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Abstract

Network robustness refers to a network’s resilience to stress or damage. Given that most networks are inherently dynamic,
with changing topology, loads, and operational states, their robustness is also likely subject to change. However, in most
analyses of network structure, it is assumed that interaction among nodes has no effect on robustness. To investigate the
hypothesis that network robustness is not sensitive or elastic to the level of interaction (or flow) among network nodes, this
paper explores the impacts of network disruption, namely arc deletion, over a temporal sequence of observed nodal
interactions for a large Internet backbone system. In particular, a mathematical programming approach is used to identify
exact bounds on robustness to arc deletion for each epoch of nodal interaction. Elasticity of the identified bounds relative
to the magnitude of arc deletion is assessed. Results indicate that system robustness can be highly elastic to spatial and
temporal variations in nodal interactions within complex systems. Further, the presence of this elasticity provides evidence
that a failure to account for nodal interaction can confound characterizations of complex networked systems.
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Introduction

The structural and operational characteristics of many types of

networks, particularly those representing physical, biological,

chemical and social systems are highly dynamic and subject to

constant change [1–4]. Networks exhibit periods of growth,

decline, adjustment and equilibrium, expressed as changes to their

structure (i.e. topology) and use (i.e. the magnitude of interaction

or flow between pairs of nodes). As a result, the ability to effectively

characterize the robustness of networks to the deletion of arcs

and/or nodes is a tremendous analytical challenge requiring the

consideration of both the structural and operative states of a

network over time.

Much of the research on characterizing network dynamics

focuses on structural change of systems over time, emphasizing

network growth via preferential attachment [5–7] or copying [8],

together with scaling [6,9–10], design considerations [11], decline

[12] and vulnerability to failure [13–15]. Likewise, research that

assesses network robustness typically addresses the problem from a

structural perspective, emphasizing various measures of connec-

tivity and performance [9,11,16–18]. As a result, these types of

approaches primarily describe a structural state of the network,

assuming that interaction or flow among all pairs of nodes is

equivalent in magnitude and value to the system. However, in

most networks, the level of interaction between any pair of nodes

can vary in response to changes in the demand or need for

interaction between the pair. For instance, the number of

commuters between two cities can vary based on cost of travel,

time of day, day of week, services available, etc [19]. Individuals in

a social network such as Facebook do not require (or want)

connectivity with all other individuals in the network. Likewise,

every species in a food web does not consume equivalently at every

trophic level. Unfortunately, relatively little research has been

devoted to understanding how variations in interaction among

network nodes can affect a network’s robustness [20–22]. One

reason for the overwhelming focus on network structure is that

measuring interaction among network nodes is a substantial

practical and analytical challenge in itself. Fortunately, new

scientific developments continue to yield nodal interaction data of

increasing resolution and quality, increasing prospects for more

sophisticated assessments of network structure and operation [23–

26]. Thus, many research areas are now better positioned to

exploit these spatial relationships in their analysis and move

beyond the overgeneralizations inherent to structural analysis. To

investigate the hypothesis that network robustness is not sensitive

or elastic to the level of interaction (or flow) among network nodes,

this paper explores the impacts of network disruption, namely arc

deletion, over a temporal sequence of observed nodal interactions

for a large Internet backbone system. In particular, a mathemat-

ical programming approach is used to identify exact bounds on

robustness to arc deletion for each epoch of nodal interaction.

Elasticity of the identified bounds relative to the magnitude of arc

deletion is then assessed.

Evaluations of network robustness are typically premised on the

extent to which a network is impacted by a disruptive or

disassembly mechanism, such as those triggering the deletion or

loss of network arcs and nodes [12,14]. Networks that experience

lower levels of disruption from such events are considered to be
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more robust. One common way of modeling a disruptive

mechanism is through the deletion of network elements in a

manner that is representative of the assumed process (e.g. random

deletion of nodes) [12]. Once an element (or a set of elements) is

deleted, the resulting impact to the network’s performance (i.e.

decreases in efficiency, connectivity, capacity, interaction, etc.) can

be assessed [9]. A network’s robustness is therefore intimately

linked with the mechanism of disruption assumed to impact the

network and how the resulting disruption is measured.

