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Abstract

HIV-1 Tat protein recruits host cell factors including CDK9/cyclin T1 to HIV-1 TAR RNA and thereby induces HIV-1
transcription. An interaction with host Ser/Thr protein phosphatase-1 (PP1) is critical for this function of Tat. PP1 binds to a
Tat sequence, Q35VCF38, which resembles the PP1-binding ‘‘RVxF’’ motif present on PP1-binding regulatory subunits. We
showed that expression of PP1 binding peptide, a central domain of Nuclear Inhibitor of PP1, disrupted the interaction of
HIV-1 Tat with PP1 and inhibited HIV-1 transcription and replication. Here, we report small molecule compounds that target
the ‘‘RVxF’’-binding cavity of PP1 to disrupt the interaction of PP1 with Tat and inhibit HIV-1 replication. Using the crystal
structure of PP1, we virtually screened 300,000 compounds and identified 262 small molecules that were predicted to bind
the ‘‘RVxF’’-accommodating cavity of PP1. These compounds were then assayed for inhibition of HIV-1 transcription in CEM
T cells. One of the compounds, 1H4, inhibited HIV-1 transcription and replication at non-cytotoxic concentrations. 1H4
prevented PP1-mediated dephosphorylation of a substrate peptide containing an RVxF sequence in vitro. 1H4 also
disrupted the association of PP1 with Tat in cultured cells without having an effect on the interaction of PP1 with the
cellular regulators, NIPP1 and PNUTS, or on the cellular proteome. Finally, 1H4 prevented the translocation of PP1 to the
nucleus. Taken together, our study shows that HIV- inhibition can be achieved through using small molecules to target a
non-catalytic site of PP1. This proof-of-principle study can serve as a starting point for the development of novel antiviral
drugs that target the interface of HIV-1 viral proteins with their host partners.
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Introduction

The emergence of drug-resistant HIV-1 presents a challenge for

the design of new therapeutics. Targeting host cell factors

employed by HIV-1 for replication could be an approach to

address HIV-1 drug resistance. Transcription of HIV-1 is

dependent on the viral Tat protein, which binds a nascent trans-

activation responsive (TAR) RNA [1] and recruits host cell

transcription factors including CDK9/cyclin T1 to the viral LTR

(reviewed in [2]). Phosphorylation of the RNAP II carboxyl-

terminal domain (CTD) is functionally critical for HIV-1

transcription. Conversely, CTD-dephosphorylation mediated

through protein phosphatase-1 (PP1) is similarly essential for

HIV-1 transcription [3,4]. Currently, it is thought that PP1 enters

the viral transcriptional schema through direct recruitment by the
35QVCF38 motif of Tat [5,6]. The PP1 holoenzyme consists of a

constant catalytic subunit (PP1a, PP1b/d or PP1c) and a variable

regulatory subunit that determines the localization, activity and

substrate-specificity of the phosphatase [7]. Regulatory subunits

bind to the catalytic subunit through one or more motifs, such as

the well established RVxF motif and the recently identified SILK

and MyPhoNE motifs [8]. Major PP1 regulators, such as NIPP1

(Nuclear Inhibitor of PP1) or PNUTS (Phosphatase Nuclear

Targeting Subunit), bind PP1 with nanomolar affinity and

modulate the dephosphorylation of a wide range of PP1 substrates

[7]. Previously, we found that Tat binds PP1 in a similar manner

to how NIPP1 binds PP1, except that the Tat-PP1 interaction is

weaker and occurs with micromolar affinity [6].

Interestingly, a Q35R mutation in Tat conferred a higher

affinity for PP1, although this mutation is inactivating for Tat-

mediated transcription, potentially because a tighter association

with PP1 prevents Tat-binding to CDK9/cyclin T1 [6]. Recent

studies point to CDK9 as a potential target for PP1 dephosphor-

ylation. The high molecular weight positive transcription elonga-

tion factor b (P-TEFb) contains CDK9/cyclin T1, 7SK RNA,

HEXIM1 protein, and recently identified La-related protein
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(LARP7) and methylphosphatase capping enzyme (MePCE)

[9,10]. The high molecular weight P-TEFb complex plays an

important role in the activation of HIV-1 transcription, as it serves

as a source of CDK9/cyclin T1 for recruitment by HIV-1 Tat

[11]. Dephosphorylation of CDK9 on Thr186 by protein

phosphatase-1 (PP1) in stress-induced cells dissociates 7SK RNA

and HEXIM1 and activates CDK9/cyclin T1 [12]. Our recent

study showed that HIV-1 transcription and replication are

inhibited in cells that stably express the central domain of NIPP1

(cdNIPP1) or when cdNIPP1 is expressed as part of HIV-1 pNL4-

3 in place of nef [5]. The stable expression of cdNIPP1 disrupts the

interaction of Tat with PP1 and also increases CDK9 phosphor-

ylation of Thr186 and the association of CDK9 with 7SK RNA

[5]. We also recently showed that PP1 dephosphorylates Ser175 of

CDK9 and activates HIV-1 transcription [13] suggesting an

additional activation mechanism for PP1 in HIV-1 transcription.

Thus, our previous studies showed that PP1 is important for the

activation of HIV-1 transcription and that disruption of the HIV-1

Tat/PP1 interaction is inhibitory for HIV-1. These findings

suggest the possibility of identifying small molecules that can act in

a manner similar to the expression of cdNIPP1 to disrupt the

interaction of Tat and PP1 and inhibit HIV-1 transcription. Here

we report the identification of a small molecule, 1H4 that inhibits

HIV-1 transcription and replication. This compound affected the

binding of Tat’s RVxF motif to PP1 in vitro and the binding of Tat

to PP1 in cultured cells but had no effect on the binding of PP1 to

the major regulatory subunits, NIPP1 and PNUTS, or the

expression of cellular proteins. We further analyzed the effect of

1H4 on the interaction of Tat with PP1a in cultured cells by

comparing the distribution of PP1 between the cytoplasm and

nucleus.

Results

Design of Small Molecule ‘‘RVxF’’ Mimetic Library
We chose the complex of PP1c with RRVSFA peptide [14] for

docking experiments (X-ray coordinates courtesy of David

Barford). The binding of the RVxF motif to PP1 in this complex

is largely driven by van der Waals interactions of the valine and

phenylalanine side chains [14]. In the 64RRVSFA69 peptide,

Val66’ and Phe68’ side chains (Fig. 1) interact with a hydrophobic

channel located on the opposite side of the catalytic center of

PP1c. The side chain of Phe68’ interacts with a site formed by the

Leu243, Phe257, Cys291 and Phe293 residues of PP1c while the

Val66’ side chain binds to an adjacent site formed by Ile169,

Leu243, Leu289 and Cys291 (Fig. 1). These two sites serve for

tethering the RVxF motif to PP1c. Hence, we envisioned that an

ideal RVxF competing compound would occupy one or both of

these sites. Arg65’ makes a salt bridge interaction outside of the

binding pocket, so we could not mimic this interaction with small

molecules that occupy only the ‘‘RVXF’’-accommodating cavity

of PP1. Based on these considerations, the initial pharmacophore

model was build to select ligands occupying the hydrophobic

channel and forming at least two hydrogen bonds with PP1c.

