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Abstract

Background: The Stimulus Preceding Negativity (SPN) is a non-motor slow cortical potential elicited by temporally
predictable stimuli, customarily interpreted as a physiological index of expectancy. Its origin would be the brain activity
responsible for generating the anticipatory mental representation of an expected upcoming event. The SPN manifests itself
as a slow cortical potential with negative slope, growing in amplitude as the stimulus approximates. The uncertainty
hypothesis we present here postulates that the SPN is linked to control-related areas in the prefrontal cortex that become
more active before the occurrence of an upcoming outcome perceived as uncertain.

Methods/Findings: We tested the uncertainty hypothesis by using a repeated measures design in a Human Contingency
Learning task with two levels of uncertainty. In the high uncertainty condition, the outcome is unpredictable. In the mid
uncertainty condition, the outcome can be learnt to be predicted in 75% of the trials. Our experiment shows that the
Stimulus Preceding Negativity is larger for probabilistically unpredictable (uncertain) outcomes than for probabilistically
predictable ones. sLoreta estimations of the brain activity preceding the outcome suggest that prefrontal and parietal areas
can be involved in its generation. Prefrontal sites activation (Anterior Cingulate and Dorsolateral Prefrontal Cortex) seems to
be related to the degree of uncertainty. Activation in posterior parietal areas, however, does not correlates with uncertainty.

Conclusions/Significance: We suggest that the Stimulus Preceding Negativity reflects the attempt to predict the outcome,
when posterior brain areas fail to generate a stable expectancy. Uncertainty is thus conceptualized, not just as the absence
of learned expectancy, but as a state with psychological and physiological entity.
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Introduction

Expectancies are an essential part of human adaptation to the

environment. The ability to anticipate future events allows us to

organize our behavior in preparation for the impact of those

events [1]. Nevertheless, expectancy is hardly ever perfect, so that

most events occur in the world with some degree of uncertainty. In

words of Baltasar Gracián (1637/1892), ‘‘[the wise man] may

always hope for the best, but he always expects the worst, so as to

receive what comes with equanimity’’ [2]. The present study is

aimed at finding evidence about how, and where, uncertainty is

computed in the brain.

Previous literature provides a plausible candidate to start our

search. The stimulus preceding negativity (SPN) is a non-motor

slow cortical potential (SCP) elicited by temporally predictable

stimuli without any coupled motor requirements [3–4]. The SPN

manifests itself as a slow cortical potential (SCP) with negative

slope, growing in intensity as the stimulus approximates, and more

clearly observed in parietal and precentral locations [5].

To date, the SPN has been hypothesized to be a physiological

correlate of expectancy; that is, the origin of SPN would be the

brain activity responsible for generating the anticipatory mental

representation of an expected upcoming event. If this is true, the

SPN must be the result of learning, so it will appear gradually, as

the individual captures the regularities regarding the target

stimulus in her environment. Most importantly, only those stimuli

learnt to be predictable are expected to generate a significant SPN

effect. Our proposal – henceforth, the uncertainty hypothesis – is just

the opposite: it is not learned expectancy, but uncertainty, what

mainly generates the SPN. We will try to show that such a

hypothesis is compatible, not only with our own results, but also

with the evidence available in previous literature (and, actually, it

allows to reinterpreting previous results).

Expectancy is predominantly conceptualized as resulting from

activation spread from the perceived predictive cue along an

associative link, progressively generated during learning, provided

that the cue and the outcome were contingently and contiguously

presented [6]. Being unable to predict the upcoming event (the
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outcome) would preclude such facilitation/pre-activation, and thus

uncertainty has been traditionally equated with the absence of any

cognitive/physiological expectancy-related activity. Actually, a

number of SPN results seem to support this prediction. For

example, time estimation and decision-making tasks produce

larger SPN amplitudes for informative than for non-informative

outcomes [7]. SPN is also larger for rewards contingent on the

people’s choice than for those administered gratuitously or at

random [8]. Complementarily, in some studies, the effect has been

observed to depend more directly on the predicted motivational

value of the outcome than on its informative value [9], which has

led some authors to advocate that the SPN results, at least

partially, from the neural representation of the emotional value of

the upcoming feedback, and not only from its perceptual

representation [9–10].

In the case of a dichotomous event (present/absent), high

predictability of either its presence or its absence implies low

uncertainty. In the present experiment, only dichotomous events

are used, so uncertainty equals probabilitistic non-predictability of

the upcoming stimulus (correct/incorrect). In more complex tasks

(see [9]) there can be more that two possible results of predictions,

as, for example different categories representing degrees of

prediction correctness. In these cases, uncertainty is defined as

potential variability of the outcome. Other parameters being

equal, the more possible results of a prediction there exist, the

more uncertain the result will be.

However, it is important to make a distinction here between

merely probabilistic and psychological uncertainty. For a proba-

bilistically uncertain outcome to be also psychologically uncertain,

a previous prediction must be at stake. In principle, we cannot say

an individual is experiencing uncertainty about the future

occurrence of an outcome if she was not trying to predict it. Both

the generation of a prediction and the inability to confirm it in a

consistent manner are necessary ingredients of psychological

uncertainty. In addition, as it will be discussed later, although

incentive and uncertainty are essentially different variables, the

previous assertion also implies that uncertainty will produce

neurocognitive effects in combination with the motivational

relevance of the stimulus to be predicted.

Previous studies on SPN did not distinguish between probabi-

listic and psychological uncertainty. More specifically, control

conditions, designed to avoid expectancy, probably generated

disengagement from the task, and thus did not generate significant

psychological uncertainty. In the experiment described here, we

test whether the activity of the cortical sources supposedly involved

in the SPN, depends on the degree to which an outcome is

(un)expected.

Expectancy/uncertainty was generated by means of a one-cue

one-outcome human contingency learning task (HCL, see [11]), in

which the participant was asked to try to learn to predict the

presence/absence of an outcome (a fictitious disease) on the basis

of a cue (a fictitious medicine), on a trial-by-trial basis, and

received a payoff for each prediction. We were mainly interested

in the potential occurrence of the SPN in the interval between the

learner’s prediction and the occurrence of the outcome (or its

absence). Predictability of the outcome was controlled by

manipulating the degree of contingency between the cue and the

outcome. In accordance with the uncertainty hypothesis, we

expect SPN to be larger when the outcome is unpredictable than

when it is moderately predictable.

