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Abstract

Background and Aims: Unnatural self-organizing biomimetic polymers (foldamers) emerged as promising materials for
biomolecule recognition and inhibition. Our goal was to construct multivalent foldamer-dendrimer conjugates which wrap
the synaptotoxic b-amyloid (Ab) oligomers with high affinity through their helical foldamer tentacles. Oligomeric Ab species
play pivotal role in Alzheimer’s disease, therefore recognition and direct inhibition of this undruggable target is a great
current challenge.

Methods and Results: Short helical b-peptide foldamers with designed secondary structures and side chain chemistry
patterns were applied as potential recognition segments and their binding to the target was tested with NMR methods
(saturation transfer difference and transferred-nuclear Overhauser effect). Helices exhibiting binding in the mM region were
coupled to a tetravalent G0-PAMAM dendrimer. In vitro biophysical (isothermal titration calorimetry, dynamic light
scattering, transmission electron microscopy and size-exclusion chromatography) and biochemical tests (ELISA and dot blot)
indicated the tight binding between the foldamer conjugates and the Ab oligomers. Moreover, a selective low nM
interaction with the low molecular weight fraction of the Ab oligomers was found. Ex vivo electrophysiological experiments
revealed that the new material rescues the long-term potentiation from the toxic Ab oligomers in mouse hippocampal slices
at submicromolar concentration.

Conclusions: The combination of the foldamer methodology, the fragment-based approach and the multivalent design
offers a pathway to unnatural protein mimetics that are capable of specific molecular recognition, and has already resulted
in an inhibitor for an extremely difficult target.
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Introduction

Unnatural self-organizing biomimetic polymers (foldamers)

emerged as promising materials for protein recognition and

inhibition [1–3]. Their tunable molecular frameworks can offer

interaction surfaces to address receptors, protein-protein interac-

tions and enzymes. Such targets are the somatostatin [4] and the

transmembrane region of the integrin aIib [5] receptors, the p53-

hDM2 [2,6–9] and BH3-Bcl-xL [10–13] interactions, the gp41

virus cell infusion protein assembly, [14–17] and the c-secretase

enzyme [18]. Foldamers may have the potential to improve on

monoclonal antibodies and related protein therapeutics [19]

thanks to their considerably smaller size, their bottom-up designed

modular chemical structures, their resistance to hydrolysis and

their tunable pharmacokinetic properties [20–23]. Nonetheless, it

is still a major challenge to construct foldamers with a contiguous

recognition surface, [24–28] or long sequences with broadly

distributed recognition contacts [17].

In this work, foldameric recognition elements were utilized to

capture the b-amyloid (Ab) oligomer aggregates. These Ab species

correlate with the severity of Alzheimer’s disease (AD) [29–32].

Soluble Ab oligomers may contribute to learning and memory

deficits in AD by inhibiting NMDA-receptor-dependent long-term

potentiation (LTP), a cellular substrate of learning and memo-

ry.[33–35] Ab oligomers [33,36,37] are difficult targets for various

reasons: (i) their high-resolution structure is not known, (ii) they

exist as transient mixtures of various species, (iii) they have a high

disorder content, and (iv) the potential binding regions are exposed

to the solvent. The disadvantageous properties call for an antibody

approach, and a quest is currently under way for therapeutically

effective neutralizing antibodies against toxic Ab aggregates.[38–

42] Engineered proteins have also been shown to interact tightly

with various Ab species: affibody Zab3, [43,44] miniature protein

TJ10, [45] single chain variable fragments [46,47] and green

fluorescent protein derivatives [48,49].
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Here, we discuss foldamer-based protein mimetics which were

designed by following the principles of multivalent biomolecule-

recognizing ligands [50–60]. Divalent size-selective chemical

probes for Ab oligomers [61,62] and a tetravalent peptide-

dendrimer conjugate Ab aggregation inhibitor [63] have been

reported earlier. In this work, foldamer-dendrimer conjugates

were constructed with ordered recognition segments (helical

foldamers) and disordered linker regions (G0-PAMAM dendri-

mer). This arrangement afforded wrapping of the Ab(1–42)

oligomers through the repeating binding sites displayed over the

oligomeric surface. The new material rescues the long-term

potentiation (LTP) from the toxic Ab oligomers in ex vivo mouse

hippocampal slices.

Results

Design of the foldamer segments
Results on peptides interacting with Ab [64–70] and the

structural analysis of peptide – Ab interactions [71] suggested that

the Ab(16–22) (KLVFFAE) segment is likely to play roles in

formation of the binding patch over the surface of the Ab species.

This region offers hydrophobic interactions in the core and

potential salt-bridges through the flanking K16 and E22 residues.

We adopted this working hypothesis for the design of the

foldameric helices. Short helical b-peptide foldamers with diverse

secondary structure, zwitterionic side chain pattern and hydro-

phobic cyclic-residues were applied as potential recognition

segments in the foldamer-dendrimer conjugate ligands (Figure 1).

The short foldamers can direct 3–4 side chains toward a flat

protein surface, and in general, they can exhibit only weak

(KD.10 mM) binding, which can be detected by NMR methods.

The foldamer helices were synthesized by using b3-amino acids

with proteinogenic side-chains, various diastereomers of alicyclic

b-amino acids with 6- or 5- membered side chains and natural a-

amino acids. The helical folds were structurally induced by using

the recently published principle of backbone stereochemical

patterning, so that the small-sized library contained pure b-

peptidic H14, H12, H10/12 and H14/16 helices and the a, b-

peptidic H9-12 helix type [72].

Testing the foldamer – Ab interactions by NMR
Saturation transfer difference (STD) NMR was employed to

screen the weak foldamer – Ab(1–42) oligomer interactions. For all

the tests in this work, the Ab oligomer samples were prepared by

using the Ser26 depsipeptide aproach, [73] which furnishes the

native sequence at pH 7.4 (see details in the Materials and

Methods). Compound 1 exhibited well-detectable signals in the

whole 1H-NMR spectrum (Figure 2). This was confirmed via

transferred-nuclear Overhauser effect (tr-NOE) spectroscopy

(Figure S1). The structure refinement indicated that this foldamer

adopts an H14 helix in aqueous buffer. Thus, the b3-homo-Arg

and b3-homo-Asp side chains are in i – i+3 juxtaposition. The

long-range NOE interactions characteristic of the H14 helix could

also be found in the tr-NOESY spectrum recorded in the presence

of the target, which strongly suggested that the binding confor-

mation of 1 is H14 helix. The structurally related 2 and 4
displayed weak saturation transfer effects only. No signal was

observed for 3 supporting the importance of the helical

conformation and the zwitterionic pharmacophore in the binding.

To test the necessity of the proximity of the ion pair for binding, 5
was measured where the ionizable side chains point to opposite

directions. For 5, no interaction was found in STD. The virtually

featureless 6 was utilized as a negative control and it did not

exhibit an STD effect.

Design and synthesis of the foldamer-dendrimer
conjugates

It is very likely that Ab oligomers have a periodic structure, and

binding patches for 1 are therefore displayed repetitively.

