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Abstract

Wolfram Syndrome (WFS) is a rare autosomal recessive disease characterized by insulin-dependent diabetes mellitus, optic
nerve atrophy, diabetes insipidus, deafness, and neurological dysfunction leading to death in mid-adulthood. WFS is caused
by mutations in the WFS1 gene, which lead to endoplasmic reticulum (ER) stress-mediated cell death. Case studies have
found widespread brain atrophy in late stage WFS. However, it is not known when in the disease course these brain
abnormalities arise, and whether there is differential vulnerability across brain regions and tissue classes. To address this
limitation, we quantified regional brain abnormalities across multiple imaging modalities in a cohort of young patients in
relatively early stages of WFS. Children and young adults with WFS were evaluated with neurological, cognitive and
structural magnetic resonance imaging measures. Compared to normative data, the WFS group had intact cognition,
significant anxiety and depression, and gait abnormalities. Compared to healthy and type 1 diabetic control groups, the
WFS group had smaller intracranial volume and preferentially affected gray matter volume and white matter microstructural
integrity in the brainstem, cerebellum and optic radiations. Abnormalities were detected in even the youngest patients with
mildest symptoms, and some measures did not follow the typical age-dependent developmental trajectory. These results
establish that WFS is associated with smaller intracranial volume with specific abnormalities in the brainstem and
cerebellum, even at the earliest stage of clinical symptoms. This pattern of abnormalities suggests that WFS has a
pronounced impact on early brain development in addition to later neurodegenerative effects, representing a significant
new insight into the WFS disease process. Longitudinal studies will be critical for confirming and expanding our
understanding of the impact of ER stress dysregulation on brain development.
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Introduction

Wolfram syndrome (WFS) is a rare (1 in ,770,000) autosomal

recessive genetic disease characterized by early childhood onset

insulin dependent diabetes, optic nerve atrophy, vision and

hearing loss, diabetes insipidus and neurodegeneration, resulting

in death in middle adulthood, typically due to brainstem atrophy-

induced respiratory failure [1]. There are no interventions to slow

or stop this devastating deterioration. However, much is known

about the mechanisms underlying these effects. The causative gene

(WFS1) was identified by our group in 1998 [2], and a number of

loss-of-function mutations have been described [2–4]. Cell [5] and

animal models [6] have determined that WFS1 encodes an

endoplasmic reticulum (ER) membrane-embedded protein called

wolframin [7], and that mutant forms of the WSF1 protein lead to

disturbances of ER calcium homeostasis, driving ER stress-

mediated apoptosis [8–10]. This process kills insulin producing

pancreatic b-cells, leading to diabetes. WFS1 is also expressed

throughout the brain, and cell death via ER stress is thought to

underlie neurodegeneration in WFS [4,11].

Although there are no current treatments for this disease, agents

to treat ER stress-mediated apoptosis are currently in development

[12,13]. ER stress also has been implicated in a number of

neurodegenerative (Alzheimer disease, Parkinson disease, amyo-

trophic lateral sclerosis), endocrine (Type 1 and Type 2 diabetes)

and cardiovascular (heart disease, atherosclerosis) diseases [14].

Thus, WFS may provide a useful model for examining the impact

of ER stress on the brain, particularly during neurodevelopment

[15]. In contrast to the polygenic, multifactorial etiology of other

diseases, WFS’s clinical features are due to deficiency of a single

protein, wolframin. Research into this monogenic disease may

provide critical insight into more genetically complex forms of
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diabetes and neurodegenerative diseases in which ER stress is

implicated. Successful interventions for WFS may then provide the

proof-of principle for using similar agents to treat more common

and complex forms of ER stress-related diseases in the future. This

innovative model has been followed successfully in other

conditions (e.g. bone disorders [16–20]). An early step towards

this important goal is to establish the characteristic neurodegen-

erative changes in WFS.

Our current knowledge of WFS-related brain changes come

primarily from clinical exams and post-mortem neuropathological

case studies of severely affected individuals with WFS. These

studies found abnormalities in multiple regions of the brain,

including hypothalamus, pituitary, pons, inferior olivary nucleus,

lateral geniculate nucleus, thalamus, optic nerve, optic tract and

cerebellum [1,3,21–31]. Motor, cognitive and psychiatric dysfunc-

tion have been reported in advanced WFS, but quantified,

systematic assessments have not been performed in relatively early

WFS. Clinical retrospective survey data suggest that neurological

features occur late (15–30 yrs of age) in the disease process [32,33],

but these patients were not directly assessed with standardized,

objective methodology or compared to age-equivalent controls

[23,30,31]. Thus, it is not known at what stage of the disease these

potential brain structural or functional changes or subsets of

changes emerge, become clinically significant, or how structural

and functional changes relate to each other and to overall disease

severity.

An understanding of the natural history of neurological

changes in WFS will be important in assessing the validity of

animal models of WFS, for developing interventions for

neurological changes, as well as addressing questions about

how WFS1 mutations and ER stress affects neurodevelopmental

processes. Thus, the goal of the current study is to determine the

regional pattern of neuroanatomical abnormalities in WFS across

a range of disease duration and imaging modalities. To address

this gap in the literature, we studied individuals with WFS at the

earliest stage of disease possible and compared them to both age

and gender equivalent healthy and type 1 diabetic controls.

Thus, we were able to survey the brain’s structural and

functional integrity across a range of very early to more

advanced disease using sophisticated in vivo structural brain

imaging techniques and neurobehavioral measurements.

Methods

Participants with WFS were evaluated clinically by a team of

investigators including a pediatric neurologist, audiologist and

ophthalmologist. Patients then performed neuropsychological

testing and MRI scans and completed self-report questionnaires

if over 16 (parents completed parent-report if 16 or younger) about

psychiatric and behavioral issues. Control subjects completed MRI

scans only.

Subjects
WFS. Individuals with WFS who registered on the Washington

University WFS Registry (http://wolframsyndrome.dom.wustl.

edu/medical-research/Wolfram-Syndrome-Home.aspx), who

were under the age of 30, aware of their diagnosis and able to travel

were invited to participate. Further inclusion criteria were the

diagnosis of diabetes mellitus and optic nerve atrophy before 18

years of age or genetic confirmation of a WFS1 mutation.

