-culture with BMDCs. E–F) Caspase 3&7 activity
(FLICA) form CD4+ Vb5+ OT-II T cells following co-culture with OVA or N. gonorrhoeae (MOI = 1) plus OVA (100 mg/mL) pulsed BMDCs. E)
Representative overlay histograms of Caspase 3&7 activity (FLICA) from CD4+ Vb5+ OT-II T cells following co-cultured with BMDCs for 24 hours. F)
Percentage of apoptotic CD4+ Vb5+ OT-II T cells following co-cultured with BMDCs for 24 hours. Data are mean 6 standard deviation (N= 4
replicates). T cells treated with 1 mM staurosporine (ST) for 3 hours was used as positive control. G) Representative overlay histograms of OT-II T cell
proliferation induced by BMDCs treated with OVA (green) versus N. gonorrhoeae (MOI = 0.1) with OVA plus anti-PD-L1 (1:10 dilute, light blue), N.
gonorrhoeae (MOI = 0.1) with OVA plus isotype control (1:10 dilute, dark blue). H) Mean % 6 SD of OT-II T cells proliferated through generations 0–1,
2–4, 5–7 following indicated culture conditions, N= 5–7.
doi:10.1371/journal.pone.0041260.g005
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uncontrolled inflammation at other mucosal surfaces with high

levels of commensal bacteria, like the vagina [39,40]. Polymorph-

isms in the human IL10 gene are associated with diminished T cell

proliferation in response to chlamydial infection and with in-

creased risk of tubal damage and infertility after chlamydial

infection [41]. We showed that N. gonorrhoeae induces IL-10-

mediated tolerance, paralleling this mechanism of immune

suppression used by Chlamydia trachomatis [42]. IL-10 is elevated

in cervical secretions of women infected with C. trachomatis and N.

gonorrhoeae, suggesting this response occurs in clinical disease

[43,44]. Despite very different life cycles, these pathogens, both of

which are highly adapted to the human lower genital tract, seem to

have exploited similar host mechanisms in order to prevent

effective adaptive immune responses.

PD-L1+, IL-10 expressing macrophages are responsible for

initiating antigen tolerance in an autoimmune encephalitis model

[45]. Both IL-10 and PD-L1 have been implicated in the

development of a suppressive CD4 T cell population known as

Treg. Interestingly, Treg cells are abundant in vaginal tissues of N.

gonorrhoeae-infected mice [46,47,48]. Our data suggest that N.

gonorrhoeae may prevent robust protective immune responses by

programming host antigen presenting cells to induce tolerogenic

responses, including Treg cells, directed towards gonococcal

antigens. However, further research is needed to confirm that

Treg polarization occurs in response to N. gonorrhoeae treated

dendritic cells.

There are likely other host molecules involved in this pathogen-

manipulated immunologic response. For example, we examined

the expression of an array of genes during activation and antigen

Figure 6. N. gonorrhoeae inhibits dendritic cell-induced T cell proliferation in human primary immune cells. A) Representative
histograms from 2 donors showing unregulated expression of CD11c, HLA-DR, CD274 and CD273 at 24 hours post stimulation with N. gonorrhoeae
(MOI = 1, 10). B) IL-10 protein production by human DCs treated with N. gonorrhoeae (MOI = 1,10). C) MFI of PD-L1 expression on human DCs treated
with N. gonorrhoeae (MOI = 1,10). D) N. gonorrhoeae inhibits human DCs induced allogeneic T cell proliferation in the Mixed Lymphocyte Reaction
(MLR). CFSE proliferation profiles of CD4+ cells after non-adherent cells (NAD) co-cultured with human DCs treated with medium or N. gonorrhoeae
(MOI = 10) for 7 days at the ratio of 10:1.
doi:10.1371/journal.pone.0041260.g006
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presentation by DCs using real time qRT-PCR (Figure S7 and