This HCL task presents several advantages over other tasks

commonly used for studying ERP indices of expectancy. First, and

most importantly, it allows a clear estimation of expectancy, and

thus of uncertainty. Expectancy can be computed as the

associative strength of associative models [12], or the conditional

probabilities entering the probabilistic-contrast model [13], and

uncertainty as an inverted U-shaped function over expectancy. In

our case, low uncertainty corresponds to high expectancy and vice

versa. And second, no contamination of motor or pre-motor

activity is expected, as the target SPN interval begins once the

response has already been made.

Parallel to the question of whether the SPN effect is linked to

psychological uncertainty or not (and how to check it), is the issue

of the neural source of such an effect. Converging evidence

supports the existence of several cortical brain areas involved in

the generation of SPN. First, dipole modeling [14–16] and fMRI

studies [17–18] have identified the insular cortex as the main

generator of SPN when feedback for a previous response conveys

motivationally relevant information. Second, the anterior cingu-

late cortex (ACC) seems to be the best candidate generator when

negative affect cues are used [15]. Third, some authors have

proposed the involvement of dorsolateral prefrontal areas

(DLPFC) in the anticipation of future events [5,19–22]. And

fourth, an increase in parietal cortex activation has been observed

for temporal expectation tasks [23].

In contemporary learning theories, uncertainty is linked to

sustained attention, and thus to the controlled effort to keep on

learning when the events in the environment are not yet

predictable. Therefore, we can tentatively hypothesize that the

areas involved both in uncertainty computation and in SPN

generation will be also related with cognitive control. Among the

ones mentioned above, the best candidates are thus the ACC and

the DLPFC. sLORETA will be used to try to cast some light on

this issue. The potential role of other areas mentioned in the

literature (insula, parietal cortex), in a broader network, will also

be discussed.

In summary, the uncertainty hypothesis is related to the

occurrence of the SPN in the interval between the prediction

about an outcome and the occurrence of such an outcome. In

contrast with the general assumption, we expect the SPN-

Outcome amplitude to be larger in a condition in which outcomes

are unpredictable (high uncertainty) than in one in which they are

predictable (middle uncertainty). Complementarily, we postulate

the prefrontal cortex as the best candidate of the source of that

activation difference. The potential implication of other areas in

the SPN, and its relation with previous results will be discussed.

Materials and Methods

Participants
Twenty-two Psychology students (2 left handed;14 women;

median age: 20 years, range: 18–24) volunteered in the experiment

in exchange for course credits. All had normal or corrected-to-

normal vision, were healthy, were not currently medicated, and

had not been previously diagnosed with any neurological disease.

All participants signed an informed consent form approved by the

Ethical Committee of the University of Granada and were treated

in accordance with the Helsinki declaration.

Apparatus, Stimuli and Procedure
Participants seated in individual chambers, approximately

60 cm away from a 17in high-resolution LCD monitor, where

all stimuli were presented. PC computers with Intel Core 2 DuoH
processors were used for controlling the task and registering both

behavioral and EEG data. The task was programmed, specifically

for the present experiment, using Visual Basic 6H. The order of

events in each task trial is depicted in Figure 1. Each trial

presented the participant with a fictitious case of a person who had

Expectancy, Uncertainty, and SPN
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taken or not a certain drug (the cue), and later suffered or not a

given side effect (the potential outcome). Between the cue and the

outcome, the participant was asked to make a yes/no prediction

about the occurrence of the outcome (‘‘the side effect wil/will not

occur’’). The main manipulation involved the statistical relation-

ship between the cue and the outcome, and thus the predictability

of the outcome on the basis of the information provided on the

presence or absence of the cue.

Each trial commenced with a central fixation point. After

1500 ms, information on the cue was provided, that is, the

participant was informed whether the current case had taken the

drug or not. The labels for the two cues in the two contingency

conditions of the task were ‘‘perfluorato’’ and ‘‘dextroquinasa’’

(the assignation of labels to contingency conditions was balanced).

The pictures indicating the presence or absence of the cue (a

picture of several colored pills, or the same picture crossed off)

were 300 pixels high and 400 pixels wide.

Once information on the cue had been presented, the

participant predicted whether the outcome (the side effect) would

occur or not. As soon as the prediction made, it was marked

onscreen (yes/no), to prevent the participant to respond twice.

Keys M and Z in the keyboard were assigned, in a balanced

manner, to yes/no responses. All participants pressed the Z key

with their left hand, and M key with their right hand. Although the

cortical distribution of SCP could be changed by post-movement

effects produced by the motor response preceding it, the balanced

assignment of positive and negative responses to the right and left

hands (which makes sure that, on average, participants respond

the same number of times with the same hand on both conditions),

ensures that any uncertainty effect on SCP will be unaffected by

postmovement-related potentials. Once information on the cue

had been presented, the participant predicted whether the

outcome (the side effect) would occur or not. As soon as the

prediction made, it was marked onscreen (yes/no), to prevent the

participant to respond twice. Keys M and Z in the keyboard were

assigned, in a balanced manner, to yes/no responses. All

participants pressed the Z key with their left hand, and M key

with their right hand. The cue remained onscreen until it was

replaced by the outcome (1500 ms after the prediction). The

participant was informed about the occurrence (or non-occur-

rence) of the side effect (the outcome) by means of a picture of a

face showing or not the outcome and a written message (the labels

for the two side effects were ‘‘pruritis’’ and ‘‘eritemia’’, for the two

contingency conditions, and the assignation of labels to contin-

gency conditions was balanced). The picture and the message were

replaced after 1500 ms by a payoff message. ‘‘You earn [lose] 100

[500] points’’. All correct predictions were rewarded, and all

incorrect ones were penalized; however, the amount of reward/

penalty was selected randomly (100/500 points) in each trial. As

noted above, this delayed payoff had no other function than

extending the participant’s attention to the relevance of the

feedback for a longer period. The intertrial interval varied

randomly between 650 and 3000 ms.

The fixed 1500 ms prediction-outcome interval is justified on

the basis of previous literature. On the one hand, most studies on

the SPN set longer intervals (about 2000 ms), but differential

effects are evident by the middle of that period (see [7–10]). On the

other hand, long intervals make the detection of contingencies

more difficult [11]. So, the interval was set to allow for

contingency detection without affecting the possibility to detect

differences between conditions in the SPN effect.