Controls. MRI comparison groups consisted of age equiva-

lent healthy controls (HC) and individuals with type 1 diabetes

mellitus (Type 1 Controls or T1C) scanned at Washington

University as part of other studies. Youth with T1C were recruited

from the Pediatric Diabetes Clinic at St. Louis Children’s Hospital

and Washington University School of Medicine in St. Louis. Non-

diabetic controls were either healthy siblings of the diabetic

patients or from the community. T1C were excluded for

diagnosed psychiatric disorder, significant neurological history

not due to diabetes, known premature birth (,36 weeks gestation)

with complications, psychoactive medications, or physical limita-

tions that would interfere with testing. No T1C participants had

known retinopathy, nephropathy or neuropathy at the time of

testing. Controls were excluded for current or past history of

neurological and psychiatric diagnoses or other significant health

conditions. All subjects underwent MRI scans for research

purposes only, not for any clinical indication.

Ethics Statement. For all participants, informed consent was

obtained prior to participation and the study was approved by the

Human Research Protection Office at Washington University in

St. Louis. Children under age 18 provided assent, and their

parent/guardian provided written consent.

Cognitive and Behavioral Testing
Before beginning testing, WFS participants were determined to

have blood glucose levels above 70 mg/dl. Standardized IQ,

cognitive and behavioral measures were administered. Each

patient’s performance was compared to normative data for their

age and gender.

Vocabulary and Similarities subtests from The Wechsler Abbrevi-

ated Scale of Intelligence (WASI) [34] were used to estimate a

verbal intelligence quotient (IQ). The computerized Conners’

Continuous Performance Test II (CPT II) [35] was used to determine

sustained attentional capacity. The Letter Number Sequencing [36,37]

task from the Wechsler Child or Adult Intelligence Scales was used

to assess verbal working memory. The Children’s or Adult California

Verbal Learning Test (CVLT) [38,39] was used to assess verbal

learning and memory. The Achenbach Child Behavior Checklist or Adult

Self Report (CBCL, ages 6–16; ASR; ages 16 and above) [40] was

used to assess parent and self-rated behavioral and mood status

across the Internalizing Domain (Affective, Anxiety and Somatic

Problems) and the Externalizing Domain (Attention Deficit/

Hyperactivity, Oppositional Defiant and Conduct Problems).

Neuroimaging
Before beginning scanning, WFS and T1C participants were

determined to have blood glucose levels above 70 mg/dl. Scans

were acquired on one of three Siemens 3T Tim Trio MRI

scanners at Washington University. All three scanners had the

same hardware and software, and they are each checked by

Siemens maintenance personnel every 3 months to confirm that

the machines are running in accordance with their recommenda-

tions. In addition, cross-calibration scanning on 15 normal control

children from another study (unpublished data) using similar

sequences as ours has shown a high degree of consistency and

absolute difference in regional DTI FA (average r = .96, average

mean difference in FA = 2.3%) and Freesurfer-derived volumes

(average r = .87, average mean difference in volumes = 1.7%).

These metrics are consistent with the literature of Freesurfer

performance across different scanners [41,42].

The following sequences were acquired: T1-weighted MPRAGE

sequence: Sagittal acquisition, TR = 2400, TE = 3.16, TI = 1000,

voxel resolution = 16161mm, Time = 8:09 min. T2-weighted MR:

Sagittal acquisition, TR = 3200, TE = 455, voxel resolu-

tion = 16161mm, Time = 4:43 min. T2 FLAIR: Transverse acqui-

sition, TR = 9190, TE = 98, TI = 2500, voxel resolu-

tion = .866.8663mm, Time = 3:59 min. This sequence was

acquired for the WFS group only for clinical neuroradiological
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reading. Diffusion Tensor Imaging (DTI): The echo planar sequence

consisted of 27 directions with the b-values ranging from 0 to

1400 s/mm2. Transverse acquisition, TR = 12300, TE = 108, voxel

resolution = 1.9861.9862 mm, Time = 5:44 min. The DTI se-

quences in the control groups varied slightly in the number of

b = 0 scans acquired, but their scans had the same resolution and

range of b-values as the WFS group (with the exception of 16 subjects

scanned with b-values only up to 1000 rather than 1400).

Methods were selected to provide complementary levels of

information. The ROI method has several advantages over voxel-

wise analyses – it minimizes the risk of type 1 error, avoids the

many statistical assumptions of voxel-wise analyses, and allows for

tailoring ROIs to avoid partial volume effects, thus reducing the

impact of imperfect registration procedures [43]. On the other

hand, voxel-wise or vertex-wise analyses consider all of the

imaging space without regard for arbitrary or unreliable bound-

aries. We employ both approaches here for volumes and for

diffusion tensor measures in order to provide a comprehensive

view of the regional brain abnormalities in WFS. We pay

particular attention to findings that are similar across imaging

modalities and analysis methods.

Regional Gray and White Matter Volumes
To determine regional gray and white matter brain volumes

from anatomically defined regions, we used the semi-automatic

segmentation program Freesurfer (v5.0) [44]. This program

automatically reconstructed the brain from surface and volumetric

registration to an atlas to quantify gray and white matter volumes.

To minimize the opportunity for false positives, we focused on a

select number of regions (n = 13: brainstem, cerebellar gray

matter, cerebellar white matter, thalamus, pallidum, corpus

callosum, hippocampus, amygdala, caudate, putamen, accumbens,

total cortical gray, total cortical white matter). Left and right

volumes were averaged and corrected for intracranial volume

(ICV or volume within the skull, derived from Freesurfer)

according to validated methods [45]. A Bonferonni multiple

comparison correction procedure was applied to determine

significance, after controlling for age and gender.