Accordingly, it was expected that the tethering of 1 to a suitable

multiple-armed template would lead to a tightly binding multiva-

lent ligand. For this purpose, a generation zero poly-amido-amine

(G0-PAMAM) dendrimer was employed. The C-terminus of 1 was

functionalized with a Gly-Gly-Cys linker and the resulting

sequence was ligated to the four-armed tetra-maleimidopropion-

lyl-PAMAM derivative. The foldamer-G0-PAMAM conjugate 7 is

depicted in Figure 3 (for the chemical structure see Figure S2).

The foldamer segment exhibited the long-range NOE interactions

characteristic of the H14 helix, whereas the dendrimer moiety

remained unstructured (Figure 4). The effects of multivalency on

the binding properties were studied with the help of 8, a divalent

conjugate obtained by ligating 1 to a bis-maleimido-butane linker

(Figure S2). To gain an initial insight into the structure-affinity

relationship features of the tetravalent ligands, 4, 5 and 6 were also

coupled to the G0-PAMAM template, leading to compounds 9, 10
and 11, respectively.

Nanomolar and stoichiometric interaction between 7 and
the Ab oligomers (ITC and DLS)

Binding of 7 to the Ab oligomers was monitored by means of

isothermal titration calorimetry (ITC). Since precipitation was

observed in the ITC cell, dynamic light scattering (DLS)

measurements were carried out in parallel (Figure 5A). The

titrations were run at 288 K in order to improve the signal to noise

ratio, and just above the precipitation limit as the ITC method is

sensitive to the thermal noise caused by the stirring of large

particles. After correction for the heat of ligand dilution, the

sample containing 72 mM Ab in the titration cell exhibited a two-

stage enthalpogram (Figures 5A and S3). The first binding step

had KD = 6.961.4 nM, DHb = 7.2460.05 kcal mol21 and

N = 0.04160.00089, whereas the lower affinity interaction was

characterized by KD’ = 281.1638.7 nM, DHb’ = 2.5860.02 kcal

mol21 and N’ = 0.1860.002. These values strongly supported

tight binding between the Ab oligomer species and 7. DLS data

(Figure 5A) revealed that the first binding event did not affect the

average particle size, while the precipitation started just before the

equivalence point of the second stage.

Effects of multivalency on the binding affinities as
detected by ITC and ELISA

The ITC titration with 8 resulted in a single-stage enthalpogram

(Figure 5B, KD = 721.46120.1 nM, DHb = 1.160.12 kcal mol21

and N = 0.5360.003) and the parameters correlated well with

those measured for 7 in the second stage. The rather low

endothermic DHb for 1 made fitting difficult, but the stoichiometry

clearly increased to ,1:1 (N = 0.9760.05) and KD increased

above 2 mM. Neither 8 nor 1 led to concentration-dependent

precipitation.

Biotin-labeled 1 was prepared by elongating the foldamer

segment with a biotinyl-aminohexanoyl-Gly-Gly moiety and these

derivatives were coupled to G0-PAMAM which furnished biotin-

labeled 7. Biotinyl-8 was also prepared. All the labeled ligands

were attached to the streptavidin functionalized microplates with

a coverage of 5 pmoles per well. The ELISA datasets (Figure 6A)

revealed that biotinyl-7 successfully captured Ab oligomer species

at nanomolar affinity, even on the solid support. Because of the

potential sterical shielding of the recognition segments over the

surface, the ITC affinities cannot be directly compared to the

Foldamers Neutralizing Ab Oligomers
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ELISA results. The IC50 values for biotinyl-8 and -1 exhibited the

same increasing trend as observed for the apparent KD-s in the

ITC titrations.

These results demonstrated the effects of multivalency and

strongly suggested that low nanomolar binding and affinity

precipitation were possible only with 7 in this set. Divalent 8 still

exhibited submicromolar affinity, but it was not able to initiate

ligand-induced precipitation. The stoichiometric (1:1) binding

observed for 1 indicated that one binding patch is formed per an

Ab chain, and these interaction sites are all available on the

surface. ITC titration with monomeric Ab sample did not exhibit

submicromolar binding suggesting that a certain aggregation level

is necessary for the tight and stoichiometric binding of 7.

Initial structure-affinity relationship tests on the
foldamer-dendrimer conjugates

ITC measurements with 9, 10 and 11 did not reveal any tight

binding to the Ab oligomer species (Figure S4). This phenomenon

was tested also in a capture ELISA. Biotin-labeled 4 and 5 were

prepared as described and ligation to G0-PAMAM yielded biotin-

labeled 9 and 10, respectively. ELISA measurements confirmed

the ITC findings (Figure 6B). The high-affinity interaction

tolerated neither the removal of the ionic side-chains (9) nor the

changing of the position of the b3-hAsp residue (10), which

supported the selective nature of the interaction. Interestingly, the

ELISA curve recorded with fibrillar Ab and biotinyl-7 also

indicated decreased affinity suggesting the size-selective nature of

the nM interaction (Figure 6C).

Selective low nM interaction of 7 with the LMW fraction
of Ab oligomers

ITC measurement for 7 indicated fractional stoichiometry for

the low nM binding, which pointed to that the high affinity

interaction involves only a fraction of the oligomeric Ab sample.

To localize the strongly binding fraction in the mixture, size

exclusion chromatographic (SEC) separation was carried out and

the resulting Ab oligomer fractions were tested with 7 in

concentration-dependent dot blot experiments. Two dominant

peaks were found in the SEC chromatogram corresponding to the

high molecular weight (HMW) and low molecular weight (LMW)

components (Figure 7). The LMW fraction displayed saturation of

binding in the low nanomolar region, whereas HMW species were

stained with just below micromolar affinity. In control experi-

ments, specific and/or preferential binding of Ab by the

membrane itself were ruled out. These findings were in line with

the ITC and ELISA results. It could be concluded that 7
preferentially bound to the LMW fraction at low nM concentra-

tion and also interacted with the HMW fraction at sub-mM level.

Figure 1. Design principles of the foldamer-dendrimer conjugates. Foldamers based on unnatural b-amino acid building blocks (R:
proteinogenic side chains) fold into short helices (A). Foldamers exhibiting weak binding to the target can be identified by using NMR spectroscopic
methods (B). Chemoselective ligation of the synthetic recognition segments with flexible linkers yields amplified affinity to the target (C). Blue
spheres are schematic representation of the Ab oligomers.
doi:10.1371/journal.pone.0039485.g001
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Effects of the binding on the particle size and on the
secondary structure of the oligomeric Ab

The concentration-dependent increase of the particle size

described above raised the question if this phenomenon was

linked to an accelerated fibrillization or to any form of

conformational remodeling of the Ab oligomers. The TEM

(transmission electron microscopy) images (Figure 8), revealed that

7 caused association of the spherical oligomers a few nm in size

into bundles of aggregates in the mm range. The shape of the

aggregates was unequivocally different from that of the mature

fibrils.

The electronic circular dichroism (ECD) results indicated that

the pure Ab oligomer solution contained a mixture of b-sheet and

random coil conformations (Figure 9A). The data on 7 were in

agreement with its largely helical structure, also found via NMR.

