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Abstract

Amyloid fibrillar aggregates of polypeptides are associated with many neurodegenerative diseases. Short peptide segments
in protein sequences may trigger aggregation. Identifying these stretches and examining their behavior in longer protein
segments is critical for understanding these diseases and obtaining potential therapies. In this study, we combined machine
learning and structure-based energy evaluation to examine and predict amyloidogenic segments. Our feature selection
method discovered that windows consisting of long amino acid segments of ,30 residues, instead of the commonly used
short hexapeptides, provided the highest accuracy. Weighted contributions of an amino acid at each position in a 27
residue window revealed three cooperative regions of short stretch, resemble the b-strand-turn-b-strand motif in A-
bpeptide amyloid and b-solenoid structure of HET-s(218–289) prion (C). Using an in-house energy evaluation algorithm, the
interaction energy between two short stretches in long segment is computed and incorporated as an additional feature.
The algorithm successfully predicted and classified amyloid segments with an overall accuracy of 75%. Our study revealed
that genome-wide amyloid segments are not only dependent on short high propensity stretches, but also on nearby
residues.
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Introduction

Amyloid fibrils are polypeptide aggregates that contribute to the

complications of many different ‘‘protein conformational’’ diseases

[1,2,3]. The location of the amyloid deposits varies and typically

determines the observed symptoms. In some important neurode-

generative diseases [1,2,3,4,5] such as Alzheimer’s disease (AD),

Parkinson’s disease (PD), motor neuron disease and the ‘prion’

dementias [6], these deposits are found in the brain cells and result

in dementia. Alternatively, the deposits can occur in the eye lens,

leading to the impairment of len transparency, potentially cataract

formation and, ultimately, the loss of sight [7]. Thus, it is of

fundamental medical interest to understand the mechanisms of

fibrillogenesis with the ultimate goal of determining the relative

toxicity of soluble polymers, protofibrils and mature fibrils, and

designing drugs that interfere with, and ideally inhibit, the

formation of the toxic species. The successful prediction and

determination of the aggregation propensity of polypeptide

sequences would be a test of our understanding of molecular

mechanisms of the amyloid formation, offering the hope for

effective treatments for amyloid illnesses [8]. Interestingly,

functional amyloids have been also found, adding the challenges

to understand why nature can utilize normal amyloid forming

mechanism, and avoiding detrimental amyloid formation.

In the normal soluble conditions and depending upon the

microenvironment [9], the amyloidogenic polypeptides may

assume different conformations including random coil, a-helices,

and b-strands. However, eventually, all amyloid fibrils become

dominant b-sheet structure. Often, the aggregation of a protein

domain could be trigged by a short protein stretch within the

domain, typically a hexapeptide fragment [10,11]. Consistent with

amyloid stretch hypothesis, many computational algorithms can

be used to screen the short (hexapeptide) fragments to predict

amyloidogenicity of protein sequence, with different success rates

[12,13,14]. Using the crystal structure of NNQQNY as a model

system, genome-wide analysis revealed that about 15% of E. Coli

and 18% human genomes are such segments with high fibrillation

propensity, which can be classified as the amylome: the universe of

proteins that are capable of forming amyloid-like fibrils [15].

Apparently, not all of the short amyloid stretches are capable to

induce host protein aggregation, probably due to nature’s

evolution [15,16]. Experiments have shown that insertion of short

amyloid stretches into globular proteins [11,17,18] may induce the

fused protein to form amyloid. But the conversion of native
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proteins into amyloid fibrils depends on the sequence context of

the inserted short amyloid stretches. Thus it is important to

understand the pattern of short amyloid stretches within longer

amyloidogenic segments, which presents major challenges to both

the experimentalist and the theoretician. Much of the work

encounters an empirical obstacle due to the experimental

complexities; the sensitivity of protein aggregation to the slightest

change in protein amino acid composition, solvent properties, or

protein concentration; and the lack of robust theoretical models of

misfolding and aggregation.