Brainstem Segmentation Volumes
To examine the brainstem, known to be particularly affected in

advanced WFS, in more detail, we performed manual segmenta-

tion of the Freesurfer-generated brainstem according to published

criteria [46]. The brainstem was divided into midbrain, pons and

medulla using anatomical landmarks. The border between the

midbrain and the pons was defined by a plane touching both the

upper rim of the pons and the inferior border of the inferior

colliculus. The border between the pons and medulla was defined

by a plane parallel to that of the midbrain-pons border, touching

the lower rim of the pons. The MR images were rotated to align

the brainstem so that these borders were transverse slices, and the

Freesurfer-generated brainstem was segmented according to those

slices. Two raters independently chose these landmarks (intraclass

correlation coeffecients [ICCs] were above .98 for all landmarks)

and the chosen rotations were averaged. Analyses were normalized

using ICV and controlled for age and gender.

Surface-based Cortical Measurements
To explore cortical metrics in a landmark-independent manner,

we reconstructed and segmented individual subjects’ cortical

surfaces using Freesurfer (v5.0) [47–49]. The cortical gray/white

matter border and pial surfaces were identified in each subject,

and a triangular tessellation was applied across the cortical surface.

Using these cortical maps, we calculated multiple surface-based

measurements at each vertex of the triangular mesh. These

included cortical thickness (the distance between the white and pial

surfaces), surface area (the sum of the areas of the triangles

connected to a vertex) and gray matter volume (the product of

cortical thickness and surface area). A whole brain, vertex-by-

vertex group comparison was conducted using Freesurfer’s group

analysis tool, Qdec. Effects between our patient group and our

controls (healthy and T1DM controls collapsed due to restrictions

in the statistical modeling of this software) were calculated for each

hemisphere by general linear model (GLM) at each vertex for

thickness, area, and volume, while controlling for age and gender

(thickness), or age, gender, and ICV (for area and volume). Data

were smoothed using a full width/half-maximum Gaussian kernel

of 15 mm and corrected for multiple comparisons using Monte

Carlo permutation cluster analyses with a significance threshold of

p,.05.

Whole Brain Voxel-wise Analyses of Gray and White
Matter Volumes

Voxel-based morphometry (VBM) was performed with statisti-

cal parametric mapping software (SPM8; Wellcome Department

of Cognitive Neurology, www.fil.ion.ucl.ac.uk). Images were

simultaneously normalized to Montreal Neurological Institute

(MNI) space using non-linear transforms, corrected for intensity

inhomogeneity, and segmented into gray matter, white matter,

and CSF. We used custom tissue probability maps based on our

subjects instead of the default SPM maps to improve segmentation

[50,51]. Gray and white segments were modulated to produce

images representing gray and white matter volume [50]. After this

processing, voxel dimensions were 26262 mm. Modulated

segments were smoothed with a 12 mm full width half maximum

Gaussian kernel to promote normality of residuals [52]. Voxels

with segmented intensities less than 0.1 were masked out with an

absolute threshold to reduce voxels possibly belonging to other

tissue classes and since these voxels are less likely to adhere to

assumptions of normality [53]. Images were analyzed by SPM8,

comparing groups (WFS vs. all controls) at each voxel, which

results in statistical parametric maps (SPMs) on which every

voxel’s intensity corresponds to a t value. The SPMs were then

thresholded to show only voxels with t values corresponding to

uncorrected p,.001. The probability of resulting clusters was

corrected for multiple comparisons taking into account non-

uniformity due to intrinsically inhomogeneous smoothness using

the stat_threshold script from Worsley’s fmristat package [54,55].

Age and gender were removed as covariates from all models.

Independent sample t-tests were performed for comparisons

between groups, defining contrasts in each direction (e.g., WFS

. controls; WFS , controls). Cluster-level multiple comparison

and smoothness corrected p values ,.05 were considered

significant.

General Analysis Approach to White Matter
Microstructural Integrity

DTI images were atlas-transformed and measures of white

matter microstructural integrity (fractional anisotropy or FA and

mean diffusivity or MD) were computed [56,57]. These measures

are sensitive indicators of white matter injury [58] and can detect

changes even when standard T2-weighted images appear normal

and the volumes of white matter regions are similar [59–63]. We

computed FA and MD volumes from native space data and

analyzed these images in two complementary ways, to balance the

desire to control type 1 error while fully exploring our unique

dataset.

Brain Vulnerability in Wolfram Syndrome
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Regions of Interest DTI Analyses
Regions were selected based on a well-established DTI atlas

[64] and were checked by a neuroradiologist with expertise in

DTI. We then compared the placement of the regions on each

subject’s colorized FA map, T1 and T2 images simultaneously.

ROIs were shifted by a few voxels as necessary to better conform

to each individual’s native anatomy. Finalized regions were then

applied to FA and MD volumes. Raters have established ICC’s

above .90 for FA and MD values for all ROIs. To minimize the

opportunity for false positives, we focused on a select number of

regions (n = 10: cerebellum, optic radiation, posterior limb of the

internal capsule, corpus callosum [average of 3 regions], centrum

semiovale, thalamus, putamen, hippocampus, cerebellar peduncle,

and pons), average left and right volumes, applied Bonferroni

multiple comparison correction (.05/10 or p,.005), and con-

trolled for age and gender.

Tract-Based Spatial Statistics (TBSS) DTI Analyses [65]
Despite the advantages of the ROI method of DTI, we also used

voxel-wise exploratory analyses of our DTI data to confirm our

ROI findings but also to be open to white matter effects in other

locations without regard for anatomical boundaries. Diffusion

weighted images were internally motion corrected using 9-

parameter affine (rigid body + scanner axis stretch) registration

using in-house developed software. Then, using each individual’s

motion-corrected, aligned, and averaged DWI data set, BET

(FMRIB Brain Extraction Tool) was used to compute a brain

mask, and FDT (FMRIB diffusion toolbox) was used to compute

FA maps. To create a target template for registration, a subset of

individuals were chosen from the entire subject pool to provide an

even distribution of males and females and ages. FA images in the

target group were then nonlinearly aligned to 16161 mm space

and to each other. The target image was the image that requires

the least amount of warping for all other FA images to align to it.

All FA images in the entire subject pool were then nonlinearly

aligned to each other in 16161 mm space and to the target image.