Mixing 0.25 equivalents of 7 with 36 mM Ab solution did not lead

to an immediate increase in the b-sheet content. As the

conformation of the ligand concerns, the intensity of the negative

lobe decreased significantly at around 220 nm, but a significant

change was not observed below 210 nm. This suggested that 7
retained its helical conformation content since minor geometry

changes can alter the band intensities for short b-peptidic

foldamers significantly, while disordering would have caused a blue

shift. This was in accord with the NMR results obtained for the

recognition segment 1. The secondary structure was probed also

with ThT binding experiments (Figure 9B). Pure Ab oligomers

bound ThT at a certain level. This was in accord with the staining

with antibody OC; both are capable of recognizing the fibrillar (or

protofibrillar) oligomers. Compound 7 had no significant effect on

the ThT binding. The biophysical characterization by using TEM,

ECD and ThT binding confirmed that conformational remodeling

did not occur upon binding: disaggregation of the oligomers into

random coil structure was not observed and the particle size

increase was due to the non-covalent cross-linking with 7. The

latter process is similar to affinity precipitation.

The higher affinity of 7 toward the LMW oligomer fraction and

the lack of size-selectivity for the dimeric 8 suggested that the

LMW fraction, possibly binding more than two tentacles of 7,

exhibits a decreased tendency to the affinity precipitation. This

hypothesis was tested via SEC analysis (Figure 10A). Mixtures of

50 mM Ab oligomers with 7 in 0.25 and 1.0 equivalents were

injected on the SEC column after filtration. At 0.25 equivalents,

the HMW fraction fully precipitated and disappeared from the

SEC chromatogram, whereas the LMW fraction remained intact.

At 1.0 equivalents, the HMW fraction again disappeared and

a partial decrease was observed for the LMW fraction. We

concluded that the affinity precipitation occurs for the HMW

component, but the LMW fraction is also affected at higher ligand

concentrations. The control SEC chromatogram of 7 was

recorded and it exhibited anomalously longer retention time due

to its compact geometry. Thus it was possible to test if the LMW

fraction co-elutes with 7. LC-MS was run on the LMW fraction

taken at 19 min and both Ab and 7 were identified in the

chromatogram in a comparable amount (Figure 10B). The HMW

precipitate was also tested for the presence of 7 with LC-MS, and

the result confirmed the heterocomplex nature of the product

(Figure 10C).

The extent of precipitation was also tested at an Ab oligomer

concentration of 1 mM. The Ab oligomer sample was mixed with

0, 0.2, 0.5 and 1.0 equivalents of 7, centrifuged at 150006 g for

3 h and the supernatant was tested for residual Ab concentration

by using a standard ELISA (Figure 11). This measurement

displayed no significant loss of soluble material at 1 mM, which

facilitates biological experiments at this concentration without

titrating Ab out of the solvent upon adding 7.

Foldamer-dendrimer conjugate 7 rescues LTP ex vivo
We investigated whether 7 could protect against the synaptic

plasticity damage caused by Ab(1–42) oligomers by using

a hippocampus slice LTP model. LTP, a correlate of learning

and memory has been repeatedly shown to be impaired by Ab(1–

42) oligomers. As negative control, substance 11 was applied. The

experimenters were blind to the compounds tested.

Untreated slices exhibited a robust potentiation (17565%,

n = 7, Figure 12A), and LTP was reduced by the Ab(1–42)

oligomer at 720 nM (12865%, n = 7, p = 0.003). The application

of Ab(1–42) oligomers and 7 (950 nM) together resulted in normal

LTP (19565%, n = 6, Figure 12B), but the control with Gly7

tentacles (11) did not lead to rescue from the toxic effect (13063%,

n = 6, p#0.001 vs. 11 alone). Importantly, neither 7 nor 11 alone

exerted any effect on LTP (184616%, n = 6 and 200614%, n = 6,

respectively) which indicates that the protective effect is Ab-

dependent (Figure 12C). These observations indicate the signifi-

cant protective effect of 7 (Figure 12D). To test the effects of

Figure 2. Screening for the foldameric recognition segments. Informative regions of the STD spectra (A–F for 1–6, respectively) in the
presence of Ab(1–42) oligomers. The spectra were recorded in 20 mM phosphate buffer at pH 7.4, the total concentration of the Ab(1–42) was
72 mM, and the ligands were applied at 2 mM. The secondary structure type is indicated to the right of the structures. ‘H’ stands for helix, and the
numbers show the size of the H-bonded pseudocycles stabilizing the helices.
doi:10.1371/journal.pone.0039485.g002

Figure 3. Foldamer-tetra-maleimidopropionyl-G0-PAMAM
(TMP) and -bis-maleimido-butane (BMP) conjugates studied.
ACHC stands for trans-2-aminocyclohexanecarboxylic acid. In the
structure of 7, the H14 helical conformation adopted by the foldamer
segments in water is indicated (red), whereas the flexible linker is in an
arbitrary conformation (green).
doi:10.1371/journal.pone.0039485.g003
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valency, LTP experiments were repeated with 8 under the same

conditions. No rescue from the toxic Ab oligomers was observed

for 8 (Figure 12E).

Discussion

Foldameric helices were designed based on the assumption that

an organized hydrophobic surface flanked by zwitterionic side

chains may lead to ligands binding to the Ab oligomeric species.

The NMR screening carried out on foldamers with various

secondary structures resulted in that a H14 helix built with 2-

aminocyclohexanecarboxylic acid (ACHC) residues and ionizable

b3-amino acids (1) is indeed capable of weak binding to the target.

The initial structure affinity relationship study suggested that the

pharmacophore is well defined; changing arrangement/nature of

the hydrophobic side-chains, removal of the zwitterionic feature

and the distance between the charged side-chains abolish binding.

In order to amplify affinity, a tetravalent foldamer-dendrimer

conjugate (7) was designed and synthesized. Various methods

revealed that 7 captures Ab oligomers stoichiometrically with

submicromolar affinity, and a selective low nanomolar interaction

with the LMW oligomer fraction was observed. Due to the

multivalent nature of the ligand, affinity precipitation occurred at

higher target concentrations. For the divalent 8, neither the low

nM binding affinity toward the LMW Ab oligomers nor the

affinity precipitation occurred. Moreover, the reduced ligand-

induced precipitation tendency for the LMW fraction strongly

suggests that the low nM binding requires more than two or

possibly all the recognition segments of 7. The stoichiometric

binding of the ligands and the effects of multivalency may carry

important information on the solution structure of the Ab
oligomers. This may open up new directions in the structural

analysis of the Ab oligomers.

Designed Ab binding proteins [43–49] have been shown to

capture monomeric Ab as demonstrated by X-ray and SPR

studies (carried out on immobilized monomeric Ab). This type of

Figure 4. NMR assignments and long-range NOE interactions. Data are displayed for the foldamer segments and the maleimide
diastereomers for 7, 8, 9 and 10 in panels A, B, C and D, respectively. Crosspeaks in the overlaid TOCSY (red) and ROESY (blue) spectra prove the H14
structure of the foldamers. The long-range NOEs supporting the helical conformation were observed in aqueous medium. The addition of the thiol
group to the maleimido moiety generates an additional stereogenic center. The NMR resonances of the Cys-maleimide linker region are split and
their integrals indicate that the addition is not stereoselective; R and S configurations can be found in equimolar ratio (S and R maleimide
diastereomers are signed with black and blue, respectively). Since this undetermined configuration moiety is in the flexible part of the molecule, the
effect of the chiral center does not propagate further toward either the foldamer part or the PAMAM template.
doi:10.1371/journal.pone.0039485.g004
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interaction arrested the aggregation process and the formation of

the toxic species could be avoided. The multivalent structures

containing the KLVFF segment [61–63] target the LMW

oligomers through assumed incorporation into the b-sheet

structure. The selective interaction with LMW oligomers have

been demonstrated for dimeric structures [62]. The aggregation

process could also be inhibited this way, but protecting effects

against the toxic Ab oligomers have not been described.