Since the channel has a shallow depth preference was given to

compounds that formed large contact surfaces. About 300,000

compounds from the Enamine (Kiev, Ukraine) stock collection

were virtually screened for binding to PP1 (see description of the

screening process in Materials and Methods). The resulting 1572

compounds were processed sequentially in two steps (described in

Materials and Methods and outlined in Fig. S1). Rough filtering

was employed to remove outliers and allowed to select compounds

for further evaluation (step one, Fig. S1). Geometric filtering was

used to select compounds that fell under one of four distinct

binding modes (step two, Fig. S1). In the first mode, compounds

filled a region near Tyr255 (Fig. 2, panel 1). In the second mode,

compounds bound within 6.5 Å of Cb of Asp166 (Fig. 2, panel 2).

In the third mode, compounds bound within 4 Å of the amide

oxygen of Gln262 (Fig. 2, panel 3). In the fourth mode,

compounds were confined to the Val66’ and Phe68’ hydrophobic

sub-sites and formed extensive hydrogen bonds with at least two of

the following residues: Lys260, Arg261, Asp242, Val289, M290

and Cys291 (Fig. 2, panel 4). We obtained 262 compounds that

collectively represented these four binding modes; these com-

pounds were further evaluated biologically for inhibition of HIV-1

replication as described below.

Identification of HIV-1 Inhibitory Compounds
We evaluated all 262 candidate compounds for inhibition of

Tat-dependent HIV-1 transcription (Table S1) using a previously

described [15] reporter assay. CEM-GFP cells containing LTR-

GFP reporter were infected with an adenovirus expressing HIV-1

Tat and GFP fluorescence was detected on a microplate reader.

Ad-Tat infected CEM-GFP cells were incubated with 25 mM of

each compound for 48 hours to determine the inhibitory activity of

the compound. Cytotoxicity was evaluated in the same plate by

the addition of propidium iodide (PI) and measurement of red

fluorescence.

Sixty compounds that inhibited HIV-1 transcription by at least

80% at 25 mM were found (Table S1, marked as gray). These 60

compounds were further analyzed to determine the IC50 for the

inhibition of transcription. This dose-dependent analysis identified

17 compounds that inhibited HIV-1 transcription in CEM-GFP

cells with IC50s below 25 mM and 8 compounds that inhibited

HIV-1 transcription at IC50s below 15 mM (Fig. 3; see examples in

Fig. S2A). Amongst the latter 8 compounds, 1H4 was not cytotoxic

at the concentrations tested.

The interaction of 1H4 with PP1 falls into the first binding

mode (Fig. 4, panels A and B), although 1H4 did not quite reach

Tyr255 as depicted in the prototype compound (Fig. 2, panel 1).

We further evaluated 1H4 and five other compounds for

inhibition of HIV-1 LTR-directed transcription in 293T cells

transfected with a Tat-expressing vector and an HIV-1 LTR-Lac Z

reporter [16]. In this assay, we found that 1H4 inhibited viral

transcription with an IC50 of 5 mM (Fig. 4C); by contrast, the other

tested compounds were not inhibitory at concentrations below

10 mM (not shown). Analysis of 1H4 in CEM cells by trypan blue

exclusion assay showed that it was not cytotoxic (IC50.100 mM,

Fig. 4D) in contrast to the toxic A02 compound that was used as a

control (Fig. 4D). The effect of 1H4 was specific for the HIV-1

promoter as it did not inhibit transcription from a control CMV

promoter (Fig. S2B). Taken together, we were able to identify a

single compound, 1H4 that specifically inhibited HIV-1 transcrip-

tion in cultured CEM and 293T cells.

HIV-1 Replication is Inhibited by 1H4
Next, we determined the effect of 1H4 on productive HIV-1

replication. MT4 cells were infected with HIV-1 NL4-3, and the

cells were treated with 2 mM, 10 mM or 25 mM concentrations of

1H4, and, as a control, an inactive compound 1G3. 1H4 inhibited

HIV-1 replication beginning at the 10 mM concentration (Fig. 4E)

while 1G3 did not inhibit HIV-1 replication (Fig. 4E). Thus 1H4

inhibited both HIV-1 transcription and replication.

1H4 Inhibited the Interaction of Tat with PP1 in vitro
We previously showed that HIV-1 Tat binds to the RVxF

pocket of PP1 in vitro using competition assays [6]. Here, we

analyzed the effect of 1H4 on the binding of the Tat RVxF

PP1-Targeted HIV-1 Inhibitor
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sequence to PP1 using hybrid PP1 substrates containing a

substrate phosphopeptide linked to RVxF-containing sequences

derived from Tat or NIPP1. As the substrate phosphopeptide,

we used a retinoblastoma protein-derived HIPR(p-

S)PYKFPSSPLR peptide (pRb) that is efficiently dephosphory-

lated by PP1 but not by the enzymatically-related PP2A [13].

The pRb peptide was linked to an extended RVxF-

containing sequence derived from Tat (KKCCFHCQVCFITK)

(pRb-Tat peptide) or the central domain of NIPP1

(KRKRKNSRVTFSED). To visualize the interaction between

pRb-Tat and PP1 we built a computational model of the pRb-

Tat peptide with PP1 complex (described in Materials and

Methods). Based on this model, the pRb-Tat peptide is able to

bind to the RVxF- accommodating groove of PP1 and, at the

same time, to reach the active site of PP1 without any tension

(Fig. 5A, green spheres; Fig. 5B, gray sticks). The pRb-Tat

peptide was efficiently dephosphorylated by PP1 in vitro (Fig. 5C,

V0 = 0.31 mM?min-1). Similar dephosphorylation kinetics were

observed for the pRb-NIPP1 peptide (Fig. 5D, Vo = 0.56 mM?

min21), but not for the mutant pRb-NIPP1 pA-RATA peptide

(HIPR(pS)PYKFPSSPLRAAAAASRATASED) which was a

very poor PP1 substrate (Fig. 5D, Vo = 0.004 mM?min21).

Interestingly, the dephosphorylation of the pRb peptide

(HIPR(pS)PYKFPSSPL) was significantly slower than pRb-Tat

or pRb-NIPP1 peptides (Vo = 0.014 mM?min21, data not

shown). The increased dephosphorylation of pRb-Tat and

pRb-NIPP1 peptides suggests that the extended RVxF motif

might accelerate the dephosphorylation reaction likely due to

the binding to PP1 during the process of substrate recognition.

Dephosphorylation of the pRb-Tat QACA peptide (HIPR(p-

S)PYKFPSSPLR KKCCFHCQACAITK) having a mutation in

the RVxF sequence was significantly reduced (Fig. 5C,

V0 = 0.17 mM?min21). Addition of 1H4 at 3-fold molar excess

(480 mM) over pRb-Tat (160 mM) inhibited pRb-Tat dephos-

phorylation and reduced the rate of dephosphorylation (Fig. 5C,

V0 = 0.19 mM?min21) to the rate of pRb-Tat QACA dephos-

phorylation (Fig. 5C, V0 = 0.17 mM?min21). The addition of

1H4 also reduced the rate of pRb-cdNIPP1 phosphorylation

(Fig. 5D, V0 = 0.37 mM?min21). These observations suggest that

1H4 is likely to interfere with the interaction of the RVxF motif

Figure 1. PP1 with RVxF peptide bound to its hydrophobic channel. Peptide RRVSFA derived from Gm protein, a regulatory subunit of PP1
involved in glycogen metabolism, shown in ball-and-stick representation and colored after the CPK scheme, with carbon atoms colored in green for
clarity. Solvent accessible surface area around the RVxF binding site is shown in transparent, and colored according to electrostatic potential.
doi:10.1371/journal.pone.0039481.g001
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with PP1. To further investigate the effect of 1H4 on the

dephosphorylation of the pRb-Tat peptide, we analyzed the

initial velocity versus pRb-Tat peptide substrate concentration

plots. Addition of 1H4 inhibited pRb-Tat dephosphorylation by

increasing Km but not Vmax (Fig. 5D). In contrast, a non-

HIV-1 inhibitory 1G3 compound did not inhibit pRb-Tat

dephosphorylation but instead induced dephosphorylation as

evidenced by the decreased Km (Fig. 5D). Visualization on a

Lineweaver-Burk plot showed a competitive nature of pRb-Tat

inhibition by 1H4 (Fig. 5E), which is evidenced by a common

intercept on the 1/Vo axis. This was expected because the

dephosphorylation site and the RVxF-containing sequence were

fused into one hybrid substrate and 1H4 interferes with the

binding of this substrate to PP1. Taken together, these results

demonstrate that 1H4 interferes with the binding of the RVxF

motif to PP1.