The target image was affine-aligned into MNI152 standard space,

and every FA image was then transformed into 16161 mm

MNI152 space. A mean FA image was calculated and used to

produce the mean FA skeleton to represent the center of white

matter tracts. FA images were projected onto the mean FA

skeleton and thresholded at FA = 0.2 for voxel-wise analyses.

Mean, axial and radial diffusivity images were also calculated and

all were analyzed with Randomise, a permutation-based multiple

comparisons corrected statistical approach [66]. Age and gender

were co-varied in analyses comparing groups (WFS vs all controls).

Statistical Analyses of Neuroimaging Data
For all region-based analyses we performed univariate analyses

of each region, with group as the independent variable (HC, T1C,

WFS) with age and gender covaried. We were then able to

determine if control groups differed on regional values. We

applied a Bonferroni correction for multiple comparisons within

imaging modalities. For gray and white matter volumes of interest,

the criterion for significance was p,.0038 (.05/13). For DTI

regions of interest, the criterion for significance was p,.005 (.05/

10). Regions that survived correction from any analyses were

examined for differences between groups with post-hoc compar-

isons. For voxel or vertex-wise analyses, we compared all WFS vs

all controls, to simplify the statistical models needed (and since no

regional differences were found between control groups) and to

maximize power. Each analysis used software-specific multiple

comparison correction procedures described above, and age and

gender were removed as covariates from all models.

Results

General Clinical Information for WFS Group
Patients with WFS ranged in age from 5.9 to 25.8 (mean = 14.6,

SD = 6.1; 6 male 8 female). All had confirmed mutations on the

WFS1 gene and had insulin dependent diabetes mellitus (average

age of onset = 5.8 years; range 2–14 years of age). All but one had

been diagnosed with optic nerve atrophy at the time of assessment

(average age at diagnosis = 9.3 years; range 3 to 16 years of age);

10/14 were being treated for diabetes insipidus (average age of

diagnosis = 10.1 years; range 2.5 to 17 years of age). WFS

individuals had a wide range of duration of diabetes mellitus

(range 0.75–21.7 years, mean = 8.8, SD = 6.0), optic atrophy

(range 1.1–15.2 years; mean = 5.9, SD = 4.9) and diabetes

insipidus (range .25 to 11.9 years; mean = 5.2, SD = 4.5). Younger

individuals tended to have shorter duration of all of these

symptoms. Standard ophthalmological tests revealed that 13/14

WFS participants had color vision impairment ranging from mild

to severe. All had abnormally thin retinal nerve fiber layers on

optical coherence tomography (OCT). Audiometric tests revealed

that 7/14 patients had evidence of hearing loss. Clinical

neurologic exams revealed that the most common abnormalities

were horizontal nystagmus and difficulty tandem walking (8/14

subjects). Several subjects (5/14) had impaired vibration sense, and

other more subtle motor abnormalities were also noted, including

increased lower extremity tone, intention tremor, and brisk deep

tendon reflexes in one subject each. These clinical findings confirm

that our WFS group ranged from very mild to moderate severity of

symptoms on standard clinical measures.

Cognitive/Behavioral Information
Some individuals with WFS, either due to language (non-native

English speaker, n = 1) or sensory issues (significant vision

problems, n = 2), could not complete all of the tasks. However,

the rest of the WFS group performed above the average range for

verbal intelligence (Verbal IQ mean percentile = 77, SD = 15),

and within the average range for verbal learning and memory

(CVLT Total Recall, trials 1–5, mean percentile = 57, SD = 25;

CVLT Long Delay Free Recall mean percentile = 55, SD = 25),

and attention (CPT Detectability mean percentile = 41, SD = 27).

In contrast, on a comprehensive psychological questionnaire,

participants or parents reported more symptoms in the Internal-

izing Domain which includes depression, anxiety and somatic

symptoms (mean percentile for symptoms = 65.6, SD = 32) than in

the Externalizing Domain which includes conduct disorders,

impulsivity and aggression (mean percentile for symptoms = 33.1,

SD = 24; paired t-test, t(13) = 3.85, p = .002). Five individuals had

clinically significant symptoms (T score above 69) and 1 had

clinically borderline symptoms (T score 65–69) in the Internalizing

domain, but only 1 had clinically significant symptoms in the

Externalizing Domain. Eleven WFS subjects had blood glucose

levels recorded at the time of testing; levels ranged from 124 to 325

(mean = 225 mg/dl, SD = 65).

Neuroimaging
MRIs were acquired on 11 individuals with WFS. The

remaining 3 patients had contraindications for MR and could

not be safely scanned (cochlear implant, n = 2; bladder neuro-

stimulator, n = 1). Two of the 11 had clinically normal scans; the

other 9 had clinically detectable abnormalities on MR similar to

those noted in case studies of WFS (i.e. 5 had elevated T2 signal

in pons; 7 had elevated T2 signal in frontal and occipital cortex)

and individuals with diabetes insipidus (i.e. 5 had absent or

reduced normal pituitary bright spot on T1).

Brain Vulnerability in Wolfram Syndrome
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De-identified scans from age and gender-equivalent HC and T1C

individuals were obtained for comparisons to the WFS group. These

subjects either had T1-weighted images (for gray and white matter

volume measures; HC, n = 30; T1C, n = 22) or DTI scans (HC,

n = 45; T1C controls, n = 10). Thirty-eight subjects had T1-weighted

scans and 12 had DTI scans on the first scanner, 25 (including the 11

WFS subjects) had T1-weighted scans and 38 (including the 11 WFS)

had DTI scans on the second scanner and no subjects had T1-

weighted scans, and 16 had DTI scans on the third scanner. Within

DTI sequences, 50 subjects had b1400 and 16 had b1000 scans; 42

had 25 directions and 24 had 26 direction scans. The control groups

were not different in mean age or gender distribution from the WFS

group (Table 1). In both T1C and WFS groups, duration of diabetes

was highly correlated with age (r..80). The WFS group and the

larger T1C group (n = 23 with T1-weighted MR) were not different

in mean duration of diabetes. However, the smaller T1C group

(n = 10 with DTI) had significantly shorter duration of diabetes than

the WFS group (Table 2). For T1C and WFS subjects, glucose values

were measured just before or just after scans, and ranged from 71–

337 for the T1C group (n = 22) and 123–289 for the WFS group

(n = 8). Mean values were not different between groups (t-test, t = -

.74, p = .47; T1C mean = 182 mg/dl, SD = 70; WFS

mean = 203 mg/dl, SD = 62).