In ex vivo measurements, 7 provided rescue from the LTP

inhibiting effect of the Ab oligomers at submicromolar concentra-

tions in an Ab-dependent manner, whereas 8 was not active. The

protective effect was immediate on the time scale of the LTP

measurements; it did not require preincubation of the Ab oligomer

samples with the ligand. As concerns the mechanism of action, our

results do not support any conformational remodeling in the Ab
oligomer mixture at the ligand concentration applied (e.g., shifting

the equilibrium toward monomeric Ab). Many protective agent

cited above have been shown to act as aggregation inhibitor, but

the mechanism is different in this case. The tight and stoichio-

metric binding of 7 to the target may efficiently block the toxic

surface of the Ab oligomers which leads to the LTP rescue.

Methods to protect synaptic plasticity from the neurotoxic

species have been described in the literature. These interventions

improve specific synaptic processes of LTP damaged by Ab via

CaMKII activation and subsequent AMPA receptor phosphory-

lation [74] or reduction of mitochondrial superoxide formation

[75]. The corresponding compounds act on general routes without

intercepting and neutralizing Ab, whereas anti-Ab antibodies have

also been shown to rescue hippocampal LTP in vivo [76]. We

followed the latter strategy with a synthetic protein mimetic.

In general, the described approach offers a pathway to

unnatural molecules that are capable of specific molecular

recognition, and has already resulted in an inhibitor for an

extremely difficult target. Although this new class of bioactive

materials has potential advantages over certain protein therapeu-

tics, further studies will be necessary to test its therapeutic and/or

diagnostic utility with a special focus on the ability of crossing the

blood-brain-barrier.

Materials and Methods

Ethics Statement
All animal experiments were conducted according to the ethics

statement and approval of the National Ethics Committee for

Animal Experimentation and of the Ethics Committee of

University of Szeged (approval no.: XXVII./03405/2008). The

animals were kept and the experiments were conducted in

conformity with Council Directive 86/609/EEC and with the

Hungarian Act of Animal Care and Experimentation (1998,

XXVIII).

Preparation of the toxic Ab(1–42) oligomer samples
Preparation of the synaptotoxic Ab(1–42) oligomers: In this

work, a depsipeptide derivative of Ab(1–42) was utilized, [73]

which was converted to the native sequence by applying

physiological pH. At pH 7.4, oligomers are spontaneously formed

without the application of any detergent or residual organic

solvent in the final sample. The Ser26 depsipeptide iso-Ab(1–42)

was synthesized and purified as reported earlier [73]. The

standardized protocol for the preparation of the toxic oligomer

samples was as follows. The lyophilized iso-Ab(1–42) was treated

with HFIP for 24 h, after which the organic solvent was

thoroughly removed in vacuo. The resulting material was dissolved

in MilliQ water to a concentration of 1 mM, sonicated for 10 min

and diluted into PBS buffer (pH 7.4) to nominal concentration of

100 mM. The sample was incubated at 37uC for 24 h. The peptide

content of the final sample was determined by amino acid analysis

to be 72%. This oligomeric stock solution was either applied

directly or diluted to the required concentration with PBS prior to

use. The aggregation grade was monitored with various

techniques; the toxicity was proved in ex vivo LTP experiments.

Characterization of the Ab(1–42) oligomer samples
Conformation-specific antibodies. Staining with the con-

formation-specific antibody A11 [77,78] gives negative reaction,

whereas the positive reaction with antibody OC [79] indicated the

protofibrillar nature of the oligomers.

SEC. The size exclusion chromatogram revealed two peaks

(Figures 7 and 10) in the size ranges of 8–22 kDa and 123–

Figure 5. Tight binding between ligand 7 and the Ab oligomers as determined by ITC. (A) ITC enthalpogram for the titration of the 72 mM
Ab oligomer with 7 up to 0.55 equivalents (triangles, left scale). Data was fitted with the two independent site model (black). The corresponding z-
average diameters (squares) measured by using DLS are displayed on the right vertical scale. (B) ITC enthalpograms obtained for 1 (diamonds) and 8
(circles) at 72 mM Ab oligomer concentration.
doi:10.1371/journal.pone.0039485.g005

Foldamers Neutralizing Ab Oligomers
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908 kDa, which correspond to the low molecular weight (LMW)

and the high molecular weight (HMW) oligomer populations.

SDS-PAGE and Western Blot. We also examined the size

distribution of the oligomers by means of conventional denaturing

SDS-PAGE (Figure S5), applying antibodies BAM10 and OC for

staining. The fresh sample contained mainly monomers and LMW

oligomers, whereas after 24 h, HMW oligomers were present

besides the LMW fraction and the monomer population was

undetectable. Staining with antibody OC confirmed the fibrillar

(protofibrillar) nature of the oligomers.

ThT binding. The relative fluorescence values were moni-

tored up to 24 h, and the results indicate that Ab oligomers bind

ThT at a certain level (Figure 9B). This is in accord with the

staining with antibody OC, both capable of recognizing the

fibrillar (or protofibrillar) oligomers.

ECD. In order to gain information on the conformation of the

oligomers formed, ECD curve was analysed, and a mixture of b-

sheet and disordered structures were found (Figure 9A). These

indicate the protofibrillar fibrillar nature of these oligomers.

TEM. The TEM measurements (Figure 8) revealed the size of

the globular oligomers in their dehydrated and stained state. The

oligomers were observed to be spherical with an average diameter

of 7.463.3 nm. Detailed analysis of the sizes demonstrated the

presence of two size classes: the smaller oligomers possessed an

average size of 4.961.0 nm (dmin = 2.8 nm, dmax = 6.9 nm), and

the larger ones a size of 10.462.4 nm. Again, the presence of two

Figure 6. ELISA results. (A) Effects of multivalency on the affinities. Normalized absorbances recorded in capture ELISA experiments, where the
biotinyl-7 (circles), -8 (triangles) or -1 (squares) are attached to the streptavidin functionalized plate and the increasing surface concentration of Ab is
observed through the BAM10 antibody. Fitted curves are given (dashed), IC50 values are 126 nM, 933 nM and 12 mM for biotinyl-7, -8 and -1,
respectively. (B) ELISA curves measured for biotinyl-7 (circles), -9 (triangles) and -10 (squares) with oligomeric Ab and the IC50 values are 126 nM,
4.4 mM and 18.5 mM, respectively. (C) ELISA curves recorded for oligomeric Ab (circles) and fibrillar Ab (squares) with biotinyl-7, the IC50 values are
126 nM and 886.2 nM, respectively.
doi:10.1371/journal.pone.0039485.g006
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oligomer populations could be assumed. Monomers could not be

observed in the TEM images.