1H4 does not Inhibit Enzymatic Activity of PP1 in vitro
To determine whether 1H4 has an effect on the enzymatic

activity of PP1, we used recombinant PP1a and a generic

substrate, phosphorylated KT(pT)IRR peptide which is recog-

nized equally well by PP1 and PP2A [13]. The KT(pT)IRR

peptide (3 mM) was efficiently dephosphorylated by PP1a (Fig. 6A,

V0 = 1.4 mM?min21). Very little inhibition of PP1a activity was

observed when 1H4 (300 mM) was added to the reaction (Fig. 6A,

V0 = 1.3 mM?min21). We further investigated the effect of 1H4 on

PP1 enzymatic activity by analyzing the initial velocity versus

KT(pT)IRR peptide substrate concentration plots in the absence

and presence of 1H4 that were approximated by Michaelis-

Menten equation (Fig. 6B) and also visualized in Lineweaver-Burk

representation (Fig. 6C). The addition of 1H4 had minimal effect

on Vmax and Km (Fig. 6B) further supporting the conclusion that

1H4 has no direct effect on PP1 enzymatic activity.

1H4 Prevents the Intracellular Interaction of Tat with PP1
During HIV-1 infection, Tat facilitates PP1a translocation into

the nucleus [6]. To analyze whether 1H4 disrupts the interaction

of Tat with PPla, we expressed PP1a-EGFP along with Flag-Tat,

in the absence and presence of 1H4 (Fig. 7A). Flag-Tat co-

precipitated with PP1a-EGFP (Fig. 7A, IP: a-Flag, lane 2) in

accord with our previous report [6]. The addition of 10 mM 1H4

reduced the amount of PP1a-EGFP that co-precipitated with Tat

(Fig. 7A, lane 3). Similarly, 1H4 reduced the association of Tat

with endogenous PP1a as detected with PP1a-specific antibodies

Figure 2. Four binding modes for PP1 inhibitors. Complexes with representative ligands, fulfilling each binding mode are shown.
Representation scheme same as Figure 1. Hydrogen bonds are shown in yellow. Panel 1. Compounds are positioned toward Tyr255 were selected.
Panel 2. Compounds reach Asp166. Panel 3. Compounds are span toward Gln262. Panel 4. Compounds form more than 4 hydrogen bonds with PP1.
doi:10.1371/journal.pone.0039481.g002
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Figure 3. Selected compounds that inhibited HIV-1 transcription. CEM-GFP cells were infected with Adeno-Tat and then treated with the
indicated compounds at concentrations between 3 mM to 45 mM for 24 h. GFP fluorescence was measured in live cells. The cells were supplemented
with propidium iodide (PI), and its fluorescence was measured to determine the toxicity of the compounds.
doi:10.1371/journal.pone.0039481.g003

Figure 4. Inhibition of HIV-1 transcription and replication by 1H4. A. The model of 1H4 interaction with PP1. 1H4 occupies hydrophobic sites
of Phe68’ and Val 669 side chains, interacts with Gln262 and forms a network of hydrogen bonds with Arg261 and Cys291. B. Chemical structure of
1H4. C. Inhibition of HIV-1 transcription in 293T cells. 293T cells were transfected with HIV-1 LTR-LacZ, CEM-GFP and Tat expressing vectors and
treated with the indicated concentrations of 1H4 and 1G3 compounds. At 24 hours after the transfection, the cells were lysed and analyzed for green
fluorescence and for b-galactosidase activity. D. Toxicity in CEM cells. CEM cells were treated with the indicated concentrations of 1H4, 1G3 and toxic
A02 compound for 24 hours. The viability was determined using trypan exclusion assay and automated cell counter (Nexcelcom). E. HIV-1 replication
is inhibited by 1H4. MT4 cells were infected with recombinant pNL4-3 HIV-1 and treated with different concentrations of 1H4 or inactive control 1G3.
The RT activities were determined over the course of 8 days.
doi:10.1371/journal.pone.0039481.g004
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Figure 5. 1H4 compound competes with RVxF motif. A. Superimposition of pRb-Tat peptide on the complex of PP1 with Spinophilin. PP1
surface is colored after the atom types. The spinophilin peptide is shown as magenta ribbon and the pRb-Tat peptide as orange ribbon. The Val25
and Phe27 residues of pRb-Tat and the Ile449 and Phe 451 residues of Spinophilin are shown as sticks. The 2-(N-morpholino)-ethanesulfonic acid
bound in the active site of PP1 is shown in green spheres. The phosphorylated Ser6 residue of pRb-Tat peptide is shown as sticks. B. Phosphorylated
Ser 6 residue binds to the active site of PP1. Comparative superimposition of pRb-Tat peptide over the crystal structure of MES bound in the active
site of PP1. Catalytic resides are shown as sticks. MES is shown as green sticks, and the phosphorylated Ser6 residue of pRb-Tat peptide is shown as
orange sticks. The pRb-Tat peptide is shown as orange ribbon. C. 1H4 inhibits kinetics of pRb-Tat peptide dephosphorylation by PP1a. Recombinant
PP1a was assayed with pRb-Tat (WT or QACA mutant, 120 mM) in the absence or presence of 1H4 as indicated. The reactions were stopped at
indicated time points and the phosphate release was quantified by malachite green assay. Initial velocity was calculated by linear regression in Prism.
D. 1H4 inhibits kinetics of pRb-cdNIPP dephosphorylation by PP1a. Recombinant PP1a was assayed with pRb-cdNIPP1 in the absence or presence of
1H4 as indicated. Mutant pRb cdNIPP1 pA-RATA was used as negative control. The reactions were stopped at indicated time points and the
phosphate release was quantified by malachite green assay. Initial velocity was calculated by linear regression in Prism. E and F. 1H4 competitively
inhibits pRb-Tat peptide dephosphorylation by PP1a. Initial rates of pRb-Tat peptide dephosphorylation by PP1a were assayed at the indicated
concentrations of the substrate in the absence or presence of 300 mM 1H4 or non-HIV-1 inhibitory 1G3. The amount of the released phosphate was

PP1-Targeted HIV-1 Inhibitor
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(Fig. 7A second panel, lanes 2 and 3). In contrast, 1H4 had no

effect on the association of Tat with CDK9/cyclin T1 as shown by

the equal presence of CDK9 (Fig. 7A, third panel lanes 2 and 3).

Thus, 1H4 appears to interrupt the interaction between Tat and

PP1a, without affecting the association of Tat with CDK9 thereby

decreasing the amount of PP1 available to regulate HIV-1

transcription.