Regional Gray and White Matter Volumes
Overall, there was a significant effect of group (WFS, HC, T1C)

on intracranial volume (ICV) after correcting for age and gender

(F(2,58) = 5.9, p = .005). Post-hoc pair-wise comparisons revealed

that the WFS group had smaller ICV compared to the HC and

T1C groups (p,.004), but these control groups were not different

from each other (p = .91). Whole brain volume (defined as

everything inside the pial surface of the brain, excluding brainstem

and cerebellum) was also smaller in the WFS group (F(2,58) = 5.1,

p = .009), but after controlling for ICV, was similar across groups

(F(2,58) = 0.9, p = .38).

Out of 13 regions normalized for ICV, 5 had a main effect of

group at the p,.05 level; 3 of these survived multiple comparison

correction (p,.0038)(Table 3; Fig 1). These regions were brainstem

(F(2,58) = 22.5, p,.001), cerebellar gray matter (F(2,58) = 8.3,

p = .001) and cerebellar white matter (F(2,58) = 14.7, p,.001). In

all of these regions, the WFS group had smaller volumes than both

the HC and T1C (ps,.05), but the HC and T1C groups did not

differ from each other (p..05). In addition, even the youngest and

least affected WFS patients showed reduced volumes in these

regions compared to control groups.

Brainstem Segmentation Volumes
Volumes of brainstem segments (midbrain, pons, medulla) were

normalized for ICV. A repeated measures general linear model

analysis found, as expected, a main effect of diagnosis

(F(2,56) = 22.4, p,.001; WFS , T1C and HC) and a main effect

of segment (F(2,55) = 41.3, p,.001; pons . midbrain and

medulla) with age and gender as covariates. More interestingly,

we found a segmental volume by diagnosis interaction

(F(4,112) = 7.6, p,.001) that was still significant after also

covarying duration of diabetes (WFS vs T1C only, F(2,26) = 9.1,

p,.001). Post-hoc contrasts found that the WFS group volume

was significantly different from the control groups for all three

segments, but the effect was most striking in the pons (Fig 2A).

Before normalization, 10/11 WFS patients had reduced volume in

the pons compared to age equivalent controls. After normaliza-

tion, 8/11 WFS patients had reduced volume in the pons

compared to age equivalent controls (Fig 2B).

Surface-based Cortical Measurements
We examined cortical thickness, cortical area and cortical

volume (a product of thickness and area) between the combined

control group and the WFS group across the entire cortex. In

vertex-wise analyses, the WFS group had reduced thickness in

several regions after controlling for age and gender, and applying

multiple comparison corrections (Fig 3). In the left hemisphere,

WFS had reduced thickness in a precentral region (BA 6; cluster

size = 2311.73 mm2, cluster-wise p = .0008), a lingual region (BA

18; cluster size = 1676.56 mm2, cluster-wise p = .0113), and two

rostral middle frontal regions (BA 10; cluster-size = 3060.86 mm2,

cluster-wise p = .0001; BA 9; cluster size = 1422.12 mm2, cluster-

wise p = .0304). In the right hemisphere, there was also reduced

thickness in the WFS group in a rostral middle frontal region (BA

46; cluster size = 2320.65 mm2, cluster-wise p = .001). No clusters

from the surface analyses of surface area or volume had significant

group effects after multiple comparison correction.

Whole Brain Voxel-wise Analyses of Gray and White
Matter Volumes

VBM analyses of gray matter revealed that the WFS had

significantly less gray matter volume in the cerebellum. Two large

Table 1. Mean (6SD) age and gender distribution and clinical
variables for control groups and WFS group for MPRAGE
scans.

HC
(n = 30)

T1C
(n = 22)

WFS
(n = 11)

Gender M/F 15/15 14/8 5/6

Age in years Mean 12.563.2 14.363.2 14.066.3

Range 7.6–18.7 7.1–19.0 5.9–25.8

Duration of diabetes in
years

Mean – 4.564.7 7.465.3

Range – .11–13.6 .75–16.2

Abbreviation. HC: healthy controls; T1C: diabetic controls; WFS: Wolfram
Syndrome group; SD: standard deviation.
There were no differences between groups for age (p = .23), gender (p = .51) or
duration of diabetes between T1C and WFS (p = .12).
doi:10.1371/journal.pone.0040604.t001

Table 2. Mean (6SD) age and gender distribution and clinical
variables for control groups and WFS group for DTI scans.

HC
(n = 45)

T1C
(n = 9)

WFS
(n = 11)

Gender M/F 23/22 7/2 5/6

Age in years Mean 11.963.1 11.862.3 14.066.3

Range 7.0–17.7 7.1–14.2 5.9–25.8

Duration of diabetes in
years

Mean – .196.05 7.465.3

Range – .11–.25 .75–16.2

Abbreviation. HC: healthy controls; T1C: diabetic controls; WFS: Wolfram
Syndrome group; SD: standard deviation.
There were no differences between groups for age (p = .24) or gender (p = .28)
but there was a significant. difference in duration of diabetes between T1C and
WFS (p = .001).
doi:10.1371/journal.pone.0040604.t002
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clusters survived multiple comparison and smoothness correction,

covarying for age and gender: one in the right cerebellum

(p = 0.0008, 3278 voxels) and one in the left cerebellum

(p = .0125, 1740 voxels)(Fig 4A). There were no clusters in which

WFS had more gray matter volume than controls. VBM analyses of

white matter revealed that the WFS group had significantly lower

volumes in one very large cluster that included much of the

cerebellum bilaterally and extended through the brainstem and

subcortex (p,.001, 29678 voxels)(Fig 4B). An additional, much

smaller cluster was found in the parietal-occipital cortex (p = .0239,

243 voxels). There were no significant clusters in which the WFS

group had more white matter volume than controls.