DLS. Dynamic light scattering (DLS, Figure S6) measure-

ments furnished a size distribution curve of the oligomers, where

the frequencies of the different sizes were normalized to the

intrinsic volume of the scattering particles. The primary frequency

data provided by the DLS measurements were somewhat

distorted, as the contribution of a scattering particle to the total

measured intensity of the scattered light is directly proportional to

the sixth power of its size. Normalization of the frequencies to the

intrinsic volume therefore provides a distribution with less

distortion. This method can be applied only when the scattering

particles are spherical; the TEM images proved the spherical

nature of the Ab(1–42) oligomers. The DLS data reflected

a bimodal size distribution curve, demonstrating that the oligomer

population was heterogeneous. The maximal values (10.1 nm and

37.8 nm) were relatively large, but it should be considered that the

measured values were hydrodynamic diameters, for the fully

hydrated state of the peptide assemblies, together with the solvent

shell of the particle. The ratio of the frequencies of the two size

classes was , 4:1, indicating, that the small oligomers were

overrepresented as compared with the large assemblies. Notewor-

thy is that the presence of large scattering particles could suppress

the contribution of the small ones to the total intensity, which

caused an artifact: monomers can not be observed if large

oligomers are present in the sample.

NMR. 1H-NMR spectra (Figure S7) were recorded for the

starting Ser26 depsipeptide iso-Ab(1–42) at pH 3 and after

buffering the medium to pH 7.4. iso-Ab(1–42) at acidic pH

exhibits narrow peaks, indicating that it exists mostly in

monomeric form. On switching to the native sequence through

setting of the physiological pH, the total peak intensity dropped to

30%, as oligomer species with MW . ,100 kDa (d.,3–4 nm)

were outside the detection limit of the solution phase 1H-NMR for

T2 relaxation reasons. The narrow peaks can be assigned to the

Figure 7. Selective binding to the LMW Ab oligomers in the nM range. Size exclusion chromatographic separation of the HMW and LMW
fractions of the Ab oligomeric sample (top panel). Concentration-dependent dot blot experiments performed with the HMW (A) and the LMW
fractions (B). The ligand loadings were 10 mg aliquots of 7, and the sequence specific antibody BAM10 (1:500) was utilized. Lanes within the panels
are parallel experiments.
doi:10.1371/journal.pone.0039485.g007
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residual monomeric and possibly LMW oligomeric (N,4)

fractions.

Foldamer synthesis
Foldamers were synthesized on solid support with standard

Fmoc-chemistry. Foldamers and biotinyl-1 were synthesized on

a Tentagel R RAM resin (0.17 mmol g21) on a 0.1 mmol scale

with 1-[bis(dimethylamino)methyliumyl]-1H-1,2,3-triazolo [4,5-

b]pyridine-3-oxide (HATU) as coupling reagent. The octapeptide

(Gly)7 Cys-amide was synthesized by conventional Fmoc-based

SPPS on Rink-amide resin, applying DCC/HOBt activation. The

amino acid incorporation was monitored by means of the Kaiser

test and by the cleavage of aliquots from the resin. The peptide

sequences were cleaved from the resin with cocktail of TFA/H2O/

DTT/TIS (90:5:2.5:2.5) at room temperature for 3 h. The TFA

was removed in vacuo, and the peptide was precipitated in dried

diethyl ether. The resulting free peptide precipitate was filtered off,

were dissolved in 10% aqueous acetic acid, and lyophilized. The

crude peptide was purified by RP-HPLC on a Phenomenex Luna

10 m column (10 mm x 250 mm). The solvent system consisted of

0.1% TFA in water (A), and 0.1% TFA in 80% acetonitrile (B); the

default gradient was 0% – 40% B during 15 min, and then 40% –

70% during 60 min at a flow rate of 4 mL min21, with detection

at 206 nm. The gradient was customized where necessary.

Figure 8. Affinity precipitation as detected by TEM. (A) TEM image of the 72 mM Ab oligomer. (B) TEM image of the 72 mM Ab oligomer upon
addition of 36 mM 7.
doi:10.1371/journal.pone.0039485.g008

Figure 9. No change was observed in the Ab secondary structure. (A) Observed ellipticities in ECD for 36 mM Ab oligomer (thick black), 9 mM
7 (thin black), and 36 mM Ab +9 mM 7 (thick dashed). The hypothetical sum of the ECD curves of the pure samples (thin dashed). (B) ThT binding
experiment carried out on 36 mM oligomeric Ab (white bars) and on 36 mM oligomeric Ab +7 1:1 mixtures. The relative fluorescence values were
monitored up to 24 h.
doi:10.1371/journal.pone.0039485.g009
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Synthesis of the tetra-maleimidopropionyl-PAMAM
conjugate

300 ml 25 wt% methanol solution of polyamidoamine dendri-

mer generation 0, ethylenediamine core (0.4 mmol, Sigma

Aldrich) was lyophilized for 1 h to remove methanol. The

resulting oily substance was dissolved in 1 ml DMF and added

dropwise to a mixture of 1.2 mmol maleimidopropionic acid,

248 mg DCC and 163 mg HOAt dissolved in DMF. The mixture

was stirred for 4 h at ambient temperature, diluted with water and

lyophilized to dryness. Prior to purification, the white powder was

dissolved in a mixture of ACN (80%)/TFA (0.1%)/H2O,

sonicated for 10 min, diluted with 0.1% TFA/H2O solution,

filtered through a glass filter and injected onto a Phenomenex

Luna C18 (250610 mm, 100 Å, 5 mm) semipreparative HPLC

column, applying ACN (5–50%)/TFA (0.1%)/H2O gradient

elution at 3.0 ml min21 flow rate. ESI-MS spectrum: [MH+]:

1121.69; [MH2
2+]: 561.43 (calculated MW: 1121.3) For charac-

terization of the materials see Figures S7, S8, S9, S10, S11.

Synthesis of 7-11 and biotinyl-7-11
4 mmol (20.0 mg) N,N,N,N-tetra-maleimidopropionyl-PA-

MAM(G0) was dissolved in 8 ml 50 mM NaH2PO4/Na2HPO4

buffer (pH = 7.1). 19.2 mmol peptide (1-Gly-Gly-Cys, biotinyl-1-
Gly-Gly-Cys or (Gly)7Cys-amide) was dissolved in 1 ml of the

same solution, and added dropwise to the dendrimer under

constant stirring. The reaction was stirred for 4 h at ambient

temperature, then deep-frozen and left to stand overnight at

220uC. The following day, the mixture was injected directly onto

a Phenomenex Jupiter C4 (250 x 10 mm, 300 Å, 10 mm)

semipreparative HPLC column and purified by ACN (0–70%)/

TFA (0.1%)/H2O gradient elution at 3.0 ml min21 flow rate. The

material content of the lyophilized 7, determined by thermo-

gravimetry, was 95%.

Compound 8 was synthesized the same way, but bis-maleimido-

butane linker was utilized for the ligation.

Transmission electron microscopy
Oligomer solution was placed on formvar-carbon-coated 400-

mesh copper grids (Electron Microscopy Sciences, Washington,

PA) and stained negatively with uranyl acetate. The aggregates

were characterized by TEM on a Philips CM 10 transmission

electron microscope (FEI Company, Hillsboro, Oregon, USA)

operating at 100 kV. Images were taken with a Megaview II Soft

Imaging System, routinely at magnifications of 646000 and

664000, and analyzed with an AnalySisH 3.2 software package

(Soft Imaging System GmbH, Münster, Germany).