In this work, in order to understand the context dependent

protein aggregation, we developed a method that correlates the

amyloidogenicity of an amino acid at a given position with all

other amino acids in a long sequential segment. Three steps are

taken to achieve optimal characterization of known amyloidogenic

sequences. In the first step, we have used multivariate statistical

analyses of a large number of amino acid features to correlate with

the amyloid formation. Based on the results from the preliminary

feature analysis, we developed an algorithm to search for the low

energy structures in a long amino acid segment. Finally, the energy

terms was incorporated into feature selection algorithm to refine

amyloid sequences characterization and genomic wide sequences

search for possible amyloid sequences. We found that, within a 27

residues long segment, the amyloidogenicity of short amyloid

stretch also has cooperative contributions from two distant regions

in N-terminal and C-terminal directions. Our work has provided

interesting insights into the complex process of fibril aggregation,

extend the evaluation of physicochemical properties contribution

to the differential aggregation behavior of fibril polypeptides.

Result and Discussion

Initial Feature Analysis of Physical and Chemical
Properties of Amino Acids in Amyloid Formation

Each peptide chain is represented by 918 features. The first step

to select features important to amyloid formation is the feature

pre-evaluation using mRMR program, which was downloaded

from website http://research.janelia.org/peng/proj/mRMR/

index.htm. The result of mRMR is a table called mRMR list

records the feature indices. Besides the mRMR list, the mRMR

program will also output a list called MaxRel list, which contains

the relevance of all features with the class variable. Both mRMR

and MaxRel list all the features in the output for the following-up

selection procedures. For the results of mRMR and MaxRel in this

paper, please see Table S1 and S2 for more information.

In order to obtain the optimal feature set, 918 candidates

nearest neighbor (NN) models were built for the incremental

feature selection (IFS) procedure and Table S3 is the accuracy of

each model. The highest overall accurate rate of IFS is showed in

Figure 1A. The highest overall accurate rate of IFS reached 70.7%

with all the 918 features selected in the feature set. As the optimal

dataset contained all the features we used, the selection of the

features with contribution to the accuracy were carried out.

As the IFS result showed in Figure 1A, the accuracy fluctuates

when 200–600 features are used, indicating that the addition of

some features makes the accuracy decreased. Although the

optimal feature set contains all the 918 features, we select these

features that increase the accuracy for further analysis, since they

are more relevant to amyloid formation. The further analysis of

the feature enrichment results in 446 features, which are 48.6% of

the feature number in the optimal set. The details of all the 446

features are listed in the Table S4. In Figure 2A we highlight the

ratio of each feature category occurred in the selected 446 features

in the optimal set. We use the ratio of 48.6% as a reference ratio

since it is the ratio of selected features out of the total number. It

can be seen from Figure 2A that the disordered factors contribute

most to the fibril formation followed by the secondary structure

factors, amino acid volume factors and pssm factors.

All three factors of disorder, secondary structure, and amino

acid volume are related to protein folding and packing density

upon amyloid fibril formation. The amyloid fibril formation comes

as either unfolding of globular protein or perturbation of natively

disordered proteins. The subtle changes of the balance of forces in

folded protein may lead to misfolded states and aggregated

proteins [19,20]. Thus it is easily understandable that amino acid

disorder feature contribute mostly. Amyloid fibrils are dominated

with b-sheet conformation. The b-pleated sheet, the building block

of amyloid fibers, was suggested to be the thermodynamically most

stable arrangement of all the possible peptide dimers and

oligomers both in vacuum and in aqueous environments [21].

The b-sheet conformation can be formed by secondary structure

change of a-helices or directly from b-sheet domains with

disulphide bonds constraints [22,23]. The contribution of amino

acid volume could be that the tight packing of side-chain chains to

form zipper structure between b-sheet is very important to the

stabilization of amyloid fibril structure [24,25,26].