Given the diversity of networks that have been studied, many

mechanisms of disruption have been modeled, giving rise to a

tremendous range of methodological options for characterizing

and interpreting robustness [18,27]. Murray et al. [27] provide a

basic typology of these methods using four broad categories: 1)

scenario specific, 2) strategy specific, 3) simulation, and 4)

mathematical modeling. Each of these categories is structured to

reflect the way that deletion scenarios (sets of arcs and nodes

deleted) are identified. Scenario specific methods are focused on

analyzing the impact of a single or very limited selection of

deletion scenarios that are presumed to be targeted by a deletion

mechanism. Modeling the network effects of an airport closure (i.e.

nodal deletion) due to local or regional weather conditions is

considered a scenario-specific approach in this typology. Strategy

specific methods identify scenarios where a deletion mechanism is

assumed to logically order and sequentially delete network

elements in some fashion. For instance, nodes might be ranked

in decreasing order of their perceived value (e.g. based on some

structural characteristic such as degree) to the deletion mechanism

to establish the sequence of deletion [9,20]. Similar to the scenario

specific methods, strategy specific approaches assume that

scenarios selected by the disruptive mechanism can be precisely

determined using simple rules and ranking metrics. As a result,

both scenario specific and strategy specific methods for evaluating

network robustness typically consider a relatively limited set of

deletion scenarios. However, this can be problematic, because

even in small networks, an enormous range of potential deletion

scenarios exist whose contribution to network robustness remains

unexplored. As a result, evaluation, comparison and benchmark-

ing of robustness is limited to only those deletion scenarios

identified, rather than a broader spectrum of potential scenarios

[18,27–29]. Simulation methods attempt to provide a more

detailed characterization of robustness by identifying a larger

sample of potential deletion scenarios and assessing their relative

value. That is, simulation attempts to relax the rules guiding

deletion and account for the wide range of scenarios available to a

deletion mechanism. However, unless all potential scenarios of

deletion are completely enumerated, the full extent of network

robustness remains unknown. This is of particular concern since

the deletion scenarios to which the network is least robust may not

be identified [18,27–29]. To address this issue, mathematical

modeling techniques have been developed to establish the exact

mathematical bounds on robustness (i.e. robustness to the most

disruptive mechanism and the least disruptive mechanism) [22,28–

35]. These mathematical programming approaches, widely known

as ‘‘interdiction’’ models, have been developed to identify optimal

ways of deleting or degrading network elements by explicitly

modeling the objective(s) of the deletion mechanism without

constraining the order in which the elements are selected for

deletion. In other words, it is assumed that a mechanism optimizes

its capability for deletion by assessing the simultaneous impact of

the deletion scenario on a network’s robustness. In this sense, one

bound on robustness can be viewed as the level of disruption

caused by a deletion mechanism that optimally targets a set of arcs

and/or nodes such that network performance is maximally

degraded. That is, no other scenario of deletion targeting the

same number of arcs and nodes would result in greater disruption

to network performance than the bounding scenario. Since these

bounds represent a mathematically optimal benchmark on

network robustness, the relative impacts of all other scenarios of

arc/node deletion (regardless of the underlying mechanism) can be

evaluated consistently and without bias with respect to the bounds.

Sadly, little attention has been given to mathematical bounds on

robustness since they are extremely difficult to provably identify

due to the combinatorics and interdependencies inherent to

complex networks [22,35]. Consider, for example, a network with

400 nodes and a mechanism targeting eight nodes for deletion.

Combinatorially, the mechanism in this case would have C400
8 (or

15 quadrillion) feasible scenarios of simultaneous node deletion to

choose from. In order to provably identify the scenario bounding

robustness of a network this size, the impact of each of these

scenarios would need to be evaluated in some fashion. Clearly,

while this type of network is not particularly large by today’s

standards, the associated computational challenges for evaluating

robustness on a system this size are daunting. Regardless, since the

mathematical bounds on robustness yield valuable context for

robustness measures associated with any other mechanism of

deletion, they are ideal for testing the sensitivity of network

robustness to changes in nodal interaction as will be examined

next. First, a mathematical programming approach for deriving

bounds on network robustness to arc deletion given observations of

nodal interaction over time is detailed. This modeling framework

is then applied to a large Internet backbone system, for which a

temporal sequence of nodal interactions was obtained. After

robustness bounds are determined, elasticity of the identified

bounds relative to the magnitude of arc deletion is assessed.