As noted above, the main manipulation involved the degree of

statistical relationship (computed as contingency) between the drug

and the side effect. In one condition, the side effect was predictable

on the basis of the presence or absence of the drug; in the other,

the occurrence of the side effect was not predictable from the

presence or the absence of the drug. In other words, each

participant did the task twice, with two different contingency levels

Figure 1. Timing of the events in each trial of the HCL learning task.
doi:10.1371/journal.pone.0040252.g001
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(DP = .50; DP = .00). Contingency (DP) is computed as the

difference between the probability of the outcome in the presence

of the cue [P(O/C)] and the probability of the outcome when the

cue is absent [P(O/no C)]. In the positive contingency condition

(hereafter, middle uncertainty, MidU, condition), the probability

of occurrence of the outcome in patients who had taken the drug

was.75, whereas the probability of the outcome in patients who

had not taken the drug was.25. In the null contingency condition

(hereafter, maximum uncertainty, MaxU, condition), on the other

hand, both probabilities were.50.

Each contingency task consisted of 256 trials, and the task was

interrupted after every 64 trial-block for the participant to judge

the strength of the causal relationship between the cue and the

outcome. Judgments were collected by using a scale bar with a

cursor the participant could slide to indicate any value between -

10 (the drug prevents the side effect to occur to a maximum

degree) and +10 (the drug causes the side effect to a maximum

degree), with the value 0 indicating that the drug neither caused

nor prevented the side effect. In addition, the task was interrupted

randomly (on average, after every 19 trials) by a screenshot, blank

except for the sentence ‘‘Please let your eyes rest for 10 seconds’’,

after which the task resumed.

Both predictions and judgments were collected for analysis.

Causal judgments were submitted to a 2 (Uncertainty condition:

MaxU, MinU) x 4 (Block: 1–4) ANOVA. On the other hand, the

observed probability of a positive prediction (‘‘the side effect with

occur’’) in the presence of the drug, and the probability of positive

prediction in the absence of the drug, were averaged for each 32-

trial sub-block. These averaged observed probabilities were

submitted to a 2 (Cue: cue-present trials, cue-absent trials) x 2

(Uncertainty condition: MaxU, MinU) x 8 (Sub-block: 1–8)

within-subject ANOVA. In all cases, the Greenhouse-Geisser

correction was used for assessing statistical significance.

EEG Recording
EEGs were recorded from 61 scalp locations using tin electrodes

arranged according to the extended 10–20 system mounted on an

elastic cap (Brain Products, Inc), and referenced online to FCz.

Vertical and horizontal eye activity were recorded from one

monopolar electrode placed below the left eye, and two bipolar

electrodes located in a straight line at the outer canthi of the left

and right eye. Two of the scalp electrodes were attached to

mastoids. All electrode impedances during recording were below 5

kV. EEG and EOG were sampled at 1000 Hz and amplified using

a.016-1000 Hz band-pass filter. Subsequently, all EEG recordings

were downsampled to 250 Hz, band-pass filtered using a.016–

25 Hz 12db/octave, re-referenced offline to average activity of the

mastoids electrodes, and FCz activity was recovered. Offline signal

preprocessing was done using BrainVision Analyzer 2.0 software

(Brain Products Inc, Munich, Germany).

ERP Extraction and Analysis
Two 1900 ms segments were extracted offline. The first one

(SPN-Outcome) was time-locked to the predictive response, with a

200 ms pre-response baseline. The segments lasted from 200 ms

before the prediction to 200 ms post-outcome onset. The second

one (SPN-Payoff) was time-locked to the onset of the outcome,

with a 200 ms pre-outcome baseline, and so it lasted until 200 ms

post-payoff onset. These SPN-Outcome and SPN-Payoff epochs

were corrected for ocular artifacts using the Gratton-Coles

algorithm [24]. Other artifacts were subsequently removed using

an automatic rejection procedure: segments were excluded for the

remaining analyses when amplitudes were outside the +/2100 mV

range [25]. Please note that the filtering setting used here (.016–

25 Hz) allows for significant drifting of the raw EEG, so that if a

more restricted rejection criterion had been used, too many

correct trials would have been unnecessarily rejected. On average,

a 82% (minimum = 114) of trials were retained for further

processing after the artifact correction procedure.

After artifact correction, an SPN-Outcome score was computed for

each participant and condition, as the difference between the

average amplitude in the interval between 1300 and 1500 ms after

the predictive response (or, what amounts to be the same, during

the 200 ms prior to outcome onset) and a baseline defined as the

average amplitude between 1000 and 800 ms prior to outcome

(see [7–8] for similar partitions). Similarly, an SPN-Payoff score was

computed as the difference between the average amplitude

between 1300 and 1500 ms after the outcome (the 200 ms prior

to payoff onset), and a baseline defined as the average amplitude

between 1000 and 800 ms prior to payoff.

Both SPN analyses were carried out on recordings from

electrodes Fp1, Fpz, Fp2, F3, Fz, F4, FC3, FCz, FC4, C3, Cz,

C4, P3, Pz and P4. SPN-Outcome scores were submitted to a 2

(Uncertainty: MidU and MaxU) x 5 (Location: Prefrontal, Frontal,

Frontocentral, Central, and Parietal) x 3 (Laterality: Left, Middle,

Right) multivariate analysis of variance (MANOVA; aimed to

control for correlations between electrodes, [26]). SPN-Payoff

scores were submitted to a 2 (Uncertainty: MaxU, MinU) x 2

(Valence: Positive and Negative payoff) x 5 (Location: Prefrontal,

Frontal, Frontocentral, Central, and Parietal) x 3 (Laterality: Left,

Middle, Right) multivariate analysis of variance. Statistical results

are given as F approximations to Wilks’ lambda. Two-tailed paired

samples t-tests were used for comparisons of interest. Task order

was not included as a factor because neither main effects nor

interactive ones were significant either in behavioral measures

(prediction responses, all p.0.10; causal judgments, all p.0.16) or

in SPN amplitudes (all p.0.41).