Regions of Interest DTI Analyses
Placed regions were visually verified to not overlap with any of

the T2 signal abnormalities observed in WFS patients. Out of the

10 regions examined for DTI measures, 3 had a main effect of

group for FA and 3 had a main effect of group for MD measures at

the p,.05 level. Two FA regions (cerebellum: F(2,60) = 13.7,

p,.001; optic radiation: F(2,60) = 11.0, p,.001) and one MD

region (cerebellum: F(2,59) = 14.0, p,.001) survived multiple

comparison correction with age and gender as covariates (main

effect of group, p,.005) (Table 4). For FA in the optic radiations,

the WFS group was significantly different from the HC group

(p,.05), but not the T1C group (p = .18), and the two control

groups were different from each other (p,.05). For FA in the

cerebellum, the WFS group was significantly different from both

control groups (p,.003), but the control groups were not different

from each other (p = .37). For MD in the cerebellum, all three

groups were significantly different from each other (p,.001; post

hoc comparisons).

Tract-Based Spatial Statistics (TBSS) DTI Analyses
Significant reduction in FA was found in the WFS group across

a wide range of regions after controlling for age and gender and

correcting for multiple comparisons. The largest and most striking

clusters were found in the brainstem, cerebellum and optic

radiations (see Fig 4), consistent with the results from ROI

analyses. In addition, we detected widespread decreased FA in the

subcortical white matter, which is not thoroughly sampled by

ROIs. The WFS had reduced axial, but not radial, diffusivity in

the cerebellum and brainstem primarily, although differences were

seen across the brain to a lesser extent, similar to the FA results

(Fig 5).

Scanner and Sequence Differences in Neuroimaging Data
To assess any impact of differences in scanners, we performed

further analyses on the significant regions, restricting analyses to

only those subjects with data collected on the same 3T scanner.

For subcortical volumes (HC, n = 4, T1C, n = 10, WFS, n = 11)

and DTI measures (HC, n = 17, T1C, n = 9, WFS, n = 11)

analyses revealed the same pattern as our larger sample (main

effect of group; p,.001 for brainstem, cerebellar white, cerebellar

gray, cerebellar FA and MD, and optic radiation FA; group x

segment interaction for brainstem, p,.001). These results survive

multiple comparison correction and support the robustness of our

findings, suggesting that scanner and sequence variability within

our control groups did not bias the original results.

Discussion

We report quantitatively measured and regionally distinct

structural brain changes in early stage WFS. We found reduced

ICV, dramatically reduced regional volumes and altered white

matter microstructural integrity. The brainstem, cerebellum and

optic radiations were particularly affected in WFS compared to

both healthy controls and controls with type 1 diabetes (T1C).

Notably, decreased brainstem and cerebellum volumes (after

controlling for intracranial volume or ICV) were seen in almost all

individuals with WFS, regardless of age or duration of diabetes or

other features of the disease. These data together suggest that WFS

Table 3. Mean (6 SEM) volumes of brain regions in mm3, adjusted for age and gender.

Brain Region (mm3) HC (n = 30) T1C (n = 22) WFS (n = 11) p value

Intracranial (ICV) 14816376134316 15096336127999 1358061692086 a,b .005

Whole brain 1029284694162 1045945689363 940183684097 a,b .009

Total cortical gray 538,74464231 53503064952 538,66066919 .84

Total cortical white 443,43964787 456,99765603 447,06667829 .19

Brainstem 20,5606343 19,9606401 16,2206560 a,b ,.001

Cerebellum white 15,6356326 14,7726382 12,2366534 a,b ,.001

Cerebellum gray 58,4196761 58,3146891 52,77161245 a,b .001

Thalamus 7,168692 7,1126107 6,5856150 a,b .005

Pallidum 1,775629 1,753634 1,630648 a,b .04

Total corpus callosum 3,016670 3,138682 2,8836115 .19

Hippocampus 4,306658 4,180668 4,083695 .12

Amygdala 1,706626 1,716631 1,650643 .44

Caudate 3,771689 3,8686105 3,9876146 .44

Putamen 6,1456106 6,1206125 6,1826174 .96

Accumbens 696619 699623 756632 .24

Abbreviation. HC: healthy controls; T1C: diabetic controls; WFS: Wolfram Syndrome group; SEM: standard error of the mean.
P values shown are for the main effect of group in univariate GLM analyses for each measure.
Values in bold survived Bonferroni correction for multiple comparisons (p,.0038).
adifferent from HC group; bdifferent from T1C group.
doi:10.1371/journal.pone.0040604.t003
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Figure 1. Regional subcortical brain volumes by significance level. Regions were segmented in Freesurfer. Left and right volumes were
averaged and are shown on the right side of the brain only. The brainstem, cerebellar gray matter and cerebellar white matter were significantly
reduced in the WFS compared to controls and survived Bonferroni multiple comparison correction (in red; p,.0038). In addition, the thalamus and
pallidum were also reduced in WFS compared to controls, but did not survive correction (p,.05, in yellow). Finally, the corpus callosum,
hippocampus, amygdala, caudate, putamen and accumbens were not different between groups (p..05, in purple).
doi:10.1371/journal.pone.0040604.g001

Figure 2. Volume of brainstem segments by diagnosis and age. (A) The WFS group has reduced volumes in all three brainstem segments
after adjusting for intracranial volume. A repeated measures general linear model analysis found a segmental volume by diagnosis interaction
(F(4,112) = 7.6, p,.001). Volume in the WFS group was significantly different from the control groups for all three segments (*), but the effect was
most striking in the pons. (B) The pons appeared to be reduced in volume in almost all WFS individuals even after adjusting for intracranial volume.
This figure shows the relationship between pontine volume and age. HC = healthy controls; T1C = diabetic controls; WFS = Wolfram group.
doi:10.1371/journal.pone.0040604.g002
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Figure 3. Regions with cortical thinning in the WFS group. After multiple comparison correction and adjustment for age and gender, (A and B)
the rostral middle frontal cortex was found to be thinner bilaterally (right cluster-wise p = .001; left cluster-wise p = .0001 and p = .0304), as was (B) the
left precentral (cluster-wise p = .0008) and (C) the left lingual (cluster-wise p = .0113) cortex.
doi:10.1371/journal.pone.0040604.g003