Dynamic light scattering (DLS)
For DLS measurements, 500 mL Ab(1–42) solution (c = 72 mM)

was prepared in PBS, and placed in a low–volume sizing cell. Size

distribution was measured at 25uC on a Malvern Zetasizer Nano

ZS Instrument (Malvern Instruments Ltd. Worcestershire, UK)

equipped with a He-Ne laser (633 nm) by means of Non-Invasive

Back Scatter (NIBSH) technology, which involves detection of the

scattered light at an angle of 173u. A titration routine was

formulated consisting of 12 independent measurements with a 2-

min delay after each. The calculated amount of 7 solution was

added to the Ab after every second measurement. During the

Figure 10. Lower tendency of the LMW Ab oligomer fraction to affinity precipitation. (A) SEC analysis of pure Ab oligomers (black) and
mixtures of 50 mM Ab oligomers with 7 in 0.25 (green) and 1.0 (blue) equivalents. The samples were injected on the SEC column after filtration. The
control SEC chromatogram of 7 was recorded (red) and it exhibited anomalously longer retention time due to its compact geometrical arrangement.
(B) LC-MS results on the LMW fraction taken at 19 min. Both Ab and 7 were identified in the chromatogram in a comparable amount. (C) LC-MS
results on the HMW precipitate, which confirmed the heterocomplex nature of the product.
doi:10.1371/journal.pone.0039485.g010

Figure 11. Ab oligomers did not precipitate out of the solution
at 1 mM. Ab concentrations determined by ELISA in supernatants
obtained from samples containing 1 mM Ab oligomer mixed with 0, 0.2,
0.5 and 1.0 equivalents of 7 and centrifuged at 150006g (room
temperature, 3 h).
doi:10.1371/journal.pone.0039485.g011
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titration, the molar quantity of 7 varied between 0–35 mM. For

a single measurement, the correlation function and distribution of

the apparent hydrodynamic diameter (dh) over the scattered

intensity of the particles were determined on the basis of 14 scans.

The translational diffusion coefficients were obtained from the

measured autocorrelation functions by using a fitting algorithm

incorporated in the software package Dispersion Technology

Software 5.1 (Malvern Instruments Ltd. Worcestershire, UK).

NMR spectroscopy
NMR spectra were recorded on a 600 MHz Bruker Avance

spectrometer equipped with a 2.5 mm triple-resonance capillary

probe. The protein and the ligands were dissolved in 20 mM,

pH 7.4 phosphate buffer (90% H2O, 10% D2O) containing 0.02%

NaN3. Spectra were acquired with the WATERGATE solvent

suppression pulse scheme. For the STD and tr-NOE measure-

ments, the Ab(1–42) and the ligand concentrations were 100 mM

and 2.0 mM, respectively. As a reference, STD and tr-NOE

experiments were also performed without the target, containing

the ligand alone.

STD spectra were acquired by using a series of 40 equally

spaced 50-ms Gaussian-shaped pulses for selective saturation of

the protein, with a total saturation time of 2 s. The frequency of

the on-resonance saturation was set at 21 ppm and the off-

resonance saturation frequency was set at 40.0 ppm. A total of 2 k

scans were collected for each pseudo 2D experiment. The 2D tr-

NOESY measurements were performed with 128 increments and

256 scans, with a NOE mixing time of 200 ms.

Signal assignments were performed by using the 2D TOCSY

and ROESY spectra of the 2 mM samples recorded at 298 K in

Figure 12. Ligand 7 protects against Ab-induced LTP impairment. (A) The oligomeric Ab(1–42) sample applied at 720 nM hinders synaptic
potentiation. (B) Compound 7 applied at 950 nM prevents the LTP impairment caused by Ab(1–42) oligomers. The control substance 11 has no
effect against Ab(1–42) oligomers. (C) Neither 7 nor 11 alone exerted any effect on LTP in the absence of Ab oligomers. (D) The summarized results
observed 180 min after LTP (**P,0.01, ***P,0.001 versus control). Statistical analysis was carried out by using two-tailed Student’s t-test, n = 6 or 7
slices per group. Data are presented as means 6SEM. (E) Divalent 8 applied at 950 nM did not exhibit statistically significant effect against Ab(1–42)
oligomers. Arrows indicate LTP induction, EPSP stands for excitatory postsynaptic potential.
doi:10.1371/journal.pone.0039485.g012
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aqueous buffer and d3-MeOH. Because of the better signal

resolution at lower temperatures, the spectra of 7 in buffer were

acquired at 280 K. ROESY measurements were carried out with

a mixing time of 400 ms and with 32 and 64 scans. TOCSY

measurements were acquired with homonuclear Hartman–Hahn

transfer with the MLEV17 sequence, with a mixing time of 80 ms;

the number of scans was 32. For all the 2D spectra, 2048 time

domain points were applied, while the number of increments was

128 and 512 for 1 and 7, respectively. The processing was carried

out by using a cosine-bell window function, with single zero filling

and automatic baseline correction.

Molecular mechanics and NMR structure refinement
Molecular mechanical simulations were carried out in the

Molecular Operating Environment (MOE) of the Chemical

Computing Group. For the energy calculations, the MMFF94x

force field was used, without a cut-off for van der Waals and

Coulomb interactions. The implicit water model of GB/VI

(Generalized Born) was applied. The conformational sampling

was carried out by using the hybrid MC/MD simulation (as

implemented in MOE) at 300 K with a random MC sampling step

after every 10 MD steps. The MC-MD was run with a step size of

2 fs for 20 ns, and the conformations were saved after every 1000

MD steps, which resulted in 10000 structures. For the NMR-

restrained simulation, the upper distance limits were calculated by

using the isolated spin-pair approximation and classified by

following the standard method (strong: 2.5 Å, medium: 3.5 Å,

and weak: 5.0 Å). The lower limit was set at 1.8 Å. Restraints were

applied as a flat-bottomed quadratic penalty term with a force

constant of 5 kcal Å22. The final conformations were minimized

to a gradient of 0.05 kcal mol21 Å21) and the minimization was

applied in a cascade manner, using the steepest-descent, conjugate

gradient and truncated Newton algorithm.

Isothermal titration calorimetry
Isothermal titrations were performed with a Microcal VP-ITC

microcalorimeter. The binding experiments were performed in

PBS pH 7.4. The buffer solution was degassed. The concentra-

tions of the ligands and Ab were corrected for the material

content. In individual titrations, 10 mL of ligand was injected from

the computer-controlled 300-mL microsyringe at intervals of 300 s

into the Ab oligomer solution dissolved in the same buffer as the

ligand. The microsyringe stirring was set to 295 rpm. All

measurements were made at 288 K. The Ab concentrations in

the cell were either 72 mM or 36 mM, and the concentrations of 7
were 175 mM and 222 mM respectively. The total ligand

concentration was set in the syringe so that the titration stopped

when the precipitation became excessive. Control experiments

were performed by injecting the ligand into a cell containing buffer

with no target, and the heats of dilution were subtracted from

those measured in the presence of Ab. Titrations were also

performed with buffer in the syringe and Ab oligomer sample in

the cell to check for the heat response of Ab dilution itself. The

dilution heat of the Ab oligomer samples was constant and

negligible. Since the target is inherently inhomogeneous, and an

a priori model of the binding events is not available,. the

experimental data were fitted to the two independent site binding

model by using a nonlinear least-squares procedure, with DHb,

DHb’, Ka, Ka’ (association constants), N and N’ (number of

binding sites for monomer), as adjustable parameters. The

exothermic peaks appearing after the fully precipitated phase

was reached, were omitted from the regression. The results are

summarized in Table S1.