Table 1). Culture with N. gonorrhoeae and ovalbumin stimulated

greater than four-fold induction (compared to ovalbumin treat-

ment alone) of 26 genes and resulted in a four-fold reduction in six

genes. Seventeen of the 26 induced genes encode secreted

cytokines or chemokines that are not known to suppress T cell

proliferation. Steady-state mRNA encoding inhibin A was strongly

upregulated (,18-fold). Inhibin A (Inhba) induces tolerogenic

signaling from DCs and is believed to be involved in immune

tolerance during pregnancy [27]. Additional molecular tools

including neutralizing antibodies, genetic inactivation, or siRNA-

mediated silencing will be required to further investigate the role

of inhibin A in N. gonorrheoae-induced immune tolerance. It is

possible that non-biased gene expression profiling may reveal

additional candidate genes whose expression is regulated in

dendritic cells by exposure to N. gonorrhoeae.

Titration of N. gonorrhoeae demonstrated that at MOI,1,

gonococci caused significant inhibition of dendritic cell-mediated

antigen-induced T cell proliferation (Figure 2 F). This observation

suggested that N. gonorrhoeae might exert an effect on dendritic cells

in part through release of inhibitory factors into the culture

medium. Prolific outer-membrane blebbing is a characteristic of

pathogenic Neisseria species; however, the consequences of this

process are not fully understood. Additionally, like Bordetella

pertussis, N. gonorrhoeae releases high levels of anhydrous peptido-

glycan monomers, also known as tracheal cytotoxin [49,50,51].

These released peptidoglycans are likely to be recognized by

cellular peptidoglycan fragment sensing pattern recognition

sensors, NOD1, NOD2, and TLR2. Recently, peptidoglycan-

mediated activation of NOD2 and TLR2 signaling has been

implicated in the upregulation of host PD-L1 and induction of

immunologic tolerance [52]. Our data suggest that bleb-associated

factors or peptidoglycan shedding may play an important role in

manipulating the host immunologic response to N. gonorrheoae and

possibly N. meningitidis.

The current findings indicate that N. gonorrhoeae likely suppresses

protective host immune responses at the level of the antigen

presenting cell, in addition to its direct effects on T and B

lymphocytes, as previously reported [12,13,16,19,53]. We showed

that N. gonorrhoeae suppresses dendritic cells’ ability to induce CD4+
T cell proliferation in response to bacterially-expressed ovalbumin

(Figure S2). Intracellular pathogens including Salmonella enterica,

and Mycobacterium bovus and extracellular bacteria like E. coli have

all previously been shown to induce specific proliferative responses

when ovalbumin derived antigens are expressed by the bacteria

[54,55,56]. Interestingly, N. gonorrhoeae-induced suppression can

also be seen in trans, when antigens are co-delivered with the

bacteria. This may have profound implications for STIs that are

co-transmitted with N. gonorrhoeae, preventing the host’s ability to

mount immune responses to both N. gonorrhoeae and to other

pathogens that are acquired at the same time. N. gonorrhoeae

infection is associated with increased transmission of HIV, an

effect likely mediated by the presence of increased viral burden in

the semen of co-infected individuals as well as increased

inflammation and HIV-susceptible cells at the sight of infection

in HIV-negative individuals with gonorrhea [5]. It is certainly

possible that the host immunologic response to HIV in the setting

of N. gonorrhoeae infection may be hampered, leading to increased

HIV acquisition rates in exposed individuals or impaired virologic

control in those who are infected. Further studies into the

mechanisms and gonococcal factors involved in this immuosup-

pressive effect may ultimately yield treatments or vaccine targets

that will boost protective host responses to gonococcal antigens

and possibly reduce the impact of N. gonorrhoeae infection on

transmission of or host response to other sexually transmitted

pathogens.

Table 1. Fold change in genes over-expressed in BMDCs with
N. gonorrhoeae (MOI = 1) plus OVA versus OVA only.