Methods

Provided a network G with N nodes and A arcs in epoch t

(Gt(Nt,At)) and level of interaction or flow fijt between each pair of

nodes i[Nt,j[Nt, the total nodal interaction supported by the

network can be expressed as Vt~
P
i[Nt

P
j[Nt

fijt. Let p denote the

number of arcs to be targeted by the deletion mechanism and let

X k
ijt represent the deletion mechanism’s decision to act on each arc

(i,j)[At in scenario k (where, X k
ijt~1:0 if arc (i,j) is selected for

deletion; X k
ijt~0:0 otherwise). Thus, in any feasible scenario of arc

deletion k in epoch t,
P

(i,j)[At

X k
ijt~p. Numerous such scenarios

k (entire set denoted Kpt) exist given the combinatorial nature of

the problem as described earlier. Given any scenario of deletion k,

the impact on connectivity or the presence of a path between a

pair of nodes can then be referenced as the variable Zk
ijt where,

Zk
ijt = 0.0 if connectivity between nodes i and j is present, and

Zk
ijt = 1.0 if no path is available between the nodal pair. Thus,

interaction between a pair of nodes can only be facilitated

whenever at least one path between the two nodes exists (i.e.

Zk
ijt = 0.0). The total nodal interaction inhibited by a scenario of

arc deletion can then be denoted V̂Vpk
t ~

P
i[Nt

P
j[Nt

fijtZ
k
ijt. If Kpt

accounts for all feasible scenarios of p-arc deletion, the state of

maximally inhibited nodal interaction is then induced by the

scenario k where V̂Vpk
t ~maximize

k[Kpt

V̂Vpk
t . Therefore, a lower bound

on network robustness in epoch t is then the level of nodal

interaction supported by the network (or non-inhibited) given a

scenario of maximal disruption or Cp
t ~Vt{ maximize

k[Kpt

V̂Vpk
t

Robustness Elasticity in Complex Networks
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[22,36]. In practice, the identification of arc deletion scenarios that

provably maximize
k[Kpt

V̂Vpk
t is a computational challenge, necessitat-

ing efficient optimization approaches and solution techniques

[22,30–31,35]. In order to identify a bounding scenario of arc

deletion, a mathematical programming problem can be structured

based on the model of [22]. Let k~� delineate the scenario of

deletion resulting in maximal inhibition of nodal interaction to be

sought and let Mijt be the set of nodes v incident to node i through

which node j can be reached via non-cyclic paths.

Maximize V̂Vp�
t ~

X

i[Nt

X

j[Nt

fijtZ
�
ijt ð1Þ

Subject to:

X

i,jð Þ[At

X �ijt~p ð2Þ

X �ijt{Z�ijt§0 V i,jð Þ[At ð3Þ

X �ivtzZ�vjt{Z�ijt§0 Vi[Nt,j[Nt,v[Mijt,v=j ð4Þ

X �ijt~ 0,1f g V(i,j)[At ð5Þ

Z�ijt~ 0,1f g Vi[Nt, j[Nt

Model Objective (1) is to identify a network state where total nodal

interaction is maximally inhibited. If the nodal interaction variable

fijt is omitted, Objective (1) would then be to maximally inhibit

structural connectivity. Constraint (2) states that a scenario must

be found that involves the deletion of exactly p arcs. Constraints (3)

and (4) state that connectivity between a pair of nodes can only be

completely inhibited if no paths between the nodal pair are

available after arc deletion. That is, any path between a pair of

nodes can provide connectivity until one or more of the arcs

participating in the path are deleted. Given this constraint

structure, all potential paths of movement between each nodal

pair are considered in the modeling framework (not just the

shortest or some subset of paths) [22]. Constraints (5) ensure that

the decisions made by the model are binary-integer in nature.

Given the linear-integer structure of this model, it can be solved

using techniques such as branch-and-bound [37], available in

many commercial optimization software packages. Once solved,

the variables X �ijt~1:0 will indicate which arcs are selected for

deletion and the variables Z�ijt~1:0 will indicate which nodal pairs

are no longer connected given the optimal scenario of arc deletion.

Network robustness to the most disruptive mechanism of p-arc

deletion can then be reported as C
p
t ~Vt{V̂Vp�

t .