1H4 has no Effect on the Interaction of PP1 with NIPP1
and PNUTS

To analyze the specificity of the effect of 1H4, we analyzed the

association of PP1 with the cellular regulatory subunits, NIPP1

and PNUTS, compared to the association with Tat. PP1 was

precipitated on microcystin-sepharose from cell lysates and the

precipitated proteins were trypsinized and analyzed by LC-MS/

MS spectrometry. Figure 7B shows the relative amounts of Tat

and PP1 subunits PNUTS and NIPP1 in different experiments.

We used Normalization Level (NL) or the amplitude of MS peak

signal as a value proportional to sample amount. First, the specific

peptides were detected by SEQUEST. Then the exact mass and

Retention Time of the peptides were used to filter the LC data. As

previously shown, the LC-MS peak area could be used for sample

amount quantification in a wide range of sample concentrations

[17]. Our data were measured in the linear range of the NL signal.

Figure 7B represents the amplitude of the LC peak for specific

peptides of the following proteins: Tat (peptide RAPQDSQTH-

QASLSK, m/z = 551.95 Da, z = 3+), PNUTS (peptide

GPQGPGGGGINVQEILTSIMGSPNSHPSEELLK, m/z

quantified with malachite green. The VMAX and Km were calculated by non-linear regression analysis in Prism with the assumption that 25% of the
substrate contained the phosphate group. Transformation of the data to Lineweaver-Burk plot (panel E) showed competitive inhibition of pRb-Tat
dephosphorylation.
doi:10.1371/journal.pone.0039481.g005

Figure 6. 1H4 has no effect on PP1 enzymatic activity. A. 1H4 has no effect on the kinetics of KT(pT)IRR peptide dephosphorylation by PP1a.
Recombinant PP1a (0.005 Units) was assayed with KT(pT)IRR peptide (3 mM) in the absence or presence of 1H4, and the reaction was stopped at
indicated time points by the addition of malachite green solution. The amount of released phosphate was quantified by the absorbance and
phosphate concentration was recalculated using standards. Initial velocity was calculated by linear regression in Prism. B and C. 1H4 has no effect on
Km and VMAX of KT(pT)IRR peptide dephosphorylation by PP1a. Initial rates of KT(pT)IRR peptide dephosphorylation by PP1a were assayed at the
indicated concentrations of the substrate in the absence or presence of 300 mM 1H4. The amount of released phosphate was quantified with
malachite green. The VMAX and Km were calculated by non-linear regression analysis for Michaelis-Menten equation in Prism. The data were
transformed to Lineweaver-Burk representation shown in panel C.
doi:10.1371/journal.pone.0039481.g006
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Figure 7. 1H4 prevents the interaction of Tat with PP1 in cultured cells. A. Effect of 1H4 on PP1co-immunoprecipitation with Tat. 293T cells
were transfected with Flag-tagged Tat and PP1a-EGFP. Flag-Tat was immunoprecipitated with anti-Flag antibodies from the cells extracts and probed

PP1-Targeted HIV-1 Inhibitor
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= 1100.88 Da, z = 3+), NIPP1 (peptide VFLIDLNSTHGTFL-

GHIR, m/z = 510.77 Da, z = 4+) and PP1a (peptide

LNLDSIIGR, m/z = 500.78, z = 2+). The amplitude of the

signal was normalized for each peptide to its maximum on the

samples set. PNUTS and NIPP1 were equally associated with PP1

in mock-transfected, Tat-transfected and Tat-transfected cells

treated with 1H4 (Fig. 7B). In contrast, Tat association was

reduced in the Tat-transfected cells that were treated with 1H4

(Fig. 7B). Therefore, 1H4 affected the interaction of PP1 with Tat

without any effect on the interaction of PP1 with PNUTS or

NIPP1.

1H4 has no Effect on the Expression of Cellular Proteins
To determine if 1H4 has a negative effect on protein expression

profiles, we analyzed the global cellular proteome by mass

spectrometry. Protein expression was analyzed in 293T cells

untreated or treated with 1H4 as described in Materials and

Methods. We detected expression of 1722 proteins in the

untreated sample and 1739 proteins in the 1H4-treated sample

(not shown). Analysis of the 28 proteins having the highest Scores

in SEQUEST search showed very close score (credibility of search

result) and coverage (part of the database protein sequence found

experimentally) (Fig. 7C) indicating that 1H4 treatment did not

significantly change the cellular proteome.

1H4 Prevents PP1 Translocation to the Nucleus
In live cells, PP1a is dynamically distributed between the

cytoplasm and the nucleus, and its shuttling into the nucleus is

thought to be regulated by its interaction with sds22 and inhibitor-

3 regulatory subunits [18]. We previously showed that HIV-1 Tat

facilitated nuclear localization of PP1a via an effect that requires

the intact QVCF sequence of Tat [6]. We analyzed the effect of

1H4 on nuclear localization of PP1a in HeLa cells that were

transfected with Flag-Tat and PP1a-EGFP expression vectors and

treated with 1H4 or a control compound for 18hrs. In untreated

cells, PP1a was localized in the perinuclear area and cytoplasm

(Fig. 8A). Co-expression of Tat increased nuclear and perinuclear

localization of PP1a (Fig. 8B). Co-expression of mutant Tat
35QACA38 in contrast led to a more homogeneous distribution of

PP1a (Fig. 8C). Treatment with 1H4 diminished nuclear

localization of PP1a in the presence of Tat (Fig. 8D). In contrast,

treatment with the inactive compound 1G3 led to a more

pronounced nuclear PP1a localization in the presence of Tat

(Fig. 8F). To achieve quantifiable results, we measured fluores-

cence of PP1a-EGFP in nuclear and cytoplasmic fractions of 293T

cells that were transfected with PP1a-EGFP or PP1a-EGFP and

Tat expression vectors and treated with 1H4. The cytoplasmic and

nuclear fractions were separated as described in Materials and

Methods. Analysis of EGFP fluorescence showed a significant

decrease of nuclear PP1a-EGFP in the 1H4-treated cells

compared to the untreated controls or the cells treated with 1G3

compound (Fig. 8F). Unexpectedly, this was observed both in the

absence and the presence of Tat (Fig. 8F). Moreover, Tat has only

moderate (10–20% in several independent experiments) effect on

PP1 distribution to the nucleus. But strikingly, Tat QACA mutant

expression resulted in increased accumulation of PP1 in the

cytoplasm (Fig. 8F, lane 7).

Taken together, our experiments showed that a small molecular

mimetic of the RVxF motif efficiently inhibited HIV-1 transcrip-

tion apparently by disrupting the interaction of Tat with PP1 and

affecting the cellular distribution of PP1.

Discussion

Our study identified a novel hit compound, 1H4 that inhibited

Tat-induced transcription and HIV-1 replication at low micro-

molar concentrations. The minimal acridine core (9-amino-

1,2,3,4-tetrahydroacridine) was not active as an HIV-1 transcrip-

tion inhibitor (data not shown), suggesting that substitutions at

positions 4 and 9 that are present in 1H4 compound (Fig. 4B) are

important for the antiviral activity. According to the in silico

binding model, the substitution at position 4 binds the Gln262 side

chain of PP1 providing additional van der Waals interactions

(Fig. 2, panel 1). The substitution at position 9 of the acridine core

points along the narrow hydrophobic channel of PP1 toward

Cys293 and Tyr255 (Fig. 2, panel 1). Flexible substitutions at

position 9 are likely to be preferred. The extended 9-carbox-

oacteamide moiety of 1H4 provides sufficient flexibility to fit the

groove’s shape and bridge guanidine of Arg261 and carbonyl

Cys291 with a hydrogen bond network (Fig. 4A). Further

modifications and analysis of the activity of the compounds with

extended flexible chains at the 9th position will likely generate

additional active inhibitory compounds. On the other hand,

branched substitutions at the 9th position would likely abort

formation of the hydrogen bond network and render compounds

inactive.