Gene Relative expression (Ng+OVA:OVA Only treatment)

Cxcl1 855.4809

Il12a 187.5184

Cd40 161.802

Cxcl2 125.5174

Il12b 125.1483

Cxcl10 111.149

Il6 87.5084

Ccl17 26.7567

Ccl5 22.3534

Inhba 18.3513

Ifit3 16.9495

Ccl7 12.9143

Ccl3 11.6476

Ccl2 11.4902

Tnf 11.077

Erbb2 7.9394

Cd80 7.197

Cd1d2 7.0462

Cd86 7.0154

Ccl4 6.6678

Tlr1 5.6101

Cd4 5.2185

Ifng 5.0386

Ccl8 4.7898

Ccl19 4.5297

Fas 4.0752

Relb 3.9584

Cd209a 3.8636

Icam1 3.7087

Fcamr 3.5618

Il8ra 3.416

Ccl12 3.3347

Nfkb2 2.9508

Il2 2.9132

Nfkb1 2.9025

Ebi3 2.9012

Fcer1g 2.7914

Ccl20 2.726

Il23a 2.4116

Rela 2.3402

Tapbp 2.1733

B2m 2.1432

Cdkn1a 2.0629

Cxcl12 2.0003

doi:10.1371/journal.pone.0041260.t001
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Materials and Methods

Ethics Statement
All protocols were conducted in accordance with National

Institutes of Health guidelines for the care and use of laboratory

animals and human subjects. The use of laboratory animals was

approved by the Institutional Animal Care and Use Committee

(IACUC) of the University of North Carolina at Chapel Hill (UNC

IACUC protocol # 09-229.0). Human dendritic cells were

generated from patients enrolled in a study approved by UNC

IRB (Study #05-2860) after providing informed consent. The cells

were provided as de-identified samples prior to utilization in the

described studies. The use of the de-identified samples was

reviewed by the UNC Office of Human Research Ethics, which

determined that the study (Study #12-0024) does not constitute

human subjects research as defined under federal regulations [45

CFR 46.102 (d or f) and 21 CFR 56.102(c)(e)(l)] and does not

require further IRB approval.

Preparation of N. gonorrhoeae
N. gonorrhoeae strain FA1090 was prepared as previously

described [57]. Briefly, a predominantly Opa+ frozen stock of N.

gonorrhoeae FA1090 was inoculated to GCB agar and grown

overnight (16–18 hours) at 37uC and 5% CO2. The Opa protein

expression was previously determined by whole cell immunoblot-

ting 98 individual colonies and probing with a combination of five

specific anti-Opa monoclonal antibodies, the greater than 80% of

the colonies in the frozen population express at least one Opa with

a predominance of OpaA, OpaD, and OpaI noted [57,58].

Colonies were collected using a sterile cotton swab and inoculated

to DMEM with 10% FCS. The bacterial density was estimated by

measurement of OD600 and confirmed by plating serial dilutions.

N. gonorrhoeae strains MS11 and F62 were prepared in a similar

manner, though the specific Opa proteins expressed were not

assessed for these two strains.

Construction of OpaB-ovalbumin fusion protein
expressing N. gonorrhoeae
A gene encoding a fusion protein in which peptides derived

from Gallus gallus ovalbumin (257–264 and 323–339) were

incorporated into the hyper-variable region, HV1, of OpaB was

generated using a hybrid synthetic oligo/PCR approach (Figure

S6). OpaB was amplified as two gene fragments from N. gonorrhoeae

strain FA1090opaA-K(B+), in which the expression of OpaB is phase

locked on [59], and subcloned into the TOPO TA cloning vector

(Invitrogen Corp., Carlsbad, CA). Nucleotides encoding an in-

frame addition of ovalbumin amino acids 257–264 were in-

corporated into the oligonucleotide primer. These gene fragments

were fused together at a synthetic SpeI site in pBluescript SK+

(Stratagene Cloning Systems). Synthetic DNA encoding OVA323–

339 created from self-annealing oligos was inserted at the synthetic

SpeI site creating a gene encoding the OpaB (OVA(257–264;323–339))

fusion protein. This gene was targeted to the opaB locus of

gonococcal strain FA1090 using a two-step process. First, N.

gonorrhoeae strain FA1090 was transformed with an opaB gene

containing a cat/rpsL cassette within the HV-1 region and selected

for chloramphenicol resistance and streptomycin sensitivity. Next,

the opaB::cat/rpsL locus was replaced by homologous recombina-

tion with the opaB::OVA fusion gene and selected for streptomycin

resistance and chloramphenicol sensitivity. OVA peptide expres-

sion in the gonococcus was confirmed by whole cell dot blot

probed with a rabbit polyclonal anti-chicken ovalbumin sera

(Bethyl Laboratories, Inc, Montgomery, TX), OpaB-specific

monoclonal antibody H4, and porin P1B3-specific monoclonal

antibody H5 (figure S2) [58].