Once a network’s robustness has been characterized, the

sensitivity or elasticity of robustness to changes in the magnitude

of arc deletion p can be evaluated. The elasticity of robustness in

epoch t can be approximated as E
Cp

t ,p
~D%DCp

t =%DpD for any

change in robustness relative to the corresponding change in p

using standard midpoint elasticity calculations [38]. Given this

formulation of elasticity, values greater than 1.0 represents

increasing returns to scale, where changes in network robustness

are very sensitive to changes in the magnitude of arc deletion. In

other words, a larger elasticity indicates greater potential for a

mechanism to efficiently degrade network performance. Con-

versely, robustness elasticity less than 1.0 indicates decreasing

returns to scale, where changes in network robustness are less

sensitive to changes in the magnitude of arc deletion. Simply put, a

lower sensitivity means that the network can better withstand the

effects of a disruptive mechanism.

Results

The concept of robustness elasticity is illustrated using the

Internet2 backbone network for which observations of nodal

interaction were recorded [39]. Topology and levels of nodal

interaction for this Internet system were observed at network

routers. When this study was conducted, 372 routers (nodes) and

495 fiber linkages (arcs) defined the backbone structure (Figure 1).

Thus, in this network there are 138,384 nodal pairs (3726372)

that can potentially interact with one another (sending/receiving

data in this example). Data (i.e. bytes) transmitted between

network nodes was recorded over a 24 hour period. Given the

amount of data collected, network traffic is aggregated into six

epochs for subsequent analysis. Table 1 shows a summary of

network activity in the analysis epochs. Over the course of the day

sampled, some level of data transmission is observed between

70,685 unique pairs of nodes (routers). Therefore, only around

51% of the nodal pairs in the network required connectivity on

this day. The number of nodal pairs interacting varies consider-

ably throughout the day with a high of 62,200 pairs engaged in the

movement of nearly 24% of the day’s data in the 12 pm–4 pm

epoch (all times are in U.S. Eastern Standard Time) to a low of

47,913 pairs supporting only 8% of the day’s interaction in the

4 am–8 am epoch (Table 1). In this paper, bounds on robustness

for scenarios of arc deletion ranging from p = 1 (deletion of a single

arc) to p = 20 (simultaneous deletion of 20 arcs) for each of the six

epochs are sought. To accomplish this, a total of 120 instances to

the optimization model (1)-(5) are generated to derive twenty

bounding scenarios for each of the six epochs. Each of the 120

modeling instances is then solved to optimality using IBM’s ILOG

CPLEX v12.1.0, a commercial optimization solver. Using the

optimal deletion scenarios, the Internet network’s robustness to arc

loss Cp
tð Þ can then evaluated.

Table 2 details the bounds on robustness for each epoch for the

different levels of p-arc deletion assessed. To better visualize the

nature of these bounds, Figure 2 illustrates the scenario of seven

arc deletion (p = 7) identified by the optimization approach as

maximally inhibiting nodal interaction in the 8 am–12 pm epoch.

The seven arcs comprising this optimal scenario constitute a

cutset, fragmenting the network into two subgraphs. In this

particular epoch, this cutset inhibits 33.7% of all nodal interaction

(66.3% interaction is non-inhibited). Therefore, while nodes in the

same subgraph (i.e. Denver and New York) are still connected and

can interact, nodes in different subgraphs (i.e. New York and Los

Angeles) are no longer connected and all interaction among them

has been inhibited. In order to more clearly illustrate the spatial

distribution of inhibited nodal interaction, Figures 3–4 depict the

backbone network and the percent of interaction inhibited at each

node (deleted arcs are not shown). Figure 3 details the level of

nodal interaction inhibited in the 8 am–12 pm epoch due to the

optimal deletion scenario of seven arcs shown in Figure 2. As

highlighted in Figure 3, many nodes in California, Oregon,

Nevada, and Arizona experience higher levels of disruption given

that most of their interaction was with nodes in the Eastern

subgraph. Many of the nodes in the Eastern subgraph display

Robustness Elasticity in Complex Networks
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lower levels of disruption on average, indicating they required little

or no connectivity with the Western subgraph in this epoch.