Electronic circular dichroism
CD spectra were measured on a Jasco J815 dichrograph in

a 1.00 cm cell using PBS (pH = 7.4) as solvent. Three spectra were

accumulated for each sample. The baseline spectrum recorded

with only the solvent and it was subtracted from the raw data.

ELISA
An indirect ELISA experiment was conducted on 96-well

streptavidin-coated clear plates (Pierce, Cat.No. 15500, Rockford,

IL, US). Biotinyl-compounds bound to streptavidin by incubating

1 mg substance per well for 2 h at ambient temperature. Ab(1–42)

was dissolved in PBS to 100 mM and incubated for 24 h at 37uC.

Serial dilutions of the incubated peptide were prepared, and

supplemented with Tween (0.05% v/v of the final volume) and

BSA (1% w/v of the final volume) prior to use. Compounds were

incubated with Ab oligomers for 1 h at ambient temperature.

Bound Ab was detected by monoclonal anti-Ab AB clone Bam-10

(Sigma-Aldrich) applied in 1:10000 dilution for 1 h followed by an

incubation with anti-mouse IgG-HRP (DakoCytomation,

Glostrup Denmark). Finally, 100 mL tetramethylbenzidine

(TMB) solution (Cell Signaling Tecnology Inc., Danvers, USA)

was introduced into the wells, and the change in the absorbance at

370 nm was monitored constantly, without the addition of stop

solution, on a 96-well plate reader (NOVOstar OPTIMA, BMG

Labtech, Offenburg, Germany) equipped with a xenon lamp,

fiberglass optics and a shaking microplate carrier. Abs370 values

were read near complete saturation of the signal intensity, which

was observed after 40 min. For the quantitative analysis of the

results, nonlinear regressions were carried out and the IC50 values

were optimized with fixed number of blocked ligands per Ab
peptide as determined by ITC [80]. For 7, the iteration converged

to IC50 = 126 nM (N = 0.25), and marked deviations from the

experimental curve were found indicating a substoichiometric

higher affinity binding. For 8 and 1, the IC50 values were 933 nM

(N = 0.5) and 12 mM (N = 1.0). Concerning the steric shielding

exerted by the solid support, the apparent binding parameters

estimated from ELISA are in good accordance. Measurements

with fibrillar Ab and 7, revealed an affinity similar to the value

obtained for the oligomeric Ab – 8 interaction, which may suggest

that tetravalent 7 can attach to the fibrillar Ab only as a divalent

ligand.

Size Exclusion Chromatography
iso-Ab(1–42) was dissolved in sodium hydrocarbonate buffered

saline (pH 7.4) to 50 mM and incubated for 24 h at 37uC. The

oligomeric Ab was loaded onto an Äkta Purifier FPLC system (GE

Healthcare, UK) equipped with a Superose 6 10 300 column.

Sample was eluted at a flow rate of 0.5 ml/min. FPLC chromato-

gram was taken at 280 nm and 1 ml fractions were collected

during the separation. Fractions corresponding to the chromato-

graphic peaks (No.10–12 for peak a and 16–18 for peak b) were

pooled and their peptide content was equalized with running

buffer according to their concentration determined by UV

measurement at 220 nm.

SDS-PAGE and Western Blot
10-mL aliquots of the Ab oligomer samples were loaded onto

a 15% SDS-polyacrylamide gel without boiling prior to loading,

while 5 mL Kaleidoscope Precision Plus Protein TM (Bio-Rad

Laboratories, Ca, USA) standard was applied as MW marker.

After running, the gel was transferred to a nitrocellulose mem-

brane using an electroblotting apparatus (Bio-Rad Laboratories,

CA, USA). The membrane was blocked in TBS, 0.1% Tween-20
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(TBST), 5% non-fat dry milk and incubated overnight with

primary antibody (1:1000 OC (Millipore) or 1:2500 Bam-10

(Sigma) at 4uC. The following day the membranes were incubated

with an anti-mouse-HRP secondary antibody (1:10000; DakoCy-

tomation, Glostrup, Denmark) and Pierce ECL Western Blotting

Substrate (PIERCE, Rockford, IL). Blots were exposed to Kodak

film (Sigma).

Dot Blot experiment: binding study
10 mg aliquots of 7 dissolved in TBS were spotted onto a 0.1 mm

nitrocellulose membrane with a Dot Blot apparatus (Bio-Rad

Laboratories, Ca, USA). The spots were washed in the instrument

with 26200 ml TBS. After serial dilutions of both oligomer

fractions a and b, 100 ml aliquots were loaded in the wells and

incubated with gentle shaking for 1 h at RT. The membrane was

washed twice with TBS, blocked with a blocking solution (5%

BSA, 0.1% Tween-20 in TBS, 2630 min) and incubated with the

sequence-specific Bam-10 (Sigma) antibody in 1:500 dilution

overnight at 4uC. After washing of the membrane twice with

blocking solution, the secondary antibody (HRP-conjugated anti-

mouse AB; Dako Cytomation, Glostrup, Denmark) was incubated

with the membrane in 1:10000 dilution (2 h at 4uC) followed by

washing twice with blocking solution and twice with 0.1% Tween-

20 in TBS. 8. The membrane was incubated in ECL Western

Blotting Substrate (Pierce) for 1 min and exposed to Kodak film

(Sigma).

ThT binding measurements
ThT (Sigma-Aldrich) was dissolved in 50 mM NaH2PO4/

Na2HPO4 buffer (pH = 7.0) to a final concentration of 25 mM.

This working solution was kept at 4 uC protected from light and

used during the measurement. Two identical 50 mM Ab oligomer

samples were prepared and one of them was mixed with 7 to a final

concentration of 50 mM, and the ThT signal intensity was

monitored up to further 24 h. At each time point, samples were

carefully vortexed to get a homogeneous sample and to resuspend

the precipitated material, and 50 mL aliquots were mixed with

500 mL of working solution. ThT-peptide mixtures were vortexed

again and 150 mL aliquots were placed on a 96 well plate. ThT

fluorescence was measured on a plate reader at lex = m and

lem = 480 nm. Data mean values and S.D. were calculated from

three parallel measurements.

Sample preparation and ELISA for concentration
determination of Ab in the precipitation study

1 mM solution of the Ab oligomer sample was prepared. This

solution was divided to 4615 ml fractions and 7 was added to

three samples in 1, 0.5 or 0.2 mM final concentration, respectively.

All the four samples were divided into three fractions (265 ml).

One fraction from each sample was centrifuged at 150006g at RT

for 3 hours in a Roth MIKRO 200 Microcentrifuge (Carl-Roth

GmbH Karlsruhe, Germany) centrifuge. One fraction from each

sample was let undisturbed at RT in the meantime. After the

centrifugation 361 ml supernatant was removed from each

fraction and subjected with the unseparated ones to concentration

determination by ELISA.