Culture of murine bone marrow-derived dendritic cells
BMDCs were prepared from 9–12 week old C57BL/6 mice

(Jackson Laboratories, Bar Harbor, ME) as modified from

a previous method [60]. In brief, femurs and tibiae were removed

and left in 70% ethanol for 2–5 minutes and then washed with 16
PBS. Both ends of the bones were cut and bone marrow precursors

were harvested by flushing with RPMI 1640 medium (Invitrogen

Corp., Carlsbad, CA) supplemented with 10% FBS (Thermo

Scientific, Logan, UT) using a syringe with 27 gauge needle (BD

Biosciences, Franklin Lakes, NJ). Clusters within the marrow

suspension were disintegrated by 21 gauge needle. Cells were

centrifuged at 4506 g for 8 minutes and cell pellets were then

treated with 1X RBC lysis buffer [150 mM NH4Cl, 10 mM

KHCO3, and 0.1 mM Na2EDTA (pH 7.4)] for 5 minutes at room

temperature. After two additional washes, cell pellets were

resuspended in 10% FBS RPMI 1640 medium containing GM-

CSF (25 ng/mL; Peprotech, Rocky Hill, NJ) and IL-4 (10 ng/mL;

Peprotech, Rocky Hill, NJ) and seeded into 6-well tissue culture

plates at a density of 0.56106/mL with a total volume of 4 mL per

well. Cultures were pulsed every 48 hours with fresh medium

containing GM-CSF and IL-4. After 7 days in culture, immature

DCs were harvested and used in T cell co-cultures as antigen

presentation cells (APCs).

Infection and stimulation of BMDC
BMDCs were washed and resuspended in antibiotic-free

medium at a density of 16106/mL. Cells were infected with N.

gonorrhoeae strain FA1090 with the indicated multiplicity of

infection (MOI) in the absence or presence of soluble Ovalbumin

(OVA; 100 mg/mL; Sigma-Aldrich, St. Louis, MO) [57]. BMDCs

stimulated with OVA or medium only served as controls. Four

hours post-infection or treatment, BMDC cultures were supple-

mented with 50 mg/mL Gentamicin (Invitrogen Corp., Carlsbad,

CA) to kill extracellular bacteria. Cultures were returned to 37uC,
5% CO2 humidified incubators and harvested 24 hours post

infection/treatment for co-culture with T cells or down-stream

assays.

To determine the survival of N. gonorrhoeae within murine

BMDC, Murine BMDCs were inoculated with either MOI 1 or

MOI 10 N. gonorrhoeae and incubated at 37uC 5% CO2 in RPMI

1640 supplemented with 10% heat-inactivated fetal bovine serum

in 5 mL polystyrene tubes. After 4 h, cells were spun at 2500 rpm

and washed 26 with 1 mL fresh medium (t = 0 h). Gentamicin

was added to the cells to a concentration of 50 mg/mL gentamicin

for 1 hour. Subsequently, cells were washed 26 with medium

(t = 1 h) and allowed to grow for an additional 19 hours (t = 20 h)

at 37uC 5% CO2. At each time point (t = 0 h, 1 h, 20 h) cell-

associated bacteria were determined by adding saponin to 1% for

10 minutes followed by plating serial dilutions on GCB Agar

plates in triplicate. After a 48 h growth period, colonies were

counted using Synbiosis aCOLyte colony counter.