Previously reported inhibitors of HIV-1 transcription targeted

TAR RNA, Tat and host cell factors involved in HIV-1

transcription (see for details [19]). The fluoroquinoline derivative,

K-37, interacted with TAR RNA in vitro and inhibited Tat-

induced transcription as well transcription induced by other

artificial RNA- dependent transcriptional activators [20]. A

structural analog of K-37, the 6-aminoquinolone derivative,

WM5, efficiently bound TAR RNA in vitro with nanomolar

affinity and inhibited HIV-1 replication in acutely infected and

chronically infected cells [21,22]. Compound 3, which was

developed from the WM5 lead compound, inhibited HIV-1

replication in acutely and chronically infected T cells and

macrophages and also inhibited Tat-induced transcription al-

though at 5-10 fold higher concentrations [23]. Whether

compound 3 targets TAR RNA remains to be seen. Other HIV-

1 inhibitory compounds that targeted TAR RNA included 2’-O-

methyl (OMe) oligonucleotide mixmers or oligonucleotides con-

taining tricyclo-DNAs [24], amino disaccharides with an alpha-

(1R4) linkage that inhibited binding of Tat to TAR RNA at

subnanomolar concentrations [25], substituted purines containing

a side chain with a terminal amino or guanidyl group [26] and

isoquinoline derivatives bearing guanidinium group or amino

group-terminated side [27].

with antibodies against EGFP to detect PP1and against Flag to detect Tat. Lane 1, untreated whole cell extract; lane 2, cells treated with 10 mM 1H4;
lane 3, mock-transfected cells. B. 1H4 has no effect on PP1 association with NIPP1 and PNUTS. 293T cells were transfected with Flag-tagged Tat. PP1
was precipitated with microcystin agarose. The associated proteins were trypsinized and analyzed by nano-LC MS/MS. Liquid chromatography peak
amplitudes for specific peptides derived from Tat (551.95 Da), PP1a (500.78 Da), NIPP1 (501.77 Da) and PNUTS (110.88 kDa) are shown, see details in
text. The peptides were identified through MS/MS sequencing analysis by SEQUEST. C. Effect of 1H4 compound on a cell proteome. 293T cells were
treated with 10 mM 1H4 for 18h or untreated and lysed as described in Materials and Methods. Lysates were trypsinized, fractionated by ion-exchange
chromatography and then analyzed on by LC-MS-MS using C18 column. MS-MS data were analyzed by SEQUEST. The 28 major proteins having
highest Score in SEQUEST are shown.
doi:10.1371/journal.pone.0039481.g007

PP1-Targeted HIV-1 Inhibitor

PLoS ONE | www.plosone.org 10 June 2012 | Volume 7 | Issue 6 | e39481



In addition to targeting TAR RNA and Tat, host cell factors

involved in the regulation of HIV-1 transcription were also

considered as potential targets. Tat recruits the human transcrip-

tional coactivator PCAF (p300/CREB binding protein-associated

factor) that binds to Tat acetylated at lysine 50 and facilitates

transcription of the integrated HIV-1 provirus (reviewed in [28]).

The PCAF-targeted N1-aryl-propane-1,3-diamine based lead

‘‘compound 20 inhibited the binding of GST-PCAF BRD to Tat

acetylated on lysine 50 [29] and also inhibited HIV-1 transcription

[30]. A lead N-aminoimidazole derivative NR-818 inhibited HIV-

1 transcription by prolonging the binding of NF-kB to its

consensus sequence and also increased the acetylation of histones

H3 and H4 within the nucleosome nuc-1 at the transcription

initiation site [31]. In the present study, we targeted PP1 that we

previously showed to be critical to Tat-dependent HIV-1

transcription [5,6]. In cultured cells, HIV-1 transcription is

inhibited by the expression of NIPP1, a nuclear regulatory subunit

of PP1 [5], and by okadaic acid which inhibits PP1 activity [32].

HIV-1 transcription is also decreased by the expression of a

catalytically inactive mutant of PP1 (PP1cD64N) [6]. The current

Figure 8. 1H4 compound disrupts the Tat-mediated translocation of PP1 into the nucleus. HeLa cells were transfected with PP1a-EGFP
(PP1a) (A), PP1a-EGFP and WT Flag-Tat (B, D and E) or PP1a-EGFP and Flag-Tat 35QACA38 mutant (C) and treated with 10 mM 1H4 (D) or control 1G3
compound (E) for 18 hours. The cells were photographed on Olympus IX51 using a blue filter for EGFP fluorescence or phase contrast with 600X
magnification. F, 293T cells were transfected with PP1a-EGFP or PP1a-EGFP and WT Tat or Tat QACA mutant expression vectors. At 24 hrs
posttransfection cells were lysed in low salt buffer and cytoplasmic extract was separated from the nuclear material by centrifugation. Fluorescence
was measured in the nuclear and cytoplasmic fractions using Perkin-Elmer Luminoscan.
doi:10.1371/journal.pone.0039481.g008
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study extends our previous findings and demonstrates that the

inhibition of HIV-1 can be achieved through the targeting of the

interaction of PP1 and Tat with small molecules. While our

immunofluorescence results are consistent with the previous

finding that HIV-1 Tat facilitates translocation of PP1 to the

nucleus, direct fluorescence measurement showed that 1H4 has an

effect on PP1 distribution in the absence of Tat and that Tat has

only moderate effect on PP1 localization. There was however a

striking difference in the effects of WT Tat and Tat QACA mutant

that showed increased PP1a in the cytoplasm of HeLa cells

(Fig. 8C) or 293T cells measured by direct fluorescence (Fig. 8F)

suggesting that Tat’s QVCF sequence interacts with PP1 in

cultured cells. The Tat-independent effect of 1H4 on PP1 can

explain inhibition of basal HIV-1 transcription (Fig. S2B) that

could be due to the disruption of the interaction of PP1 with a

shuttling regulatory subunit such as sds22 and inhibitor-3 that

form a sandwich with inactive PP1 to shuttle it into nucleus [18].

We are currently in the process of further detailed analysis of the

effect of PP1-targeted small molecule compounds on PP1 shuttling

in the absence and presence of Tat.

There are several possibilities for how PP1 affects HIV-1

replication. First, a possible biological target of PP1 could be

CDK9 [13,32]. CDK9/cyclin T1 associates with 7SK RNA

[33,34] and a hexamethylene bisacetamide (HEXIM1) protein

[35,36] and this interaction inhibits the activity of CDK9

[33,34,35,36] Recently, PP1a and protein phosphatase 2B

(PP2B) were shown to disrupt the interaction between CDK9/

cyclin T1 and 7SK RNA/HEXIM1, thereby inducing the activity

of CDK9/cyclin T1 [12] Currently, the regulatory subunit that

targets PP1 to CDK9 remains unknown, although in HIV-1

infection, the viral Tat protein apparently serves this role. In this

regard, based on the finding that enhanced PP1 binding by the

Tat Q35R mutant disrupts the interaction of Tat with CDK9/

cyclin T1 [6], it is likely that Tat interacts first with PP1 and then

CDK9/cyclin T1, possibly releasing PP1 to dephosphorylate

CDK9 leading to its dissociation from 7SK RNA.

The transcription factor Sp1 is required by HIV-1 for a basal

transcription [37] and can target cyclin T1 to the LTR in the

absence of Tat or TAR RNA [38]. An increase in Sp1

phosphorylation induced by Tat and DNA-PK enhances HIV-1

transcription [39]. A possible second biological target for PP1-

dephosphorylation could be Sp1, which is found associated with

PP1 at cellular promoters [40].