Cortical Localization
Standardized Low-Resolution Electromagnetic Tomography

(sLORETA, [27–28]) was used for estimating the 3-D cortical

distribution of current density underlying scalp activity. In the

current implementation of sLORETA, computations were done

using the MNI152 template, with the 3-D space solution restricted

to cortical gray matter, according to the probabilistic Talairach

atlas. The cortical gray matter is partitioned in 6239 voxels at

5 mm spatial resolution. Brodmann anatomical labels are reported

using MNI space. Standardized sLORETA current source

densities with no regularization method were obtained from 60

channels for each participant in each condition and for each time

point in the SPN-Outcome and SPN-Payoff time windows.

Source location followed a rationale adapted to the aim of the

study: if current source density at a certain location is interpreted

as an estimate of cortical activation, a significant correlation

between current source density at a certain voxel and the

magnitude of SPN (in a given uncertainty condition) can be taken

as an indication of the involvement of such voxel in generation of

the SPN (in that condition). Hence, the correlations between

voxelwise current densities and SPN magnitudes can be used to

identify the areas involved in the generation of SPN.

In summary, cortical localization analysis was carried out as

follows. First, a single measure of the activation of each voxel (with

a 5 mm spatial resolution) for the SPN interval was computed, by

averaging voxel activations across that interval (200 ms preceding

the outcome onset). Second, we computed the correlation between

that estimated current density and the magnitude of the SPN

effect, for each voxel and each condition, across participants. And

third, those areas in which at least 10 voxels were found to

Expectancy, Uncertainty, and SPN
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significantly correlate with the SPN score were identified (see [29],

for a similar procedure with behavioral data).

Finally, we were interested in checking how the estimated

activations in the areas involved in SPN-outcome are related to

one another, in order to get an idea of the possible shape of the

brain network for expectancy and uncertainty processing (see [29],

for a similar approach). Current source densities were first

averaged across significant voxels within each previously identified

brain area. The averages of the activations of the significant voxels

within each selected brain area (see below) were submitted to a

structural equation models analysis (SEM). SEM [30–31] serves

purposes similar to multiple regression, but in a more powerful

manner, as it allows to test whether the data are consistent with a

model, including a causal one. A SEM model is composed by

observed/latent variables and connection arrows. Directional

arrows represent causal direction, and bidirectional arrows stands

for correlation between the connected variables. SEM can be used

both in a confirmatory way (to test the goodness-of-fit of an a priori

defined model) and in an exploratory approach (i.e. to compare

several models that usually differ in the number of connections). In

both cases the goodness-of-fit indices test whether the proposed

matrix of connections accounts for the observed pattern of

variances/covariances. Thus, SEM is well suited to test the

hypothesis that different brain networks account for the SPN

differences observed as a function of our uncertainty manipulation.

We made separate SEM analyses for each one of the two

uncertainty conditions. As we do not have a priori information on

the relationship between these areas, we tested 24 of all the

possible models involving the brain locations selected after the

cortical location step. Following literature recommendations [30–

31], several goodness-of-fit tests were used to identify the most

explanatory models: Model Chi-square (CMIN), Root Mean Square

Error of Approximation (RMSEA), Bentler-Bonett Normed Fit Index (NFI),

Parsimony Normed Fit Index (PNFI), and Akaike Information Criterion

(AIC). For a given set of models, we will consider one as better if it

outperforms the others in at least three of these indices. Thus, for

each uncertainty condition, we presented only the best fitting

model.

Results

Behavioral Measures
Two separate analyses of variance were done for causal

judgments and predictions. The Greenhouse-Geisser correction

was used for assessing statistical significance. A 2 (within subjects,

Uncertainty: MidU, MaxU) x 4 (within subjects, Block:1–4)

ANOVA on causal judgments yielded main effects of Uncertainty,

F(1, 21) = 60.82, MSE = 14.58, p,.01, g2 = .74, and the Uncer-

tainty x Block interaction, F(3, 63) = 5.24, MSE = 8.42, p,.01,

g2 = .20. The left panel of Figure 2 displays mean judgments across

blocks for the two Uncertainty conditions. Bonferroni post-hoc

comparisons in the interaction yielded significant differences

between the two Uncertainty conditions for blocks 2, 3, and 4,

but not for Block 1 (p = .039). Trend analyses only revealed a linear

component in the MidU condition, F(1, 21) = 6.90, MSE = 11.28,

p = .02.

For the analysis of participants’ predictions, we computed the

observed probability of a positive prediction (‘‘the outcome will

occur’’) both in cue-present, P(Yes/Cue) and cue-absent, P(Yes/

No cue) trials across 32-trial sub-blocks (8 sub-blocks per

contingency condition). A 2 (within subjects, Uncertainty: MidU,

MaxU) x 2 (within subjects, Cue: present, absent) x 8 (within

subjects, Block: 1–8) ANOVA on those probabilities showed neat

sensitivity to Uncertainty. On the one hand, positive predictions

were more likely in cue-present than in cue-absent trials, F(1,

21) = 56.20, MSE = .69, p,.001, g2 = .73, although that difference

was larger, for MidU than for the MaxU condition, F(1,

21) = 5.39, MSE = .19, p,.01, g2 = .57. As can be seen in the

right panel of Figure 2, the probability of a positive prediction

approached 1.00 in cause-present trials, and.00 in cause-absent

trials in the MidU condition, whereas those probabilities remained

far from the probability scale ends in the MaxU condition. In

addition, this pattern becomes neater as training proceeds, as

shown by a significant Uncertainty x Cue occurrence x Block

interaction, F(7, 147) = 3.93, MSE = .04, p,.01, g2 = .16. These

results qualitatively match previous reports of experiments with a

similar procedure (see [32]).