Measurement of cytokines/chemokines, TLR2 activation
and caspase-3 activation
Mouse KC, TNF-a, MIP-1b, RANTES, IL-2 and IL-10 levels

in cell culture supernatants were determined by multiplex bead-

based assays using Bio-Plex ProTM Mouse Cytokine assays

(BioRad, Hercules, CA) according to the manufacturer’s protocol.

Bead assays were quantified on the Bio-Plex protein array reader
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(BioRad, Hercules, CA) in the Duke Human Vaccine Institute

Immune Reconstitution and Biomarker Facility.

DQ-OVA endocytosis assay
DQ-OVA (Invitrogen Corp., Carlsbad, CA) is a self-quenched

conjugate of ovalbumin that exhibits bright green fluorescence

upon proteolytic degradation and can be measured by flow

cytometry. BMDCs were resuspended in antibiotic-free medium at

a density of 16106/mL and pulsed with DQ-OVA (10 mg/mL)

with or without N. gonorrhoeae (MOI= 1). BMDCs were incubated

at 37uC for 1, 4 or 24 hours. Gentamicin was added to kill

extracellular N. gonorrhoeae at 1 or 4 hours after infection. BMDCs

were collected at various time points, washed three times with cold

16 PBS and re-suspended in FACS buffer (16 PBS, 1% BSA,

0.1% NaN3). Cells were evaluated immediately via flow cytometry

for DQ-OVA uptake and processing. Controls include cells with

DQ-OVA at 4uC and cells incubated at 37uC without DQ-OVA.

BMDC-T Cell co-culture/proliferation assay
Spleen and lymph nodes were excised from OT-II mice

(obtained from Jackson Laboratories, Bar Harbor, ME) and

single-cell suspensions were prepared by dissociating cells through

70 mm cell strainers (BD, Bedford, MA) and removing red cells

with 1X RBC lysis buffer. Splenocytes/LN cells were first

separated by lymphocyte separation medium (LSM, Accurate

Chemical & Scientific Corporation, Westbury, NY) and then

passed over T cell enrichment columns (R&D Systems, Minnea-

polis, MN). For BMDC/T co-culture experiments, enriched T

cells (0.56106/mL) were labeled with carboxy fluoroscein

succinimidyl ester (CFSE; Molecular Probes, Eugene, OR) and

mixed with 0.56105/mL of pretreated BMDCs. Cells were

cultured in RPMI 1640 medium containing 10% FBS in a total

volume of 1 mL per well in 48-well tissue culture plates or in tissue

culture plates containing transwell (0.4 mm) inserts (Costar,

Corning, NY). After 7 days, BMDC/T cells were harvested and

T cell proliferation was measured by flow cytometric analysis of

CFSE dilution.

Generation of human dendritic cells and mixed
lymphocyte reaction (MLR) assay
Primary human dendritic cells were generated by culture of

CD34+ cells from peripheral blood in the presence of Stem Cell

Factor (SCF 50 ng/mL) Flt3L (100 ng/mL), GM-CSF(800 U/

mL) and IL-4(500 U/mL) in AIM V medium with 10% human

AB serum for 14 days. Human peripheral blood mononuclear cells

were depleted of antigen-presenting cells by adherence to T75

tissue culture flask supplied with 10% AB serum AIM V medium

without agitation. Two hours later, non-adherent (NAD) cells were

collected and incubated into another T75 tissue culture flask for

another 2 hours incubation. The NAD cells were collected and

pooled from 5 donors and used as responder cells and labeled with

CFSE. These CFSE-labeled lymphocytes were co-cultured with

medium or N. gonorrhoeae exposed human DCs (MOI 1, 10) in 96-

well U-bottom plate. CFSE-labeled NAD cells (responder cells)

were plated at 16105 cells per well in a volume of 200 mL and co-

cultured with human DCs (stimulator cells) at a ratio of 3:1, 10:1

and 30:1. NAD cells alone were used as negative control. After co-

cultured for 3 and 7 days, mixed lymphocyte cultures were

harvested and stained with CD4-PE-Cy5, CD4+ T cell pro-

liferation was then measured by flow cytometric analysis of CFSE

dilution.