Interestingly, there are some non-intuitive pockets of nodes

elsewhere in the network (e.g. Maine) that too experience

significantly degraded levels of interaction – likely a function of

their demand for interaction with Western nodes during this

epoch. Figure 4 depicts the percent degradation in nodal

interaction at network nodes in the 8 pm–12 am epoch. In this

case, the seven deleted arcs maximally inhibiting nodal interaction

(36.9% of total interaction inhibited; 63.1% non-inhibited) are

primarily located in the Northeastern portion of the network

comprising a completely different scenario from that shown in

Figure 2. The resulting spatial distribution of disruption varies

considerably among network nodes. While interaction between

many nodal pairs experiences little to no reduction, interaction

among other nodes (i.e. those in the Northeastern region where

arc deletion occurred) is severely diminished. Although very

distant from the deleted arcs, significant levels of inhibited nodal

interaction can be observed in Wisconsin, California, Georgia, as

well as many other locales. While the number of arcs deleted in the

8 pm–12 am and 8 am–12 pm epochs is the same (p = 7), the set of

arcs selected for deletion in each epoch are very different as is the

impact of their deletion on nodal interaction. These changes in the

role of the network arcs and in the spatial distribution of nodal

interaction disrupted highlight the remarkable sensitivity of

network robustness, both in time and space, to arc deletion. This

finding is clear evidence that network robustness is indeed

dependent on the spatial and temporal organization of interacting

nodes within a network.

Figure 5 summarizes the derived bounds on network robustness

from Table 2 for those epochs most robust (maximum) and least

robust (minimum) to optimal p-arc deletion. In this Figure, the

robustness of the other four epochs, though not shown for clarity,

falls somewhere between these extrema. Without identification of

these bounds, the relationship of a deletion mechanism to a most

disruptive or ‘worst-case’ mechanism is impossible to assess. As

shown, the bounds on robustness can range significantly within

each epoch. For example, given the simultaneous deletion of two

arcs (p = 2), the 12 pm–4 pm epoch is when the network is least

robust, respective to the other epochs, where 83.8% nodal

interaction not inhibited. Conversely, the 4 am–8 am epoch is

the most robust, where 85.3% interaction is not inhibited.

Although the difference in robustness between these two epochs

for p = 2 is rather small, it becomes more pronounced as the

number of arcs deleted increases. Consider, for example, an eight

arc deletion scenario (p = 8). In this instance, the network is most

Figure 1. Internet2 backbone.
doi:10.1371/journal.pone.0039788.g001

Table 1. Summary of observed nodal interaction by epoch.

Epoch Interacting Node Pairs % Daily Interaction

12 am–4 am 50,516 11

4 am–8 am 47,913 8

8 am–12 pm 60,168 19

12 pm–4 pm 62,202 24

4 pm–8 pm 59,741 22

8 pm–12 am 54,777 17

Day Total 70,685 Unique Pairs 100

doi:10.1371/journal.pone.0039788.t001

Robustness Elasticity in Complex Networks
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Figure 2. Seven arc deletion scenario bounding robustness 8 am–12 pm.
doi:10.1371/journal.pone.0039788.g002

Figure 3. Maximally inhibited nodal interaction: 8 am–12 pm.
doi:10.1371/journal.pone.0039788.g003

Robustness Elasticity in Complex Networks
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Figure 4. Maximally inhibited nodal interaction: 8 pm–12 am.
doi:10.1371/journal.pone.0039788.g004

Table 2. Bounds on robustness (% non-inhibited nodal interaction) to p-arc deletion by epoch.

p 12 am–4 am 4 am–8 am 8 am–12 pm 12 pm–4 pm 4 pm–8 pm 8 pm–12 am

0 100.00 100.00 100.00 100.00 100.00 100.00

1 95.16 93.66 96.00 96.52 95.51 95.23

2 84.60 85.30 84.38 83.83 84.60 84.88

3 79.92 79.08 81.23 80.74 80.64 81.04

4 74.35 75.89 76.34 76.66 75.15 72.72

5 69.68 70.12 73.21 73.59 71.60 68.89

6 67.05 67.16 71.18 70.97 68.71 66.90

7 64.53 63.93 66.30 62.18 62.81 63.07

8 45.35 42.28 37.41 38.71 42.80 47.71

9 42.35 39.75 35.06 36.77 40.63 44.84

10 35.65 34.36 28.84 29.28 33.32 36.14

11 32.80 32.25 27.25 27.72 31.47 33.76

12 27.88 28.53 23.84 24.61 26.29 27.83

13 25.84 26.50 22.19 23.07 24.83 26.38

14 24.23 24.42 21.12 21.76 23.12 22.95

15 21.08 20.77 19.71 20.72 21.67 20.82

16 19.43 19.09 18.71 19.14 19.97 19.14

17 17.64 17.46 16.63 17.32 18.16 17.30

18 15.56 15.89 15.06 15.58 16.32 15.75

19 13.93 14.35 13.01 13.58 14.42 14.12

20 12.98 13.12 12.42 13.04 13.61 13.42

doi:10.1371/journal.pone.0039788.t002
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robust in the 8 pm–12 am epoch, where 47.7% of nodal