As shown in Figure 2B, the contributions of pssm features reflect

the overall propensity of each amino acid in amyloid fibril

formation. The conventional wisdom is that hydrophobic/

aromatic residues are important to stabilize amyloid fibril

[27,28]. However, our results indicated that the aromatic residues

(Trp, Phe, Tyr) are not necessarily having the high tendency to

Figure 1. Context dependent behavior of amyloid formation
can be shown from the change of prediction rate with window
size. (A) Accuracy of prediction increases with the length of window
size and maximized at a 27 residue segment. (B) Random forest (RF)
algorithm removed the redundancy among the features and increase
prediction accuracy.
doi:10.1371/journal.pone.0039369.g001
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form amyloid. Among the three amino acids with highest

propensity (Ile, Thr, and Lys), only the Ile is hydrophobic.

Isolecine has the highest propensity to form amyloid in A-b
peptide related sequences [29]. It was proposed that nature tends

to avoid Ile conservation in protein-protein interactions to avoid

amyloid formation [16]. Within the 20 amino acid, threonine (T)

seems to be the highest proximal amino acid in fibril formation.

This is consistent with the secondary structure factors contribute

much to the fibril forming, as threonine is strongly related to the b-

secondary structure. However, it is interesting to see that positively

charged Lys is among the top three amino acids with highest

amyloidogenic propensity. The reason could be that (1) the

peptide segments with Lys have higher disorder tendency, and (2)

Lys is important for certain structural features in amyloid

formation.

The Cooperativity Among the Short Amyloid Stretches is
Consistent with the Common Motif in Amyloidogenic
Structure

Most previous works used segments with small length in

amyloid prediction. Here we examine the effects of different

lengths used in amyloid prediction. Our algorithm explores the

context dependent features in amyloid formation, and amyloid

formation propensity of residue at position i is also dependent on

the sequences of i-j and i+j, when j is the length of segments in N-

side and C-side of position i. Thus the overall length of segment is

2j+1 in our study. We systematically searched the optimal length

of sequential segment used in our amyloid prediction from 5 to 31.

In Figure 1A, we selectively report the results of 7 of them.

Essentially, we found that the overall prediction accuracy by

Nearest Neighbor model increases with the increasing length of

sequential segment, and peaked at length of 27 residues. Our

results demonstrated that the most likely amyloidogenic sequence

segment in a protein is around 30 residues.

We then examine the relative contribution of each position

within the 27 residue segment. Figure 3A plots the contribution at

each position to the central amino acid’s amyloidogenicity. The

contribution of each position is measured by the number of

features in each position. The average contribution from all

positions is 16.5. As indicated in Figure 3A, the positions with

contributions higher than average are in green, and the red bars

are position with contribution less than average. Based on these

contributions, we may divide the 27 residues into three regions: the

central stretch and two distant stretches in N-terminal and C-

terminal directions. Each stretch can be comparable to commonly

used short amyloid stretch of hexa-peptide. We can see that

tripeptide (positions 13-14-15) contain the central amino acid is

among the highest region, indicating that closest local effect. The

alternative pattern for positions 15, 17, and 19 may reflect the

regular side chain interaction in a typical b-strand. It is important

to see the higher contributions from two distant stretches in N-

terminal and C-terminal directions, which clearly show that

amyloidogenicity of central stretch also depends on sequence

context, i.e., cooperatively from N-terminal and C-terminal

stretches.

The cooperativity among the three short amyloid stretches may

come from the common motifs of amyloid structure. Two typical

structures are b-strand-turn-b-strand motif in A-b peptide amyloid

and b-solenoid structure of HET-s(218–289) prion [27]. The b-

strand-turn-b-strand motif constitutes many fibrillar cores, for

example, A-b peptide, amylin, K3 peptide from b2-microglobulin,

and prion protein. Previous work [27] has revealed that A-b
peptide amyloid is considered to be a representative motif for the

b-strand-turn-b-strand motif in Figure 3B. We noticed good

correspondence between Figure 3A and A-b peptide structural

motifs. As can be seen in Figure 3, the contribution of each

position in the 27 residue sized segment indicates that the 7th, 13th,

15th and 17th positions are the most important in the fibril forming

as illustrated in Figure 3B. If we consider that the four positions

with highest contributions corresponding to turn region, salt

bridging interaction, and hydrophobic core interactions which are

all important to stabilize A-b peptide as the bottom part of

Figure 3B, the four positions can perfectly match the U-turn

structure. The structural features in the 27 residue sized segment is

also compatible with other amyloid structural motif, like HET-

s(218–289) amyloid fibrils [30,31]. In Figure 3C, we show the

structural motif of the 26 residue segment from HET-s(218–289)

amyloid fibrils. In is clear that the structural repeat can be divided

into several short stretches as well.