Immunophenotyping and flow cytometry
Polychromatic immunophenotyping was performed using

peridinin chlorophyll protein conjugated to the cyanine dye 5.5

(PerCP-Cy5.5), phycoerythrin conjugated to the cyanine dye 5

(PE-Cy5), phycoerythrin conjugated to the cyanine dye 7 (PE-

Cy7), allophycocyanin (APC), allophycocyanin conjugated to the

cyanine dye 7 (APC-Cy7) and Alexa Fluor 700 as fluorescent dyes.

Directly-conjugated anti-mouse monoclonal antibodies were used

against: CD3-APC, CD3-APC-Cy7, CD3-PE-Cy7, CD4-APC-

Cy7, CD8-PE-Cy7, CD80-PE, CD86-PE-Cy5, CD45R/B220-

PE-Cy7, CD11c-APC-Cy7, CD273-APC and CD274-PE (BD

Biosciences, San Jose, CA and eBioscience, San Diego, CA). Biotin

anti-mouse V beta 5.1/5.2, Biotin anti-mouse I-A [b] and APC

Streptavidin were also used (BD Biosciences, San Jose, CA). Cell

viability was assessed with AnexinV-PE and 7AAD (BD Bios-

ciences, San Jose, CA), and Caspase-3 was detected with FLICA

and propidium iodide (PI) (Immunochemistry Technologies,

Bloomington, MN).

Saturating amounts of antibody were used to stain approxi-

mately 16106 cells in FACS Buffer (16 PBS, 1% BSA, 0.1%

NaN3) (final volume of 100 mL) at 25uC for 1 hour. All samples

were washed with 3 mL FACS Buffer and resuspended in 200 mL
of FACS Buffer with 0.4% (w/v) paraformaldehyde. Stained

samples were analyzed either on a BD-FACS Canto or a BD

LSRII-SOS (BD Biosciences, Palo Alto, CA) in the Duke Human

Vaccine Institute Flow Cytometry Facility. For each sample,

forward and side angle light scatter profiles were used to acquire

10,000–100,000 events. Data were saved as FCS 3.0 and analyzed

with FlowJo software (Tree Star, Inc. Ashland, OR). When

necessary, the gating strategies are introduced in the respective

figures as a representative scatter plot. In some experiments, the

comparison of a single fluorescent parameter between two

experimental groups is performed using overlayed histograms in

which the Y values are normalized to the peak value in that sample

in order to facilitate the comparison of the distribution of

fluorescence in each population. In these cases, the Y-axis is

labeled as % Max.

Real-time reverse-transcription PCR arrays
Quantitative real-time RT-PCR was used to profile expression

of a panel of genes involved in antigen presentation (Table 1) and

the additional genes in BMDC cultures. Total RNA was extracted

from cell pellets using the RNeasy Mini Kit (Qiagen, Valencia,

CA) per manufacturer’s instructions, and quantified on a Nano-

drop spectrophotometer (Thermo Scientific, Wilmington, DE).

Isolated RNA (500 ng) was reverse transcribed, and real-time

PCR performed, following the provided protocols with RT2 First-

Strand cDNA Synthesis Kit and Mouse Dendritic and Antigen

Presenting Cell or Custom Mouse PCR Array, respectively (SA

Biosciences, Frederick, MD). Relative gene expression was

quantified using the comparative CT method (DDCT) via the

PCR Array Data Analysis Web Portal at http://www.

sabiosciences.com/pcrarraydataanalysis.php.

Supporting Information

Figure S1 N. gonorrhoeae does not survive intracellu-
larly in murine BMDC. Murine BMDCs were incubated with

the indicated dose (MOI 1 & MOI 10) of N. gonorrhoeae for 4 hours.

Extracellular bacteria were removed from the culture by washing,

followed by 1-hour treatment with gentamicin and subsequent

culture of the BMDC for an additional 19 hours. The quantity of

BMDC-associated N. gonorrhoeae was assessed by lysing washed

BMDC with saponin and plating serial dilutions at the following
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time points: after 4 h incubation with mouse BMDCs (0 h); after

an additional 1 h incubation with gentamicin (1 h); and following

an additional 19 h of growth (20 h). Mean colony forming units

(cfu) +/2 S.E.M. from triplicate plates are plotted. Asterix (*)

indicates below the detectable limit (6 cfu).