SPN-Outcome
SPN-Outcome scores were submitted to a 2 (Uncertainty: MidU

and MaxU) x 5 (Location: Prefrontal, Frontal, Frontocentral,

Central, and Parietal) x 3 (Laterality: Left, Middle, Right)

multivariate analysis of variance. This analysis yielded significant

main effects of Uncertainty, F(1,21) = 7.43, p,.02, g2 = .26,

Location, F(4,18) = 6.05, p,.01, g 2 = .57, and Laterality,

F(2,20) = 11.68, p,.01, g 2 = .54. [The analysis of the SPN-

Outcome after removing the two left-handed participants showed

the same pattern of significance. Uncertainty: F(1,19) = 6.56,

p,0.02; Location F(4,16) = 6.14, p,0.01, Laterality

F(2,18) = 10.84, p,0.01. That was also the case for results

regarding SPN-Payoff scores. Uncertainty x Value:

F(1,19) = 8.76, p,0.01. Importantly, given that the ratio of left-

hand and right-hand responses was the same for the two

uncertainty conditions (left-hand: 133 and 133, right-hand: 134

and 126, respectively for MaxU and MidU conditions), it seems

clear that post-movement potentials cannot account for SPN

uncertainty differences.] 81.8% of participants showed less

negative SPN scores (smaller in absolute value) for the MidU

condition than for the MaxU one [t(21) = 2.73, p,.02]. According

to Bonferroni correction, SPN scores for Frontopolar channels

were higher than those for frontal sites (p = .02). SPN scores were

lower for left than for central and right channels (all p,.01). No

other differences were close to significance. Mean SPN-Outcome

scores for the two conditions, averaged across sides and locations

are displayed in Figure 3 (a). Figure 3 (b) displays the waveforms for

the two uncertainty conditions (clearly showing a steeper and more

pronounced SPN for the MaxU condition), for the selected

electrodes, and the topographical map of the differences between

MaxU and MidU conditions in the SPN interval (c).

As noted in the Methods section, a single measure of the

activation of each voxel (with a 5 mm spatial resolution) for the

SPN interval (200 ms preceding the outcome onset) was firstly

computed, by averaging activations for that interval. Second, we

computed the correlation between that estimated current density

and the magnitude of the SPN effect, for each voxel and each

condition, across participants. And third, those areas in which at

least 10 voxels were found to correlate significantly with the SPN

scores were identified.

Table 1 displays the list of areas identified by using this method.

Brodmann areas and coordinates (MNI space) correspond to the

voxels where current density-SPN relationship (R2) was maximal,

for each area and each condition. For the MaxU condition,

current source density covaried with SPN magnitude in the

DLPFC (BA9) the ACC (BA24), the insula (BA13), and the parietal

cortex (BA40). In the MinU condition, current source density

covaried with SPN magnitude in the Insula (BA13), and the

parietal cortex (BA40).

Expectancy, Uncertainty, and SPN
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SPN-Payoff
SPN-Payoff scores were submitted to a 2 (Uncertainty: MaxU,

MinU) x 2 (Valence: Positive and Negative payoff) x 5 (Location:

Prefrontal, Frontal, Frontocentral, Central, and Parietal) x 3

(Laterality: Left, Middle, Right) multivariate analysis of variance.

The MANOVA on the SPN-Payoff scores showed main effects of

Location, F(4,18) = 13.38, g2 = .75, p,.01, and Laterality, F(2,

20) = 16.87, p,.01, g2 = .63. Bonferroni post-hoc tests showed that

Figure 2. Behavioral results. Left panel: Mean causal judgments across the four 64-trial blocks, for the two uncertainty conditions (MaxU; MidU).
Right panel: Probability of a positive prediction (‘‘the outcome will occur’’) in the presence and the absence of the cue, averaged across trials, for each
32-trial sub-block and the two uncertainty conditions. Error bars denote standard errors of the mean.
doi:10.1371/journal.pone.0040252.g002

Figure 3. SPN-Outcome magnitude and SCP. (a) Magnitude of the SPN-Outcome for the two uncertainty conditions during the prediction-
outcome interval. Error bars denote standard errors of the mean. (b) SCP waveforms for the prediction-outcome interval in the selected electrodes
and the two uncertainty conditions (MaxU, MinU). (c) Topographical map of the MaxU-MidU difference.
doi:10.1371/journal.pone.0040252.g003
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SPN-Payoff was larger at frontocentral, central and parietal

channels than at the remaining locations (all p,.03), and at right

and central than at left hemisphere channels (all p,.02). Neither

feedback valence nor the uncertainty manipulation showed

significant effects. However, there was a significant Uncertainty

x Valence interaction, F(1,21) = 11.28, p,.01, g2 = .35. The

difference between positive and negative payoffs was not

significant either for the MidU condition, t(21) = 1.86, p = .08 or

for the MaxU one, t(21) = 1.63, p = .12. The SPN-Payoff score was

significantly larger for MaxU than for MidU only for the positive

Payoff condition, t(21) = 2.28, p, = .04 [see Figure 4].

As we did with the SPN-Outcome, we identified the areas in

which the SPN-Payoff score (computed from positive feedback

trials only, as the difference between MaxU and MinU conditions

was significant only for these trials) covaried with current source

density. As shown in Table 2, in the MidU condition, the SPN-

Payoff score significantly correlated with estimated current

densities in BA24, BA13 and BA40. On the other hand, in the

MaxU condition, the SPN-Payoff significantly correlated with the

estimated current density in BA39 and BA40.

Structural Equations Modeling (SEM)
For the SEM analysis, we used the average activity of significant

voxels of the four areas involved in the generation of SPN-

Outcome in the MaxU condition: dorsal ACC (BA24), DLPFC

(BA9), Insula (BA13), and Parietal cortex (BA40). Following the

rationale described in the Methods section, the model that best

accounts for co-activation in the MaxU condition (Model 1)

resulted to be the one depicted in the left panel of Figure 5. The

one that best accounts for co-activation in the MidU condition is

displayed in the right panel of Figure 5 (Model 2). Fitting

parameters for the two models and the two conditions are shown

in Table 3.

Discussion

Summary of Results and Theoretical Implications
Behavioral results showed the expected pattern, which is a

requisite for SCP interpretation. Both judgments and predictive

responses showed that people discriminate between contingencies.

In most other causal learning tasks (see [33] for a review),

judgments in zero-contingency condition (MaxU) are slightly

higher than in the present case, that is, people tend to perceive low

to moderate positive contingencies where there is not any. Still, in

our case, even judging the cue-outcome causal relation as virtually

inexistent, participants kept on responding ‘‘yes’’ slightly more

often in cue-present than in cue-absent trials (which can be a

manifestation of the well-known bias in favor of positive

contingency [34]).

Participants’ judgments and predictions fully corroborated their

behavioral sensitivity to our key uncertainty manipulation. In

Table 1. Brain locations in which current source density was
significantly correlated (R2) with SPN-Outcome score, at least
in one of the two uncertainty conditions (MaxU, MinU).