Coarse-grained Energy Evaluation Based on the bstrand-
turn-bstrand Motifs.

The similarity of the observed features to bstrand-turn-bstrand

motif promoted us to develop a structure based algorithm to

examine the residue interaction energies in the amyloidogenic

sequences. First, we define a possible bstrand-turn-bstrand motif

Figure 2. Feature analysis revealed important factor for
amyloid formation. (A) The ratio of each feature category occurred
in the selected 446 features in the optimal set compared to the ratio of
48.6% which is the ratio of selected features out of the total number.
the disordered factors contribute most to the fibril formation followed
by the secondary structure factors, amino acid volume factors and pssm
factors. (B) the pssm features of each amino acid contained in the
selected 446 features.
doi:10.1371/journal.pone.0039369.g002
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as two six-residue b-strands connected with a flexible turn with a

length up to 15 residues (Figure 4). When there is no linker (L = 0)

or the linker is very short (for example, L = 122), the motif may be

classified as triangular shape observed for b-solenoid structure

(Figure 3C). Based on the structural motif, we calculate the residue

interaction energy:

Eamy~EinterzEintrazEdesol:

Where Einter is the effective inter-residue contact energy between

two adjacent peptides chains; Eintra is the effective inter-residue

between bstrand A and bstrand B within the same chain; and

Edesol is the desolvation energy for the residue buried between two

b-strands A and B. The delsolvation penalty energies for buried

residues were optimized to enlarge the gap between the

amyloidogenic sequences and non-amyloidogenic sequences, as

in Table 1.

The Einter and Eintra are calculated by summing of effective self-

contact-potentials developed by Bahar and Jernigan [32].

Einter =
P

i~1,6;j~1,6

ePiPj
a(rc), where the ePiPj

a(rc) is the effective

self-contact-potentials between residue Pi and Pj in two b-strands

with either parallel or anti-parallel registration.

Similarly, Eintra = eA1B5
a(rc)+ eA1B3

a(rc)+
eA3B3

a(rc)+eA3B5
a(rc)+eA5B1

a(rc) + eA1A3
a(rc)+

eA3A5
a(rc)+eB1B3

a(rc)+eB3B5
a(rc), to add the potentials from all

intra-chain contact residues (Figure 4A). The possible associations

between the two b-strands were exhaustively searched to find the

most negative value, which was assigned to the 27 residue

segment.

Finally, the residue with the energy lower than the cutoff value

(254.0) were defined as amyloidogenic residue. The number of

amino acids in the negative dataset (17102 amino acids) is much

more than the number of amino acids in the positive dataset (1370

amino acids). Thus, the accuracy of prediction of negative dataset

dominates the accuracy of overall prediction. Therefore, the

Figure 3. The cooperativity among the short amyloid stretches is consistent with the common motif in amyloidogenic structure. (A)
Weighted contributions of an amino acid at each position in the 27 residue segment revealed three regions. The contribution of each position is
measured by the number of features in each position. The average contribution from all positions is 16.5. The positions with contributions higher
than average are in green, and the red bars are position with contribution less than average. The 14th residue in the center is highlighted as black. The
arrangement of the three regions are similar to the common motifs of amyloid structures of b-strand-turn-b-strand motif in A-b peptide amyloid (B)
and b-solenoid structure of HET-s(218–289) prion (C).
doi:10.1371/journal.pone.0039369.g003
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energy based prediction focus on excluding false positive and

maintaining reasonable rate of positive prediction and overall

accuracy. After optimizing the value of Edesol for all amino acids

(Table 1), the accuracies of energy based prediction were 49.5,

84.1 and 81.7 for positive dataset, negative dataset and overall

accuracy, respectively.