(TIF)

Figure S2 OVA-expressing N. gonorrhoeae inhibits
BMDCs antigen-induced T cell proliferation. A) The

predicted membrane topology of the OpaB (OVA(257–264;323–339))

fusion protein is shown in two dimensions. The hypervariable

(HV) regions are indicated by hashed lines and the insertion of

OVA(257–264;323–339) into hyper variable region-1 (HV1) is in-

dicated. B) The indicated strains of N. gonorrhoeae strains were

grown for 18 hours, harvested, and resuspended. The resuspended

bacteria (100 mL, 0.2 OD600) or isolated OVA (1.0 mg) were

spotted to nitrocellulose and probed with the indicated antibodies

as described in the materials and methods. C–G) BMDCs were

exposed to OVA-expressing N. gonorrhoeae (MOI=1) with or

without OVA for 24 hours and then co-cultured with CFSE-

loaded OT-II T cells for 7 days. OT-II T cell proliferation to OVA

was assessed by flow cytometric analysis (CFSE dilution). C)

Representative gating strategy of CD4+ Vb5+ OT-II T cells.

Representative OT-II T cell proliferation profile following co-

culture with BMDCs treated with D) medium only, E) OVA

(100 mg/mL), F) OVA-expressing N. gonorrhoeae (MOI= 1).

(TIFF)

Figure S3 N. gonorrhoeae does not impact OVA induced
IL-2 production in T-cell/BMDC co-culture. BMDCs were

exposed to N. gonorrhoeae at MOI of 1 with or without OVA for

24 hours and then co-cultured with OT-II T cells for seven days as

described in Figure 2. Secreted IL-2 levels in culture supernatant

were measured using a multiplex bead assay in seven-day DC-T

cell co-culture supernatant N=4, ND=Not Detectable).

(TIF)

Figure S4 N. gonorrhoeae-treated BMDCs from Il102/2

mice demonstrate similar inhibition on T cell pro-
liferation as seen with WT BMDCs. BMDCs were exposed

to N. gonorrhoeae at different MOIs with or without OVA for

24 hours and then co-cultured with CFSE-loaded OT-II T cells

for seven days. T cell proliferation to OVA was assessed by flow

cytometric analysis. Percent proliferation of T cells normalized to

OVA-DC-induced T cell proliferation. Data are mean 6 standard

deviation (N= 3).

(TIF)

Figure S5 CD4+ T cell apoptosis is unchanged by BMDC
exposure to N. gonorrhoeae in the absence of antigen.
Caspase 3&7 activity (FLICA) form CD4+ Vb5+ OT-II T cells

following co-culture with medium or N. gonorrhoeae (MOI= 1)

pulsed BMDCs. Percentage of apoptotic CD4+ Vb5+ OT-II T

cells following co-cultured with BMDCs for 24 hours. Data are

mean 6 standard deviation (N=4 replicates).

(TIFF)

Figure S6 Construction of OpaB(OVA(257–264;323–339)) -
expressing N. gonorrhoeae FA1090 strain. N. gonorrhoeae

OpaB containing intermediate plasmid constructs used to generate

an OpaB (OVA(257–264;323–339))-expressing N. gonorrhoeae strain are

shown (designated pJAD). Oligonucleotides used to amplify

segments of OpaB or insert sequences encoding amino acids 323

to 339 of G. gallus ovalbumin are designated OVA-1 to OVA-6.

(TIF)

Figure S7 Expression of inflammatory genes was upre-
gulated in BMDCs 24 hours post N. gonorrhoeae expo-
sure. Representative scatter plots of gene expression (qRT-PCR

arrays) from A) medium only versus OVA-pulsed BMDCs and B)
OVA-pulsed BMDCs versus N. gonorrhoeae (MOI= 1) with OVA,

N=3.

(TIFF)
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