interaction is not inhibited. However, the network is least robust

to the deletion of eight arcs during the 8 am–12 pm epoch where

only 37.4% nodal interaction is not inhibited. As expected, larger

magnitudes of arc deletion (larger p) are met by lower levels of

robustness within a single epoch. However, it is noted that this

tendency does not necessarily carry over between epochs as depicted

in multiple cases in Figure 5. For instance, network robustness is

much higher for the deletion of nine arcs (p = 9) in the 8 pm–

12 am epoch than it is for the loss of 8 arcs (p = 8) in the 8 am–

12 pm epoch. This behavior is clear evidence of the influence that

variations in nodal interaction can have on characterizations of

robustness. In particular, changing patterns of nodal interaction

can affect how the network is used to facilitate these interactions.

Further, the arc deletion scenarios comprising the bounds on

robustness can vary in arc composition both between and within

epochs as highlighted in the previous example. That is to say that

an arc contributing to a scenario of p-arc deletion bounding

network robustness may not be included in bounding scenarios for

other magnitudes of arc deletion given the interdependencies

among network nodes.

To better illustrate the relationship between the sets of arcs

involved in bounding scenarios, Figure 6 displays Dice’s Coeffi-

cient [40], a measure of set similarity, for the sets of deleted arcs

maximally inhibiting interaction in the 8 pm–12 am epoch. This

matrix depicts the percent similarity in the arcs selected for

deletion between any pair of bounding scenarios. For instance,

row one of the matrix describes the extent to which the single arc

deleted in the p = 1 scenario is also deleted in the other deletion

scenarios. Thus, as detailed in row one of the matrix, the single arc

deleted in the scenario bounding p = 1 is not selected for deletion

in the scenarios bounding p = 2, 4, 6, 8–10, 12, and 14–19; hence,

bearing no similarity with them. However, the arc selected for

deletion in p = 1 is also selected for deletion in scenarios where

p = 3, 5, 7, 11, 13, and 20. Row eight of the matrix indicates that

none of the eight arcs deleted in the optimal p = 8 scenario are

deleted in the p = 1–7 scenarios. Yet, many of the arcs selected for

deletion in the p = 8 scenario are also selected for deletion in other

bounding scenarios, such as is the case for p = 10–14 (at least 80%

similarity in the arcs selected for deletion). Since the set of arcs

characterizing robustness in one epoch may differ so significantly

from those characterizing robustness in other epochs, these results

provide further evidence that dynamics in nodal interaction give

rise to variations in the importance of arcs to the network.

Figure 7 illustrates robustness elasticity for the network relative

to each unit change in arc deletion magnitude over the six epochs

of observed nodal interaction. In essence, this is a relative measure

of robustness sensitivity to changes in magnitude of arc deletion (p).

As illustrated by Figure 7, robustness elasticity (on the y-axis) varies

substantially given unit increases in p. This particular network is

relatively non-elastic (ECp
t ,pv1:0) when arc deletion magnitudes

are low (e.g. increase from p = 1 to p = 2 or from p = 6 to p = 7).

One reason for this is that unit changes between smaller values of p

will result in a greater percent change in disruptive magnitude

when compared to unit changes between larger values of p. For

example, when moving from p = 1 to p = 2, the network

experiences a large percent decrease in robustness (over 11%).

However, the percent change in p is also relatively large (over

66%), resulting in low elasticity. That said, most instances exhibit a

much smaller change in robustness relative to the magnitude of arc

deletion. The non-elastic nature of robustness at these magnitudes

of arc deletion can be seen as indicative as greater network

resistance to a disruptive mechanism or greater effort needed by

the mechanism to maximally inhibit nodal interaction. However,

an increase from p = 7 to p = 8 indicates a clear bifurcation point,

where increasing returns to scale (EC
p
t ,p§1:0) are realized. This

Figure 5. Epochs with maximum and minimum robustness for bounding scenarios of p-arc deletion.
doi:10.1371/journal.pone.0039788.g005
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greater elasticity can be viewed as a decrease in resistance to a

particular mechanism of disruption or alternatively, as an increase

in the efficiency with which a mechanism of disruption can

degrade the network’s performance. In contrast to the previous

example, this bifurcation is due to a relatively large percent change

in robustness that accompanies a relatively small change in arc

deletion magnitude between p = 7 to p = 8. In the 8 pm to 12 am

epoch, robustness is decreased nearly 24% given an increase from

p = 7 to p = 8. In the 8 am–12 pm epoch, robustness is decreased

nearly 44% given an increase from p = 7 to p = 8. This is a major

difference and again points to the dynamic nature of both

networks and their robustness properties. While the network’s

robustness in both periods is very sensitive to a small change in the

number of arcs deleted, robustness in the 8 am–12 pm epoch

displays a considerably higher level of sensitivity to this change.