Prediction of Amyloid Formation
With the energies calculated using the b-strand-turn-b-strand

motif as additional amino acid features, we repeat the IFS analysis

with NN algorithm on our amyloid fibril dataset. Surprisingly, we

found that prediction accuracy now is dominated by energies and

reaches to 73% with the first 943 features, which can be seen from

the blue curve in Figure 1B. Additional algorithm was used to

remove the redundancy among the features and to improve the

prediction accuracy. Recently, random forest (RF) algorithm [33]

has been successfully constructed classifier to tackle various

biological classification problems [34,35,36]. Therefore, RF was

used to replace the NN in the IFS procedure. As shown in the

Figure 1B, the highest rate reaches 75% at the first 82 features,

much less than the initial 918 features when energy factors are not

included, also much less than the 943 features when energy factors

are included and NN algorithm is used. The distribution of

different features in the optimal feature set with 82 features is

shown in Figure 5, from which we know prediction accuracy now

is dominated by energies and ten other factors. We list the top 10

contributing features in Table 2. The dominance of energy feature

and high success rate indicated that theb-strand-turn-b-strand

motif based algorithm encompassed the essence of amyloid fibril

formation.

Using the finalized energy evaluation algorithm and selected

82 other features, we scan yeast S. cerevisiae and E.coli proteome

to examine the percentage of protein segments which are able

to form amyloid fibril. The prediction for the yeast S. cerevisiae

and E.coli genome is as below: E.coli: 16.39% and yeast:

17.27%; which are close to but lower than the predictions made

using only short peptide fragments. Goldschmidt et al. has used

a triplet method and 3D based method to search the high

propensity (HP) segment for fibrillation. They found that the E.

Coli may have 15.1% (3D method) to 22% (triplet method) HP

segments, while S. cerevisiae has about 21.7%. The agreement of

the predictions may come from the cancelation of two factors.

Due to the context dependent behavior of short amyloid stretch,

some of the predicted short HP segments in Goldschmidt’s

study may not be able to form amyloid. However, other short

amyloid stretches that are not able to be identified indepen-

dently could be amyloidogenic due to the cooperativity from

near residues. Overall, the agreement of our genome-wide

prediction and Goldschmidt’s work highlight the significance of

ability of protein sequences to form amyloid.

Figure 4. Amyloid interaction energy can be searched by the summation of residue interactions between two short amyloid
stretches. The bstrand-turn-bstrand motif is defined as two six-residue b-strands connected with a flexible turn with a length up to 15 residues, with
total window length of 27 residues. When there is no linker (L = 0) or the linker is very short (for example, L = 122), the motif may be classified as
triangular shape observed for b-solenoid structure in Figure 3.
doi:10.1371/journal.pone.0039369.g004

Table 1. Delsovation energy penalty.

Amino Acid Amyloid desolvation penalty

Gly 0

Ala 30

Val 216

Ile 9

Leu 33

Ser 8

Thr 23.0

Asp 50

Asn 44

Glu 44

Gln 36

Lys 50

Arg 50

Cys 50

Met 34

Phe 25.0

Tyr 6.0

Trp 20

His 20

Pro 0

doi:10.1371/journal.pone.0039369.t001
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Conclusion
Soluble proteins may from highly ordered fibril aggregates.

Such transitions occur under pathological conditions ranging from

neurodegenerative to many other systemic different ‘‘protein

conformational’’ diseases. We have studied the long sequential

amyloid segments within protein domain by comparing known

amyloidogenic sequences with computational predictions.