Label BA k X Y Z R2

Max Uncertainty

Inferior Frontal Gyrus 9 8 250 0 25 0.30*

Insula 13 19 230 240 20 0.28*

Anterior Cingulate 24 26 25 30 25 0.27*

Supramarginal Gyrus 40 30 255 260 30 0.40*

Mid Uncertainty

Inferior Frontal Gyrus 9 1 245 10 30 0.10

Insula 13 15 240 240 20 0.29*

Cingulate Gyrus 24 1 25 220 40 0.14

Inferior Parietal 40 93 245 245 55 0.40*

Note: *p,.05. BA: Brodmann area. X, Y, and Z coordinates are in MNI space for
the voxel with the maximal relationship with SPN-Outcome score (R2). k is the
cluster size in voxels.
doi:10.1371/journal.pone.0040252.t001

Figure 4. SPN-Payoff magnitude. Uncertainty x Payoff interaction
on the SPN-Payoff score. Error bars denote standard errors of the mean.
doi:10.1371/journal.pone.0040252.g004

Table 2. Brain locations in which current source density was
significantly correlated (R2) with SPN-Payoff score, at least in
one of the two uncertainty conditions (MaxU, MinU).

Anatomic Label BA k X Y Z R2

Max Uncertainty

Inferior Parietal 40 104 240 265 45 .45*

39 58 35 265 40 .28*

Insula 13 1 45 240 20 .05

Cingulate Gyrus 24 1 5 5 30 .15

Mid Uncertainty

Inferior Parietal 40 45 255 230 25 .47*

39 1 55 260 25 .04

Insula 13 5 35 20 15 .25*

Cingulate Gyrus 24 67 20 295 215 .40*

Note: *p,.05. BA: Brodmann area. X, Y, and Z coordinates are in MNI space for
the voxel with the maximal relationship with SPN-Payoff score (R2). k is the
cluster size in voxels.
doi:10.1371/journal.pone.0040252.t002
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parallel with this, SCP results show that the SPN-Outcome is

larger when the upcoming event (the outcome) is uncertain than

when it is relatively predictable. In the uncertain condition

(MaxU, null contingency), its magnitude directly correlates with

current source density in prefrontal areas (ACC and DLPFC). In

the predictable condition (MidU,.50-contingency), however, the

magnitude of the SPN correlates with estimated activity in the

parietal cortex (BA40) and the insula (BA13). Complementarily,

once the uncertainty is resolved, and the individual stays waiting

for the corresponding payoff for her right or wrong prediction, the

main effect of the contingency manipulation on the SPN score

disappears, and only a significant feedback valence effect in the

MidU condition remains. In accordance with previous reports, this

Payoff-SPN effect seems to have posterior sources, including again

parietal areas and the insular cortex.

Therefore, our opening hypothesis that the amplitude of the

SPN preceding uncertain upcoming events would be larger than

the one preceding predictable events has been supported. The

areas responsible for increased activity associated to uncertainty

(DLPFC and ACC) are known to be involved in the control and

monitoring of learned behavior. Note, however, that control takes

place before the response (for example, when an individual has to

consider the potential costs and benefits of response choices [35]);

and monitoring takes place after the feedback, that is, when a choice is

rewarded/penalized, or a prediction confirmed/disconfirmed [36–

37]. Non-contaminated psychological uncertainty arises after the

prediction, but before the outcome, that is, when the result of the

prediction is at stake.

The posterior parietal areas we have observed to be directly

correlated with predictability have also been frequently related to

selective attention [38], and memory encoding and recollection

[39]. So, posterior parietal areas seem to be involved in codifying

the associative evocation or facilitation of the features of the

upcoming event. Our data thus suggest that prefrontal (DLPFC

and ACC) and more posterior (insular and parietal) cortices could

play different roles in a network engaged in expectancy/

uncertainty computation. The fact that posterior areas correlate

with outcome predictability shows their potential involvement in

the associative re-enactment of the perceptual and hedonic

properties of the outcome. When these areas fail to generate

expectancy, that is, when the outcome has been learnt to be

unpredictable, the prefrontal areas are probably responsible for

accruing and reacting to uncertainty. This model is compatible

with the SEM models depicted in Figure 5. In the best-fitting

model for the MaxU condition there appears to be a single active

fronto-posterior connection (from the DLPFC to the parietal),

whereas in the best-fitting model of the MidU condition, two of the

four possible fronto-posterior connections appear to be active.

Although the idea is still rather tentative, these connections could

implement successful attempts to associatively activate the

emotional and perceptual features of the upcoming outcome.

Please note, however, that coactivations – as depicted by our

SEM models – do not strictly correspond to anatomical

projections among areas. First, the fact that two areas are

anatomically connected does not imply that there must be an

active connection between the two within the interval of interest

(which is only a fragment of the whole period). Our SEM models

represent coactivations among areas, and have been induced from

the window of interest only. And second, it is important to take

into account that both the ACC and the insula are complex

structures with several subdivisions. The dorsal part of the ACC

(the part activated in our study) is interconnected with the DLPFC,

the parietal cortices, and the SMA [40]. The posterior part of the

insula, on the other hand, is connected with parietal and temporal

cortices, but not that strongly with the ACC [41].

Integration with Previous Evidence
First, the uncertainty hypothesis is not incompatible with

previous studies on the involvement of the prefrontal cortex in

learning cue-reward and response-reward associations [35,42–44].

On the one hand, unexpected outcomes are known to generate

prefrontal activation that quantitatively mirrors prediction error,

and this prediction error is necessary to update the associative link

between the cue and the outcome [45–47]. However, in the basic

associative framework, non-correlated events are assumed to

generate no new learning. In contrast with this idea, a number of

studies show that non-correlation generates the actual belief that

Table 3. Fitting-quality parameters, for the models of co-
activation identified by SEM analysis1, and the two uncertainty
conditions.