Alternatively, RNA polymerase II could be a third PP1

substrate. We have previously shown that the C-terminal domain

of RNA polymerase II is indeed dephosphorylated by PP1 [4].

Our recent study showed that NIPP1 can serve as an RNAPII

targeting subunit of PP1 [41] and thus altered RNAPII

dephosphorylation could also be considered as a potential

inhibitory mechanism. Interestingly, stable or transient expression

of cdNIPP1 does not affect the viability of cells even though the

association of CDK9 with 7SK RNA is increased [5]. The

expression of cdNIPP1 disrupts the interaction of PP1 with Tat

and inhibits HIV-1 [5]. Recently, a combined approach of in silico

screening and a multistep biochemical validation procedure

identified many novel PP1 interactors that contained the novel

PP1 binding motifs, "SILK" and "MyPhoNE" [8]. Thus, small

molecule compounds that disrupt the interaction of PP1 with these

novel PP1-binding motifs and also with the RVxF motif, might

deregulate subsets of cellular PP1 holoenzymes and selectively

target viral or cellular pathways.

Further investigation is required to elucidate fully the physio-

logically relevant PP1-cell factor interaction(s) for HIV-1 replica-

tion. Nevertheless, to the extent that such an interaction is critical

to the propagation of HIV-1 in human cells, our proof-of-concept

finding of a non-cytotoxic PP1-inhibitor is an important advance

that potentially broaches a new class of anti-HIV drugs. 1H4 is the

first example of a small molecule inhibitor of PP1 that affects HIV-

1 transcription.

Our findings open PP1 as a new avenue for the design of novel

antiretroviral therapeutics. A similar approach was recently

proposed for the design of modulators of PP1 that target various

regulatory binding sites including the RVxF-binding site, which

may complement existing drugs that target protein kinases [42].

Materials and Methods

Materials
Human endothelial kidney 293T (293T) and CEM cells were

purchased from ATCC (Manassas, VA). CEM-HIV-1 (LTR) GFP

cells (courtesy of Dr. Jacques Corbeil) were obtained from the NIH

AIDS Research and Reference Reagent Program. All cells were

cultured at 37uC and 5% CO2. CEM-GFP cells were cultured in

RPMI Medium 1640 containing 10% fetal bovine serum (FBS),

with 1% antibiotic solution (penicillin and streptomycin) and

500 mg/ml G418 (Invitrogen). 293T and HeLa cells were cultured

in Dulbecco’s Modified Eagles Medium (DMEM) containing 10%

fetal bovine serum (FBS) (Gibco-BRL) and 1% glutamine

(Invitrogen).

The HIV-1 reporter contained HIV-1 LTR (2138 to +82)

followed by a nuclear localization signal (NLS) and the Lac Z

reporter gene (courtesy of Dr. Michael Emerman, Fred Hutch-

inson Cancer Institute, Seattle, WA) and the pNL4-3.Luc.R-E-

(courtesy of Dr. Nathaniel Landau) were obtained from the NIH

AIDS Research and Reference Reagent Program. PP1a-EGFP

and Flag-Tat expression vectors were previously described [3].

Antibodies for Flag epitope and a-tubulin were purchased from

Sigma (Atlanta, GA). Protein G agarose was purchased from

Upstate (Lake Placid, NY). Antibodies against PP1a were

purchased from EMD Chemicals (Gibbstown, NJ).

Virtual Screening Procedure
Enamine (Kiev, Ukraine) stock collection refers to off-the-shelf

collection of screening compounds. Currently, Enamine’s screen-

ing collection is divided into three (Historical, Screening and

Advanced collections (http://www.enamine.net/index.

php?option = com_content&task = view&id = 22) but by the time

of the study was initiated, it was one generic compound collection

that was used as a source for the virtual screening. Instant JChem

was used for structure database management, search and data

mining (ChemAxon, Budapest, Hungary; http://www.chemaxon.

com). Schrodinger’s (New York, NY; www.schrodinger.com)

modules LigPrep and Qikprop were used to generate 3D

conformations of chemical structures and to predict ADMET

properties, respectively. Docking experiments were done with

QXP package [43] and Glide of Schrodinger. Chimera [44] and

lzm from QXP were used for the visual analysis. Docking studies

were performed on Linux dual core AMD workstations.

Compound structures were converted to 3D stereo-conformers

generated and geometrically optimized with Ligprep module of

Schrodinger. If a molecule contained more than two stereo-centers

it was excluded from the study. Before the docking stage the

compound database (,600K at that moment) was pre-processed

to exclude structures with reactive groups. Then Lipinski’s Rule of

Five was employed to produce drug-like stock (,300,000) with the

only exception of MW ranging from 280 to 550. The shift toward

heavier molecules was made to increase the potential number of

molecules with sufficient contact surface. Coordinates of the
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receptor molecule, PP1, were processed with pdb2mm module of

the QXP package. Binding site was defined as PP1 residues within

the sphere of 1.2 nm with center as CG atom of Leu243. Sdock

routine of QXP docking engine was employed at 100 steps per

ligand and 5 conformations per complex were saved.

Processing of Docking Results
Docking results were processed sequentially in two steps, a first

step rough filtering was followed by the second step fine geometric

filtering. For the rough filtering we used scoring values generated

by QXP whereas for the fine geometric filtering we employed

geometry based filters as described below. A program for

geometric filtering, Multifilter, was developed in-house.

Step one, rough filtering. Scoring values were calculated by

qxp+ and included pI, represents binding energy (pI = -log10Ki);

Cntc, distance dependent ligand-protein contacts (Kj/Mol); Intl,

estimation of ligand’s strain, entropy, internal contacts (Kj/Mol);

and Hbnd, distance dependent hydrogen bond function (Kj/Mol).

Compounds with pI .4, Cntc , 255, Intl ,8 Hbnd , -3 and

Intl ,7 have passed first filtering step. Next, we selected

compounds that had close contacts with the methyl group of

Leu243 and the phenyl ring of Phe257 of PP1. A distance filter of

4.3 Å from any ligand’s carbon atom to CD1 of Leu243 and CZ of

Phe257 (PDB nomenclature) were applied. The distance of 4.3 Å

was selected to account for PDB resolution (3 Å) as well as possible

calculation inaccuracies.

Step two, geometric filtering. During the step one rough

filtering we identified 4 distinct binding modes. In the first mode,

compounds that filled the region near Tyr255 were selected by

applying a distance cut-off of 4 Å from the tyrosine’s phenolic

oxygen. In the mode two, compounds that bound in a similar

fashion to the RRVSFA peptide and that were within 6.5 Å from

Cb of Asp166 were selected. The third mode included compounds

that were within 4 Å of the amide oxygen of Gln262, and the

fourth mode extracted compounds that were confined to the

Val66’ and Phe68’ hydrophobic sub-sites and formed extensive

hydrogen bonds with at least two of the following residues: Lys260,

Arg261, Asp242, Val 289, M290 and Cys291. Filtering according

to the first mode yielded 117 compounds; the second mode –51

compounds; the third mode –80 compounds; and the fourth mode

–43 compounds. After removing the duplicates (i.e. compounds

that fit into more than one model), we obtained 262 unique

compounds that were further evaluated biologically for inhibition

of HIV-1.