Figure 4. Voxel-based morphometry (VBM) findings. Gray and white matter clusters where WFS have lower volumes than controls. (A) Gray
matter clusters included right cerebellum (p = .0008), and left cerebellum (p = .0125), while (B) white matter clusters included a large cluster consisting
of much of the cerebellum, brainstem, and subcortex (p,.001), and a small cluster in the parietal-occiptal cortex (p = .0239). Glass brain (all results
shown collapsed on a single slice) view shown on left, and the significant cluster on an average MR overlay is shown on the right. Cross hairs are
placed in the voxel with a peak t value in the cluster.
doi:10.1371/journal.pone.0040604.g004
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affects brain development both globally and preferentially, even at

the earliest stages of symptoms. Previous clinical retrospective

survey studies suggested that neurological features occur later (15–

30 yrs of age) in the disease process [32,33], which led to the

assumption that brain changes in WFS also occur later and are

neurodegenerative in nature. Our findings, based on direct,

objective and quantified measures of brain structure and function,

counter this assumption by showing abnormalities at the onset of

classic WFS symptoms (diabetes and optic nerve atrophy), are

consistent with abnormal neurodevelopment, and so represent a

significant new insight into the WFS disease process.

Our observation that individuals with WFS have significantly

reduced ICV, in comparison to both diabetics and healthy

controls, supports the concept of aberrant neurodevelopment in

WFS. The major expansion of the cranial vault is driven by brain

growth early in childhood until all of the cranial sutures fuse

(around age 6), at which point ICV changes only very slowly

[67,68]. Skull maturation is 77% complete by age 2 [69], 90%

complete by age 6 [68], and maximum growth is achieved at about

10–13 years of age [70]. ICV is therefore considered to be a

reflection of how fully the brain grew and matured in childhood

[71]. For example, neurodevelopmental studies of autism [72],

Rett Syndrome [73], and childhood onset multiple sclerosis [74]

have interpreted differences in ICV or head circumference

between patient and control groups as an indication of abnormally

accelerated or decelerated brain growth during development. In

both autism and Rett Syndrome, individuals fall within the normal

range at birth, but within the first two years of development their

brain growth rapidly diverges from the normal trajectory, and the

degree of divergence correlates with the core symptoms of the

disorders [72,73]. Based on the literature, we suspect that the

reductions in ICV between our WFS group and both the diabetic

and healthy control groups may indicate that WFS affects the

brain early in the course of development. We did not see

differences in whole brain volume once we corrected for reduced

ICV, which is evidence against global brain degeneration.

The preferential vulnerability of the brainstem and cerebellum

in WFS has been described previously, generally in adults in

advanced disease states, without quantification or control groups

[1,3,21–31,75,76]. These qualitative findings typically have been

interpreted as reflecting a neurodegenerative rather than a

neurodevelopmental process [21]. Our study quantifies this

preferential vulnerability across multiple imaging modalities and

analysis approaches (VBM, Freesurfer regions, DTI regions of

interest, TBSS) and at a very young age. Our data clearly indicate

that brainstem and cerebellum volume abnormalities are present

at the time of the very earliest clinical manifestations of WFS (e.g.

0.5 years of diabetes). In combination with the ICV results, this

novel observation suggests that the brain may be affected in WFS

from a very early stage. Interestingly, the cerebellum and the

brainstem follow a very early, prolonged and neurobiologically-

linked course of development in humans [77], which is thought to

make them more susceptible to neurodevelopmental disorders

[78]. Longitudinal follow-up of our cohort will be critical in

determining if individuals show further changes within these

structures relative to normal developmental trajectories and at

what stage of disease severity.

In addition to these profound subcortical and cerebellar

changes, we also found relatively isolated cortical effects of WFS.

Cortical thickness was reduced in WFS in restricted regions,

including lingual, precentral, and rostral middle frontal cortex.

These cortical regions are associated with vision, motor function

and higher order cortical functions such as working memory,

respectively. These regions are known to reduce in thickness with

age during middle childhood, and be influenced by genetic factors

[79]. In addition, both increased [80] and decreased thickness can

be seen in neurodegeneration and neurodevelopmental conditions

[81–83]; however, mechanistic interpretations of this finding are

unclear. Furthermore, other metrics, such as cortical area and

volume did not reveal any significant effects, suggesting that

cortical differences in early WFS are much more subtle and

restricted than cerebellar and brainstem changes.

Our complementary, quantitative measurements of structural

brain differences in WFS allow us to build hypotheses about

potential underlying mechanisms. For example, we found

reduced fractional anisotropy and reduced axial (but not radial)

diffusivity in the brainstem, cerebellum, optic radiations and

numerous other regions. Radial diffusivity, the diffusion of water

perpendicular to white matter fibers, is known to increase in

response to myelin damage [84–86]. In contrast, fractional

anisotropy, the overall directionality of water movement, and

axial diffusivity, the diffusion of water parallel to white matter

fibers, is known to decrease in response to axonal damage [87–

92]. Thus, it is reasonable to conclude that the differences

observed in the WFS group’s white matter microstructure reflect

Table 4. Mean (6SEM) DTI measures from selected brain
regions and adjusted for age and gender.