Although the 8 am–12 pm is the most robust to the deletion of

seven arcs, this slight increase in the number of arcs deleted results

in the 8 am–12 pm epoch being the least robust to a p = 8 scenario

(Figure 5). In general, it is observed that after larger decrease in

robustness, such as that accompanying the increase from p = 7 to

p = 8, robustness elasticity tends to briefly diminish, fluctuating

between non-elasticity and elasticity. As shown in Figure 7, there is

considerable variation among the epochs as to which one is the

most elastic or least elastic over the increases in p considered. In

most cases though, all six epochs do together tend toward relative

elasticity or non-elasticity for each increase in p. However, in a few

instances, change in arc deletion magnitude results in elasticity in

one epoch while resulting in relative non-elasticity in others.

Discussion

To effectively capture and describe network robustness with

respect to changes in the distribution of nodal interaction in a

network, one significant challenge is to ensure that measures of

robustness are consistent and comparable under the range of

operational states experienced by a system. The identification

of exact mathematical bounds on robustness facilitates unbiased

comparisons of nodal interaction across different network states

(i.e. epochs). However, the identification of these mathematical

extrema (i.e. bounding scenarios) is difficult given the multifaceted

and non-intuitive interdependencies defining complex networks.

These exact bounds are essential for providing a comparative

benchmark for other measures of network robustness identified

through modeling other mechanisms of network change [18,27–

32]. This is particularly important since many mechanisms of

network change have been proposed and in many cases, their

characterizations of robustness relative to one another tend to lack

consistency within and between networks [18,27–28]. Thus, the

ability to assess the proximity of a network’s robustness to any

other mechanism of p-arc or node deletion relative to the

bounding mechanism will certainly add great analytical strength

in evaluations of robustness.

The modeling approach detailed in this paper complements

existing work in several ways. First, it allows one to simultaneously

evaluate network structure as well as performance (e.g. interaction

inhibited), two of the most important facets of network robustness.

Second, this approach considers all unique paths between nodal

pairs when determining connectivity, eliminating the need to use

Figure 6. Similarity among sets of arcs comprising bounding deletion scenarios.
doi:10.1371/journal.pone.0039788.g006
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simple approximations for connectivity (e.g. nodal degree) or to

further generalize network structure. Computationally, the model

structure also represents an improvement over similar structures

given that it requires fewer constraints to represent the network,

enhancing its ability to be solved to optimality. Since optimal

solutions can be identified using this modeling framework, the

results are consistent and provide an objective benchmark for all

potential deletion scenarios. Finally, although applied to an

Internet system in this paper, the modeling framework is system

agnostic and can be adapted to any network.

Bounds on robustness to arc deletion are identified for a large

Internet network for six different epochs of observed nodal

interaction. While network structure is held constant over this

sequence of network activity, the level of interaction among pairs

of nodes varies considerably as does the robustness to arc deletion.

The results presented here demonstrate that robustness can be

highly elastic over the spatial and temporal dimensions of a

network and is particularly sensitive to variations in nodal

interaction. The results also indicate that the set of arcs selected

for deletion in the bounding scenarios can be dramatically

different in arc composition given different magnitudes of arc

deletion as well as different states (i.e. epochs) of nodal interaction.

This is a critical finding since it provides firm evidence that the

‘importance’ of an arc or node in a network cannot assumed to be

constant over different magnitudes of deletion. This is particularly

true in cases where nodal interaction is dynamic. Given that

characterizations of robustness can display such spatial and

temporal variation, it is imperative to carefully consider how

nodal interaction within complex systems is represented in

analyses and how the selected representation of interaction might

impact the evaluation of network robustness. This is especially

important when the analysis results are used to inform planning

decisions on where to invest financial and human resources to

improve a network’s robustness to arc and/or node deletion.
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