Modeling of pRb-Tat PP1 Complex
Coordinates from a crystal structure of PP1 bound to

Spinophilin (PDB ID: 3EGG) [45] were used for the reference

in the RVxF binding site (hydrophobic groove). To model the

complex with pRb-Tat, the conformation of RVxF motif of pRb-

Tat peptide (residues Val25-Phe27) was manually adjusted to

mimic that of Spinophilin (residues Ile449-Phe451). Then

conformation of pRb-Tat peptide was energetically minimized

with a distance restrain (4 Å) between phosphorus atom of

phosphorylated Ser6 of the pRb-Tat peptide and manganese atom

in the active site. Coordinates of all PP1 atoms and Val25-Phe27

of pRb-Tat were kept frozen to prevent any disturbance during

energy minimization. Minimization procedure was performed

with MacroModel module of Schrodinger. OPLS2005 force filed

was used to conduct 2000 steps of PRCG protocol in implicit

solvent environment. During the minimization the pRb-Tat

peptide made a turn and followed the acidic groove of PP1

toward the active site. In the resulted complex the sulfoxyl group

of the phosphorylated Ser6 from pRb-Tat reached a position close

to that of 2-(N-morpholino)-ethanesulfonic acid (MES) in the

reference 3EGG complex. The final complex was subjected

another 500 steps of energy minimization with all atoms allowed to

move.

Tat-induced HIV-1 Transcription in CEM-GFP Cells
The E1-deleted recombinant Adenovirus carrying Tat was

generated as previously described [3,46]. CEM-GFP cells were

infected with Ad-Tat in 96-well plates containing 400,000 cells/

well. After 24 h of incubation at 37uC, 10 mL aliquots were

removed, supplemented with trypan blue and counted to

determine cellular viability. The remaining cells were transferred

to a white plate (Perkin-Elmer) and fluorescence was measured

with 480 nm excitation and 510 nm emission on Luminescence

Spectrometer LS50B (Perkin-Elmer). To measure toxicity, propi-

dium iodide (Sigma) was added at 250 mg/ml to the cells for

30 min at 37oC. The propidium iodide fluorescence was measured

at 488 nm excitation and 617 nm emission on the Luminescence

Spectrometer as described above.

Transient Transfections
293T cells were co-transfected with Tat-expressing vector and

HIV-1 LTR-LacZ and CMV-EGFP at 30% confluence using

lipofectamine and Plus reagents (Invitrogen). After transfection,

the cells were cultured for additional 48 h, and b-galactosidase

activity was analyzed as previously described [16]. Transfections

were normalized using the EGFP fluorescence. HeLa cells were

transiently co-transfected with plasmids expressing PP1a-EGFP,

Flag-tagged WT Tat or Tat V36A/F38A (Tat QACA) mutant

using lipofectamine and Plus reagents. After transfection, the cells

were treated with the indicated PP1-targeted compounds over-

night. Expression of PP1a-EGFP was detected on fluorescent

microscope Olympus IX51 using a blue filter for EGFP

fluorescence or phase contrast and photographed at 600x

magnification.

Inhibition of HIV-1 Replication using PP1-targeted Small
Molecule Compounds

To prepare pNL4-3 virus, HeLa cells were transfected with

pNL4-3 genomic clone using the lipofectamine method. After 72 h

post-transfection, media was collected, and supernatant virus was

quantified by reverse transcriptase assay. MT4 cells were grown to

70% confluence and inoculated with pNL4-3 virus. Subsequently,

the infected cells were treated with 1H4 or 1G3 compounds and

media samples were collected at the indicated time points. The

activity of reverse transcriptase (RT) was determined in the

supernatants (10 ml) incubated in a 96-well plate with RT reaction

mixture containing 1x RT buffer (50 mM Tris-HCl, 1 mM DTT,

5 mM MgCl2, 20 mM KCl), 0.1% Triton, poly(A) (10–2 U),

poly(dT) (10–2 U), and (3H)TTP. The mixture was incubated

overnight at 37uC, and 5 ml of the reaction mix was spotted on a

DEAE Filtermat paper, washed four times with 5% Na2HPO4 and

three times with water, and then dried completely. RT activity was

measured in a Betaplate counter (Perkin Elmer).

Dephosphorylation Assays
Malachite green dephosphorylation assays were carried out with

the Ser/Thr phosphatase assay kit (Upstate, Lake Placid, NY)

using recombinant PP1a (New England Biolabs, Ipswich, MA). In

competition assays, about 0.005U of PP1a was incubated with

KT(pT)IRR peptide (Upstate, Lake Placid, NY) or pRb

(HIPR(pS)PYKFPSSPL)-linked peptides (New England Peptide,

Gardner, MA). The following pRb peptides were used in the
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study: pRb-Tat, HIPR(pS)PYKFPSSPLRKKCCFHCQVC-

FITK; pRb-Tat QACA, HIPR(pS)PYKFPSSPLRKKCCFHC-

QACAITK; pRb-NIPP1, HIPR(p-

S)PYKFPSSPLRKRKRKNSRVTFSED; and pRb-NIPP pA-

RATA, HIPR(pS)PYKFPSSPLRAAAAASRATASED. The reac-

tions were carried out in PP1 reaction buffer (50 mM Tris-HCl

pH 7.5, 100 mM NaCl, 2 mM dithiothreitol, 0.1 mM EGTA,

0.025% Tween-20) supplemented with 1 mM MnCl2 (New

England Biolabs) in 25 ml reaction volume with the indicated

concentrations of 1H4 or 1G3. In competition assay, 300 mM 1H4

was used. At indicated time points, 25 ml aliquots were removed

and mixed with 100 ml of Malachite Green solution (Upstate).

Absorbance of malachite green was determined at 620 nm and the

phosphate concentration was recalculated using a calibration

curve of phosphate standards prepared using 1 mM KH2PO4

solution.

Co-immunoprecipitation and Western Blot
293T cells were transfected with PP1a-EGFP and Flag-Tat

expression vectors, and further cultured for 48 h. The whole cell

extracts were prepared as described previously [6]. About 1 mg of

whole cell extract was supplemented with 3 mg of anti-Flag

antibodies. Protein G-agarose beads were preblocked with 5%

BSA and suspended in TNN buffer (50 mM Tris-HCl (pH 7.5),

0.5% NP-40, 150 mM NaCl) and the reaction was incubated in

TNN buffer at 4uC for 2 h with rocking. The beads were

precipitated and washed once with TNN buffer and once with the

SDS-PAGE stacking buffer (25 mM Tris-HCl pH 6.8). The pellet

was resuspended in 1X SDS loading buffer (25 mM Tris-HCl

(pH 6.8) 4% SDS, 10% glycerol, 5% 2-mercaptoethanol, 0.002%

bromophenol blue) and heated at 90uC for 3 minutes. The

proteins were resolved on 12% SDS Tris-Tricine PAGE, to detect

PP1a and Tat, and immunoblotted with indicated antibodies.

About 10 mg of total protein was used for the input.

Affinity Precipitation of PP1 using Microcystin-sepharose
293T cells were transfected with Flag-Tat expressing plasmid or

mock-transfected with lipofectamine-Plus reagents followed by the

treatment with two concentrations of 1H4 compound. At 18 hrs

post transfection the cells were harvested, washed, lysed in a whole

cell lysis buffer (50 mM Tris-HCl, pH 7.5, 500 mM NaCl, 1%

NP-40, protease inhibitors cocktail) and used to precipitate

endogenous PP1 on microcystin-sepharose (Millipore, Billerica,

MA) as an affinity sorbent. The reaction was carried on in 50 mM

Tris-HCl buffer, pH 7.5, 100 mM NaCl, 1% NP-40 with protease

inhibitors cocktail for 3 hours at 4oC rotating. The beads were

then washed with the precipitation buffer three times and once

with AmBic buffer (50 mM ammonium bicarbonate, pH 8.0).