Model NPAR CMIN RMSEA NFI PNFI AIC

Maximum Uncertainty (MaxU)

MaxU 7 2.34 .00 .94 .47 16.33

MidU 9 0.70 .00 .99 .16 18.69

1NPAR, number of parameters in the model,;AIC, Akaike Information Criterion;
CMIN, Chi-square; NFI, (Bentler-Bonett) normed fit index; PNFI, parsimony
normed fit index; RMSEA, root mean square error of approximation.
doi:10.1371/journal.pone.0040252.t003

Figure 5. Graphical depiction of SEM results: brain networks for uncertainty and expectancy. Best-fitting models accounting for co-
activation in the MaxU (top panel) and the MinU (bottom panel) conditions, according to the structural equation model (SEM) analysis. All the solid
arrows are significant at p,.03. Dashed arrows, Model 1 p = .08, Model 2 p = .18.
doi:10.1371/journal.pone.0040252.g005
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the two events are uncorrelated (learned irrelevance; [48] see also

[49–50]). In our experiment, non-contingency generated a belief

of causal inefficacy, and, simultaneously, an incremented pre-

outcome SPN effect. Although the precise role of this uncertainty-

related SPN remains speculative, informal reports by our

participants in non-contingency conditions reveal attempts to find

a way to predict the outcome, alternative to mere conditioned

expectancy. Our intuition is that uncertainty motivates such

attempts, which generates the prefrontal activity observed in SPN.

In that sense, our proposal is that the involvement of prefrontal

cortex in uncertainty perception has more to do with learning non-

contingency than with learning contingency. This idea in not

incompatible with the dominant associative expectancy approach,

but certainly complements it.

Second, some studies attribute a direct role in the pre-outcome

uncertainty to the midbrain dopaminergic system. For example,

Mattox et al. [51] compared the SPN of patients suffering the

Parkinson disease (in which the midbrain dopaminergic system is

severely damaged) with that of healthy controls, using the weather

prediction task. As expected, the SPN in controls was larger for the

difficult condition (3 cue cards), than for the simple condition (1

card). More interestingly, the SPN in patients was unrelated to task

difficulty. This pattern is compatible, again, with the implication of

uncertainty in the SPN, but also points out to the implication of

pre-feedback dopamine release in its generation (see [52], for

similar results on healthy participants under challenge with the

dopamine agonist metilphenidate).

Animal studies corroborate this last idea. Fiorillo et al. [53]

registered the activity of midbrain neurons in monkeys, from the

onset of the cue to the expected time of the outcome. The function

relating expectancy and those neurons’ activity was inverted U-

shaped, with the maximal activation for the highest uncertainty

and lowest for total certainty (for example when the cue was

always followed by the outcome). Interestingly, the activity peak

occurred at the time of the expected outcome, which, according to

these authors, corresponds to the time of greatest uncertainty (see

also [54]).

And third, our results can cast new light on some previous,

apparently contrary results. Damen and Brunia [55] used a time

estimation task to compare the SPN elicited by knowledge of

results and the one elicited by task instructions. The fact that only

knowledge of results (KR feedback) elicited a reliable SPN led

these authors to conclude that SPN is only caused by upcoming

stimuli correlated with the preceding response. Alternatively, it has

been proposed that pre-feedback and the pre-instruction SPN are

functionally different [56]. However, it seems also plausible to

assume that upcoming task instructions do not engage the

expectancy brain network. That is, in Damen and Brunia’s

control condition people did not learn to predict based on the

received instructions, especially because, from the very beginning,

it was clearly stated that responses and instructions were unrelated.

In the time estimation task in Kotani et al’s study [9], the

stimulus to be predicted varied across conditions in two

dimensions: the informational richness of the feedback provided

(just correct/incorrect, or more detailed information on the degree

of correctness) and the motivational significance of feedback

(monetary reward, or just information). The authors observed an

increased SPN in the high information/monetary reward condi-

tion – when compared with the other three –. The contribution of

information richness to SPN is easily explainable in terms of

uncertainty. With standard feedback, only two results are possible

(correct/incorrect); in the rich feedback condition there are 7

possible results (depending on the degree of correctness), so

uncertainty is objectively higher in the rich information condition.

However, the effect of information was significant only in the

reward condition (namely, when real money was at stake), which is

compatible with the idea that the effect of uncertainty increases

when the individual is highly motivated. Nevertheless, motivation

and uncertainty are related, but separable dimensions. As noted

above, the areas responsible for increased activity associated to

uncertainty (DLPFC and ACC) are known to be involved in

effortful control. Effort is unnecessary if a prediction is generated

easily, via associative evocation, in the low uncertainty condition.

And the other way round, if the result is uncertain but

motivationally irrelevant, there will be no effort investment either.

Both motivation and uncertainty are necessary conditions for the

investment of mental effort during the prediction-feedback

interval. This connection between motivation and uncertainty

justifies the involvement of the dopaminergic system.

However, being motivated to predict an uncertain but

hedonically relevant stimulus, and to be able to evocate the

hedonic (aversive or appetitive) properties of the upcoming event

are essentially different processes (see [10,57]). Actually, there have

been attempts to demonstrate that the SPN is generated by

hedonic evocation. For example, in a decision making task, Masaki

et al. [8] compared a condition in which people had to learn to

select the most profitable choice from an array (the choice

condition) against a condition in which they knew in advance

rewards were delivered at random (the no-choice condition). As

expected, the choice condition elicited a larger SPN than the no-

choice one. These results can be interpreted, as authors did,

assuming that SPN is an index of expectation for reinforcement.

However, it seems also reasonable to assume that only participants

in the choice condition were engaged in the computation of the

action-reward causal link. So, once more, the level of psychological

uncertainty, and not only the level of expected reward, was

different in the two conditions.

On this regard, the null results from Ohgami et al [57] using a

time estimation task are also at least partially compatible with our

interpretation. The main manipulation in that study comprised the

hedonic consequences of feedback (only reward, only punishment,

combined, or neutral). There was no manipulation of uncertainty

in this case, but, strictly speaking, there was no effect of the

motivational significance manipulation either (but a laterality x

feedback type interaction, by virtue of which interhemispheric

differences vanished in the reward condition). As noted earlier, if

we take that interaction as evidence of the contribution of hedonic

anticipation to SPN, it would not be incompatible with our results,

but complementary. Still, the fact that the effect was less intense

and more elusive in this case that in other experiments seems to

imply that the potential effect of uncertainty (when it is

manipulated) on the SPN is larger than the mere effect of hedonic

evocation.

Summarizing previous evidence, in most SPN studies carried

out to date, there has been a chance for uncertainty to influence

the key contrasts. As noted above, for uncertainty to have

psychological and physiological entity, the network responsible for

expectancy computation must engage in predicting the outcome,

and then fail to do so. However, it is important to acknowledge

that the prefrontal areas showing more activity in our high

uncertainty condition, and the ones involved in representing

expected rewards are not overlapping, so the previously cited

results are complementary, rather than contradictory, with ours.