Different amounts of Ab (0.0001, 0.0003, 0.001, 0.003, 0.01,

0.03, 0.1, 0.3 mg pro well) were coated in the wells (6 parallels for

each concentration) of a 96 well plate. The supernatant of the

centrifuged samples was diluted two times and 10–10 ml was

added to the empty wells. The plate was incubated for 20 h at

4uC, using a coating solution (15 mM Na2CO3, 35 mM

NaHCO3, 3 mM NaN3). The wells were then blocked using

a blocking solution (10 mM NaHCO3, 0.45% NaCl, 0.1% Tween-

20, 1% BSA) at room temperature. After blocking, the plate was

washed three times with a washing buffer (10 mM NaHCO3,

0.45% NaCl, 0.1% Tween- 20). A monoclonal Ab antibody

(BAM10, SIGMA) was added to the wells in blocking solution for

1 h at room temperature. After washing twice, the wells were

incubated with HRP-conjugated anti-mouse secondary antibody

(Dako Cytomation, Denmark, Glostrup) in blocking solution. The

plate was washed two times, and TMB reagent (Cell Signaling

Technology) was added to the wells. Without using a stopping

reagent, the absorbance at 370 nm was constantly monitored

using a FLUOstar OPTIMA Multidetection Microplate Reader

(BMG LABTECH, Offenburg, Germany). Data values were read

at the saturation point of the signal curves. The supernatants were

analysed according to the concentration calibration.

Hippocampal slice electrophysiology
Via standard procedures, 350-mm-thick transverse hippocampal

slices were prepared from the brain of 7-months-old mice (CD1,

Animal Breeding Facility, University of Szeged) with a McIlwain

tissue chopper (Campden Instruments, Loughborough, UK).

Slices were incubated in standard artificial cerebrospinal fluid

(ACSF) at ambient temperature for 60 min, during constant

gassing with 95% O2–5% CO2. The ACSF contained (mM):

NaCl, 130; KCl, 3.5; CaCl2, 2; MgCl2, 2; NaH2PO4, 0.96;

NaHCO3, 24; and D-glucose, 10 (pH 7.4). Individual slices were

transferred to a 3D-MEA chip with 60 tip-shaped and 60-mm-high

electrodes spaced at 100 mm (Ayanda Biosystems, S.A., Lausanne,

Switzerland). The slice was continuously perfused with oxygenated

ACSF (1.5 ml min21 at 34 uC) containing 720 nM Ab(1–42)

oligomers and/or 950 nM ligand throughout the recording

session. Data were recorded with a standard, commercially

available MEA setup (Multi Channel Systems MCS GmbH,

Reutlingen, Germany). The Schaffer-collateral was stimulated by

injecting a biphasic current waveform (2100/+100 ms) through

one selected electrode at 0.033 Hz. Care was taken to choose the

stimulating electrode in the same region from one slice to the

other. The peak-to-peak amplitudes of fEPSPs at the stratum

pyramidale and stratum radiatum of CA1 were analyzed. After

a 30-min incubation period, the threshold and the maximum of

stimulation intensity for evoke responses was determined. To

evoke responses, 30% of the maximal stimulation intensity was

used. LTP was induced by applying a theta-burst stimulation

(TBS) pattern at the maximal stimulation intensity. The TBS

comprised four trains administered at 20-s intervals with 10 bursts

given at 5 Hz per train and 4 pulses at 100 Hz per burst.

Statistical analysis was carried out by using two-tailed Student’s t-

test. For representative raw data see Figure S12.

Supporting Information

Figure S1 TOCSY spectrum (A) and ROESY spectrum
(B) of 1. NMR-derived conformation of 1: H14 helix (C).
tr-NOESY recorded on the mixture of 1 and the Ab(1–42)

oligomers and the NOE crosspeaks supporting the H14 helical

binding conformation (D).

(TIF)

Figure S2 Constitutions of 7 and 8.

(TIF)

Figure S3 Representative raw ITC data obtained with
the 72 mM Ab(1–42) oligomer in the titration cell and
175 mM 7 in the syringe. The curve was corrected for the heat

Foldamers Neutralizing Ab Oligomers

PLoS ONE | www.plosone.org 14 July 2012 | Volume 7 | Issue 7 | e39485



of dilution of the ligand, and polynomial baseline correction was

applied.

(TIF)

Figure S4 ITC enthalpograms for the titration of the
72 mM Ab oligomer with 9 (A), 10 (B) and 11 (C). Fitting of

the titration curves revealed weak (KD.2 mM) and substoichio-

metric interactions for both 9 and 10. This indicated that these

changes in the recognition segments lead to the loss of tight and

specific binding. For 11, the curve fitting did not converge,

because the exothermic heat response (negative DH values) with

negative slope cannot be associated with a binding equilibrium.

(TIF)

Figure S5 SDS-PAGE and Western Blot characterization
of the Ab oligomer sample. The results on the left (BAM10)

and the right (OC) panels were obtained on identical samples. The

incubation time was measured from dissolving iso-Ab in the

pH 7.4 buffer. The monomeric fraction is not stained by OC,

whereas BAM10 has a limited efficiency in staining the LMW

oligomers. The OC staining revealed that the monomeric

population can be minimized with the incubation time and after

24 h a mixture of LMW and HMW oligomers was obtained.

(TIF)

Figure S6 (A) DLS measurement: hydrodynamic diameter

distribution of the Ab oligomers in PBS, c = 72 mM, after

incubation for 24 h. Frequencies are normalized to the intrinsic

volume of the scattering particles. (B) TEM image of the oligomers

on formvar-carbon coated grids, stained with uranyl acetate,

visualized at 920006magnification.

(TIF)

Figure S7 1H-NMR spectra recorded for the Ser26

depsipeptide iso-Ab(1–42) at pH 3 (A) and after buffering
of the medium to pH 7.4 for the same sample (B). The

intensities are corrected for the small dilution.

(TIF)

Figure S8 Purity and integrity of 7, 11 and biotinyl-7.
Analytical HPLC chromatograms of the purified 7, 11 and

biotinyl–7 are given in panels (A), (B) and (C), respectively.

Conditions: solution A: 0.1% TFA in water; B: 80% ACN, 0.1%

TFA in water Applied gradients: 7: 0–20% B in 20 min; 7: 40–

64% B in 12 min, biotinyl-7: 25–75% B in 25 min Column

Phenomenex Luna 5 C18 column 1.2 ml/min flow rate at

ambient temperature.

(TIF)

Figure S9 Purity and integrity of 7, 11 and biotnyl-7.
ESI-MS spectra of the purified 7, 11 and biotinyl-7 are
given in panels (A), (B) and (C), respectively.

(TIF)

Figure S10 1H-NMR WATERGATE spectra recorded in
H2O:D2O 90:10 (buffer pH 7.4) for 7 (A) and 11 (B). The

signal broadening in the amide region is due to the chemical

exchange with solvent protons. Signal broadening in methanol was

not observed. Inset displays spectrum of 7 in d3-MeOH.

(TIF)

Figure S11 1H-NMR WATERGATE spectra for 7–11 (A–
E, respectively) recorded in H2O:D2O 90:10 (phosphate
buffer pH 7.4).

(TIF)

Figure S12 Superimposed raw data before (black) and
180 min after (red) LTP induction (A), untreated; (B),
Ab(1–42) oligomer; (C), Ab(1–42) oligomer +7; (D), Ab(1–
42) oligomer +11).
(TIF)

Table S1 Affinities to Ab oligomers determined for 1, 7,
8, 9 and 10 with ITC and ELISA.

(DOC)
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