Then 1 mg of Gold Trypsin (Promega) in 100 ml of AmBic was

added to the beads and the reaction was incubated on a shaker

overnight at 37oC. The supernatant was collected, dried on a

SpeedVac and peptides were reconstituted in MS-LC grade water

with 0.1% TFA and purified using Zip tips (Millipore) and

manufacturer recommendations. The peptides were eluted from

Zip tips in 30 ml of 80% acetonitrile with 0.1% TFA and dried on

SpeedVac. The samples were reconstituted in MS-LC grade water

containing 0.1% formic acid and loaded onto nano-LC for a mass

spectrometry analysis.

Mass Spectrometry Analysis
Samples were separated by reversed-phase liquid chromatogra-

phy (HPLC), using micro-capillary column C18, coupled in line

with nanospray and tandem mass spectrometer Thermo LTQ

Orbitrap XL. The LC gradient was run for 60 min from 2% to

30% of acetonitrile containing 0.1% formic acid at flow rate

400 nL/min. In single measurement block we performed 1 FT

MS scan and 3 data dependent FT MS/MS scans on major multi-

charged MS peaks with resolution 30000. The normalized

collision-induced dissociation (CID) energy was 35%. The MS/

MS spectra were compared against those in the NCBI human

protein database. Proteins that were not present in the database,

i.e. recombinant Flag-Tat, were manually added to the database.

Only peptides having X-correlation (Xcorr) cutoffs of 1.9 for [M

+2H]2+, 2.3 for [M +3H]3+ and higher charge state were

considered. These SEQUEST criteria thresholds resulted in less

than 1% of False Discovery Rate. The proteome analysis of the

spectra was made by Proteome Discoverer 1.2 software (Thermo

Fisher Scientific).

Cellular Proteome Analysis
293T cell at 50% of confluence were treated with 10 mM 1H4

or 1G3 compounds diluted in DMEM complete media for 18

hours. As a negative control untreated cells were used. Cells were

lyzed in whole cell lysis buffer (50 mM Tris-HCl, pH 7.5,

containing 0.5 M NaCl, 1% Nonidet P-40, 0.1% SDS and

protease inhibitors cocktail (Sigma). The lysates were centrifuged

at 20,000x g for 30 min at 4oC. The proteins from the supernatant

were precipitated with cold acetone, centrifuged, dried and

resuspended in 100 mM ammonium bicarbonate buffer, pH 8.0.

Then the proteins were reduced and alkylated using DTT and

iodoacetamide respectively. Reduced and alkylated proteins were

trypsinized overnight at 37oC with 1 mg of trypsin used per 200 mg

of protein used for reaction. The trypsinized samples were purified

using C18 Zip tips. The samples were separated on SCX column

using the NaCl gradient from 0 to 500 mM. Each collected

fraction was subjected to LC-MS-MS procedure, described above.

The MS-MS data were analyzed by SEQUEST.

PP1a-EGFP Fluorescent Photographs
HeLa cells at 50% of confluence were transfected with PP1a-

EGFP expressing plasmids using Lipofectamine LTX. The cells

also were co-transfected with Flag-Tat and Flag-Tat V36A/F38A

mutant expressing plasmids. As a negative control, we used HeLa

cells treated with Plus/Lipofectamine LTX mix without adding a

plasmid. After transfection the cells were treated with the

compounds 1H4 and 1G3 at 10 mM concentration. After 18

hours of incubation cells were washed with PBS, observed and

taken pictures on a phase contrast/fluorescent microscope

Olympus IX51. Expression of PP1a-EGFP was detected on the

microscope using a blue filter for EGFP fluorescence or phase

contrast and photographed at 600x magnification.

Nuclear and Cytoplasmic Distribution of PP1
Nuclear and cytoplasmic extracts were prepared using a

modification of previously described method [47]. 293T cells

were washed with PBS, scrapped into ice-cold PBS and

precipitated by centrifugation. The cells were resuspended in

ice-cold homogenization buffer (10mM Tris-HCl, pH 7.8, 6 mM

MgCl2, 80 mM, KCl, 2 mM DTT, 250 mM sucrose, 0.1 mM

EDTA) containing protease inhibitors (Sigma, St. Louis, MO) and

then lysed by the addition of Triton X-100 to 0.1% (vol/vol) for

10 min on ice. The lysates were centrifuged at 10,000xg for

10 min at 4oC, and supernatants containing the cytosolic fraction

were removed. The pellets containing nuclear proteins were

resuspended in a whole cell lysis buffer (50 mM Tris-HCl, pH 7.5,

500 mM NaCl, 1% NP-40, protease inhibitors cocktail). Fluores-

cence was measured in cytoplasmic and nuclear lysates at 480 nm
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excitation and 510 nm emission on Luminescence Spectrometer

LS50B (Perkin-Elmer).

Inhibition and Enzymatic Data Analysis
Inhibition data were analyzed using GraphPad Prism 4 software

(GraphPad Software, La Jolla, CA). The IC50 values were

determined from a sigmoidal dose-response (variable slope) curve

using four parameter logistic equation Y = Bottom+(Top-Bottom)/

(1+1̂(logEC50-X)*Hill Slope). Dephosphorylation of chimeric

substrates by PP1 was analyzed using GraphPad Prism 4 software.

Enzymatic velocity vs. substrate concentration plots were fit using

built-in enzyme kinetics for non-linear regression analysis. For the

analysis of pRb-Tat dephosphorylation, we assumed that only

25% of the substrate contained phosphatase group and was active

in the dephosphorylation. After determination of VMAX and Km,

data were transformed to create Lineweaver-Burk plots and lines

were added using VMAX and Km determined by non-linear

regression analysis as described in a Prism instruction manual.

Supporting Information

Figure S1 Flowchart of in silico screening of PP1
inhibitors. Stage one, analysis, pharmacophore model devel-

opment and high throughput docking. Stage two (light gray),

rough filtering of resulted complexes. Stage three (dark gray), fine

filtering in parallel with four binding mode hypothesis.

(PDF)

Figure S2 Effect of 1H4 on HIV-1 transcription, toxicity
and CMV transcription. A. Inhibition of HIV-1 transcription

and toxicity of PP1 inhibitors in CEM-GFP cells. CEM-GFP cells

were infected with Adeno-Tat and then treated with the indicated

concentrations of the PP1 inhibitors for 24 h. GFP fluorescence

was measured in live cells. The cells were supplemented with

propidium iodide (PI), and its fluorescence was measured. B. Effect

of 1H4 on HIV-1 and CMV transcription. HEK293T cells were

transfected with HIV-1 LTR-LacZ in the absence or presence of

Tat expression vector (Tat). The cells were also co-transfected with

CMV- EGFP-expression vector and treated with 10 mM 1H4 (lane

2) or 10 mM 1G3 (lane 3). Twenty-four hours after transfection,

the cells were lysed and first analyzed on a luminescence

spectrometer (LS50B, Perkin-Elmer) with an attached 96-well

plate scanner at 480 nm excitation and at 510 nm emission for

EGFP, and then analyzed for b-galactosidase activity using ONPG

as a substrate.

(PDF)

Table S1 Analysis of 262 small molecules for the
inhibition of HIV-1 transcription in CEM GFP cells
infected with Ad-Tat. Percent of inhibition is shown.

Compounds chosen for further analysis are shown in gray.

(PDF)
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