Brain
Region Measure

HC
(n = 45)

T1C
(n = 9)

WFS
(n = 11) p value

Cerebellum FA .236.004 .226.01 .186.01 a,b ,.001

MD .706.01 .666.02 .776.01 a,b ,.001

Optic
Radiation

FA .556.01 .506.02 a .476.02 a ,.001

MD .846.01 .816.02 .876.02 .20

Corpus
callosum

FA .746.01 .776.01 .716.01 b .009

MD .806.01 .726.03 .80602 b .03

PLIC FA .686.01 .696.01 .686.01 .68

MD .696.01 .666.01 a .686.01 .04

Centrum
semiovale

FA .336.01 .386.02 .356.02 .12

MD .846.02 .756.05 .766.05 .11

Thalamus FA .316.01 .306.02 .306.02 .47

MD .756.01 .736.02 .736.01 .19

Putamen FA .136.004 .136.01 .146.01 .86

MD .716.004 .696.01 .696.01 .06

Hippocampus FA .176.01 .166.01 .146.01 .10

MD .886.03 .856.06 .976.05 .22

Cerebellar
peduncle

FA .566.02 .606.03 .576.03 .57

MD .676.01 .636.02 .666.02 .08

Pons FA .456.01 .426.02 .406.02 a .03

MD .726.01 .746.02 .716.02 .65

Abbreviation. HC: healthy controls; T1C: diabetic controls; WFS: Wolfram
Syndrome group; SEM: standard error of the mean; PLIC: posterior limb of the
internal capsule.
P values shown are for the main effect of group in univariate GLM analyses for
each measure.
Values in bold survived Bonferroni correction (p,.005) for multiple
comparisons.
adifferent from HC group; bdifferent from T1C group.
doi:10.1371/journal.pone.0040604.t004

Brain Vulnerability in Wolfram Syndrome

PLoS ONE | www.plosone.org 9 July 2012 | Volume 7 | Issue 7 | e40604



either axonal damage or impaired axonogenesis. Although

neuropathological case reports have also suggested loss of

myelinated axons in these regions, it has not always been clear

if these are degenerative or developmental changes [21,76].

While WFS has previously been considered a neurodegenera-

tive disease, it is also possible that the brain abnormalities reported

in WFS are the product of two separate pathological processes,

one that is neurodevelopmental in nature and the other

neurodegenerative. Another possibility is that although there are

early brain changes, these do not produce neurological symptoms

until later in development, due to compensatory processes or the

fact that the involved brain networks and functions do not come

on-line until later [93]. For example, in our study and in others,

the MRI and neuropathological changes observed appear more

severe than the neurobehavioral findings would suggest [27,30].

The apparent lack of cognitive deficits in our cohort in the context

of highly atypical brain volumes (e.g. brainstem and cerebellum)

could indicate compensatory processes or the lack of involvement

of these regions in higher order cognitive processing. Notably, we

found that many of these subjects have ataxia which has been

associated with cerebellar dysfunction in other developmental

populations [94]. Longitudinal follow-up of our cohort, and the

addition of even younger and earlier, pre-symptomatic WFS

patients will be essential for determining the difference between

neurodevelopmental and neurodegenerative processes.

Our cohort also had notable depression and anxiety, similar to

findings in advanced WFS [95] and anxiety behaviors found in

animal models of WFS (wfs1-deficient mice) [96]. While cerebellar

dysfunction has also been associated with altered mood [97], we

cannot currently distinguish whether these symptoms are a

reaction to living with a chronic, degenerative condition or if

they are part of the disease process itself. Our findings suggest the

need for psychiatric assessment and possibly treatment even in the

early stages of WFS. Tracking changes in mood and anxiety will

be an important component of future research.

The major strength of this study is its quantification of regional

brain abnormalities in a group of WFS individuals with a range of

disease severity, from newly diagnosed to more significantly

affected. Although the WFS sample presented here is small

compared to studies of more common neurodegenerative diseases,

it is the largest quantified neuroimaging study of WFS to date.

Furthermore, we compare our WFS to two larger groups of age

and gender equivalent comparison groups, to control for any

effects of diabetes or normal development on the brain, and we

applied multiple comparison corrections. However, there are some

limitations to our study. Since our study design was cross-sectional,

we cannot be sure that the observed age-independence of certain

effects would be confirmed in a longitudinal within-subjects design.

Control subjects were a convenience sample obtained from several

current studies at WUSM, and thus did not have cognitive/

behavioral testing. Although all WFS participants who were

willing to travel to St. Louis were accepted into the study, this

requirement may have selected for individuals who were higher

functioning than the general WFS population. The T1C subjects

with DTI scans had shorter duration of diabetes than our WFS

subjects. Ideally, groups would be matched on this variable and on

degree of hyperglycemia and hypoglycemia exposure. Based on

our experience and the existing literature, however, we feel that it

is highly unlikely that small differences in duration of diabetes

would cause the dramatic differences seen between WFS and the

control groups (T1C and healthy). In all of the previous

neuroimaging studies of T1C, including those in youth [98,99]

and in adults with much longer duration and extreme exposure to

hyperglycemia and hypoglycemia [100,101], none have found the

pattern of dramatically reduced brainstem and cerebellar volumes

seen here in the WFS. Groups also had slight differences in the

sequences and scanners used, although these relatively minor

differences would not be expected to explain the dramatic findings

in our WFS group. Furthermore, when the data analyses were

restricted to only those subjects scanned on the same machine

using identical sequences, our findings remained highly significant.

The results of this study lay the groundwork for larger,

longitudinal investigations of neuroanatomical changes in WFS

which could confirm and extend our observations, and distinguish

Figure 5. Results from tract-based spatial statistics (TBSS) analysis. Fractional anisotropy (FA) and axial diffusivity (AD), but not radial
diffusivity, were reduced in the WFS group compared to controls (healthy and diabetic control groups combined), even after multiple comparison
correction. There were no significant findings in the opposite direction (WFS . controls). White matter tracts in the cerebellum, brainstem, and optic
radiations were prominently affected, but changes were also noted in other areas as well. The multiple comparison corrected p values are
represented in the color coding. Z = the Talairach coordinate for the transverse plane.
doi:10.1371/journal.pone.0040604.g005
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between earlier vs. later occurring abnormalities. In addition, the

behavioral correlates of neuroanatomical changes will need to be

better understood. For example, functions known to be reliant on

the optimal development of the cerebellum and brainstem, such as

gait and balance, should be better characterized. Longitudinal

measurement of this cohort of individuals with WFS is ongoing

and will need to be significantly expanded to answer these

important clinical questions. Nevertheless, our current data

provide fundamental insight into the neurophenotype associated

with WFS and provide the necessary information for determining

the appropriateness of animal models of WFS for understanding

the neurobiological mechanisms underlying these findings and for

developing neurologically-targeted interventions. This work would

also contribute to our understanding of the impact of ER stress-

related dysfunction during development.
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