Our results are not incompatible with the involvement of

prefrontal cortex in computing prediction error, but, at the same

time, points out to the insufficiency of the expectancy generation/

violation mechanism assumed to be responsible for learning in all

associative models. As noted above, both animal and human

Expectancy, Uncertainty, and SPN

PLoS ONE | www.plosone.org 9 July 2012 | Volume 7 | Issue 7 | e40252



studies had already found that uncertainty is quantitatively related

with pre-outcome dopaminergic activity. Our results demonstrate

that prefrontal structures are also part of this brain mechanism of

uncertainty computation.

Conclusion
The main result of the present study is the demonstration that

psychological uncertainty crucially contributes to SPN, and the

potential involvement of DLPFC and ACC in the generation of

such psychological and physiological activity. Thus, the SPN can

be considered a manifestation of part of a broad mechanism for

adaptive behavior. At a cortical level, the network responsible for

expectancy/uncertainty generation would include the anterior

cingulate and dorsolateral prefrontal cortices, posterior parietal

areas, and the insula. Part of this network is probably responsible

for generating expectancy, that is, the anticipated representation of

the hedonic and perceptual features of the upcoming event.

However, there is another part, the most anterior one, coming into

action when the learner has been unable to predict the outcome in

the past, or, what amounts to be the same, when the upcoming

event is perceived as uncertain. Consequently, the SPN arises as a

tool to study the interaction of uncertainty with other processes,

and, more specifically, the role of uncertainty in normal and

pathological decision making, a possibility recently proposed in the

fields of behavioral economics and neuroeconomics [58–59].
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4. van Boxtel GJM, Böcker KBE (2004) Cortical measures of anticipation.

J Psychophysiol 18: 61–76.

5. Brunia CHM (1999) Neural aspects of anticipatory behavior. Acta Psychol 101:

213–242.

6. Sutton RS, Barto AG (1981) Toward a Modern Theory of Adaptive Networks:
Expectation and Prediction. Psychol Rev 2: 135–170.

7. Chwilla DJ, Brunia CHM (1991) Event-related potentials to different feedback

stimuli. Psychophysiology 28: 123–132.

8. Masaki H, Yamazaki K, Hackley SA (2010) Stimulus-preceding negativity is
modulated by action-outcome contingency. Neuroreport 21: 277–281.

9. Kotani Y, Kishida S, Hiraku S, Suda K, Ishii M, et al. (2003) Effects of

information and reward on stimulus-preceding negativity prior to feedback
stimuli. Psychophysiology 40: 818–826.

10. Masaki H, Takeuchi S, Gehring WJ, Takasawa N, Yamazaki K (2006) Affective-

motivational influences on feedback-related ERPs in a gambling task. Brain Res,
1105: 110–121.

11. Buehner M (2005) Continguity and convariation in causal inference. Learn

Behav 33: 230–238.

12. Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: variations

in the effectiveness of reinforcement and nonreinforcement. In Black AH,

Prokasy WF, editors. Classical conditioning II: Current theory and research.
New York: Appleton-Century-Crofts. 64–99.

13. Cheng PW, Novick L (1990) A probabilistic contrast model of causal induction.

J Pers Soc Psychol 58: 545–567.
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15. Böcker KBE, Baas JMP, Kenemans JL, Verbaten MN (2001) Stimulus-

preceding negativity induced by fear: a manifestation of affective anticipation.

Int J Psychophysiol 43: 77–90.

16. Ohgami Y, Kotani Y, Hiraku S, Aihara Y, Ishii M (2004) Effects of reward and

stimulus modality on stimulus-preceding negativity. Psychophysiology 41: 729–

738.

17. Tsukamoto T, Kotani Y, Ohgami Y, Omura K, Inoue Y, et al. (2006) Activation

of insular cortex and subcortical regions related to feedback stimuli in a time

estimation task: An fMRI study. Neurosci Lett 399: 39–44.

18. Kotani Y, Ohgami Y, Kuramoto Y, Tsukamoto T, Inoue Y, et al. (2009) The

role of the right anterior insular cortex in the right hemisphere preponderance of

stimulus-preceding negativity (SPN): An fMRI study. Neurosci Lett 450: 75–79.

19. Birbaumer N, Elbert T, Canavan AGM, Rockstroh B (1990) Slow potentials of

the cerebral cortex and behavior. Physiol Rev 70: 1–41.

20. Gilbert DT, Wilson TD (2007) Prospection: Experiencing the Future. Science
317: 1351–1354.

21. Quintana J, Fuster JM (1992) Mnemonic and predictive functions of cortical

neurons in a memory task. Neuroreport 3: 721–724.

22. Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, et al. (2004) Prediction of
immediate and future rewards differentially recruits cortico-basal ganglia loops.

Nat Neurosci 7: 887–893.

23. Coull JT (2009) Neural substrates of mounting temporal expectation. PLoS Biol
7.

24. Gratton G, Coles MGH, Donchin E (1983) A new method for off-line removal

of ocular artifact. Electroencephalogr Clin Neurophysiol 55: 468–484.

25. Donkers FCL, Nieuwenhuis S, van Boxtel GJM (2005) Mediofrontal negativities

in the absence of responding. Cogn Brain Res 25: 777–787.

26. Vasey MW, Thayer JF (1987) The continuing problem of false positives in

repeated measures ANOVA in psychophysiology: A multivariate solution.
Psychophysiology 24: 479–486.

27. Pascual-Marqui RD (2002) Standardized low resolution brain electromagnetic

tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol
24D: 5–12.

28. Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution

electromagnetic tomography: a new method for localizing electrical activity in

the brain. Int J Psychophysiol 18, 49–65.

29. Silton RL, Heller W, Towers DN, Engels AS, Spielberg JM, et al. (2009) The
time course of activity in dorsolateral prefrontal cortex and anterior cingulate

cortex during top-down attentional control. Neuroimage 50: 1292–1302.

30. Jaccard J, Wan CK (1996) LISREL approaches to interaction effects in multiple
regression. Thousand Oaks, CA: Sage Publications.

31. Kline RB (1998) Principles and practice of structural equation modeling. NY:
Guilford Press.

32. Perales JC, Catena A, Shanks DR, González JA (2005) Dissociation between
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