There are already two types of computational algorithms

investigating the aggregation propensity of peptides or proteins

and to identify the segments most prone to form fibrils. The first

algorithm uses phenomenological models based on the physico-

chemical properties only for the amino acids to predict each amino

acid changes in aggregation rate [37,38,39,40]; the second one

combines support vector machine simulations of a protein segment

with the micro-structure of short fibril-forming peptides to gain

insight into aggregation propensity [12,13]. Our algorithm com-

bined Position-Specific Scoring Matrices (PSSM) [41,42,43] and

multivariate statistical analyses of a large number of amino acid

Figure 5. The distribution of different features in the optimal feature set with 82 features indicated the protein-protein interaction
energy dominate the amyloid formation. Pssm_C describes the likelihood that the amino acid in the sequence mutates to the cystine (C),
Pssm_H describes the likelihood that the amino acid in the sequence mutates to the Histidine (H), and so forth.
doi:10.1371/journal.pone.0039369.g005

Table 2. The predicted results of IFS procedure with random forest (RF) algorithm based on the first 11 features in optimal
features.

Order Added feature
Accuracy of positive
dataset (%)

Accuracy of negative
dataset (%) Overall accuracy (%)

Amino Acid Attribute

1 AA14 Energy 58.91 76.28 67.59

2 AA13 Pssm_C 55.77 78.91 67.34

3 AA27 Disorder 68.10 60.66 64.38

4 AA14 Propensity of amino
acid to be conserved at
protein-protein interface

71.17 61.39 66.28

5 AA26 Energy 70.66 64.01 67.34

6 AA1 Energy 73.65 64.89 69.27

7 AA26 Pssm_C 75.47 66.79 71.13

8 AA3 Pssm_H 75.91 66.50 71.20

9 AA23 Pssm_H 77.15 67.74 72.45

10 AA18 Energy 78.25 66.50 72.37

11 AA21 Pssm_C 79.42 68.54 73.98

In the table, the ‘‘AA14’’ represents the 14th amino acid residue of the peptide. Pssm_C describes the likelihood that the amino acid in the sequence mutates to the
cystine (C), Pssm_H describes the likelihood that the amino acid in the sequence mutates to the Histidine (H).
doi:10.1371/journal.pone.0039369.t002
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attributes to examine the cooperativities among short amyloid

stretches within long amyloidogenic sequence segment.

The most important finding from our analysis is that a long

segment with about 30 residues, rather than a short amyloid stretch,

defines the amyloid forming ability of large protein. Within the long

segment, the short amyloid stretch may have synergetic interaction

with other short stretches either in N-terminal or C-terminal

directions. The cooperativity among the short amyloid stretches

may come from the common motifs of amyloid structure such as the

U-shape Ab amyloid and triangular prion amyloid fibrils. Subse-

quently, an energy evaluation algorithm has been developed based on

interactions between the short amyloid stretches in the longer

segements. Our approach successfully classified and predicted

amyloid formation with overall accuracy of 75%. The prediction of

the amylome in the yeast S. cerevisiae and E.coli genome is consistent

with previous study by Goldschmidt et al, but with different

molecular mechanism.

Our work extended the concept of amyloid stretch by revealing

the context dependent behavior of short amyloid stretch in longer

protein sequences. The ability of short amyloid stretch to induce

longer protein into eventual amyloid formation depends on the

ability of the short amyloid stretch to form compact structure with

nearby segment. It is likely that two short amyloid stretches within

the long segments would share the consensus structural pattern for

amyloid formation for long protein chain [44], represented by the

amyloid Ab peptide sequence pattern found in many other amyloid

forming peptides [44].

It has been known that both long rang contacts and local orders

are important for islet amyloid polypeptide (amylin) [45,46]. Many

well-known amyloid proteins have several fragments or repeats that

are able to aggregate independently or cooperatively. It was still not

well understand how these short amyloid stretches cooperatively

interact with each other. For example, segment 16–22 and 25–35 of

Ab peptide can effectively hold a b-strand-turn-b-strand motif. Yet,

in full length Ab40 (or Ab42), mutations at position 1, 10, 20, 30, or

40 (for Ab40) or 42 (for Ab42) can all affect amyloid formation [47].

Our currently study provided statistical feature of known wild type

amyloidogenic sequences. In the future study, we are going extend

the dataset to include experimental information of point mutations,

and to predict mutation effects on amyloid formation. Hopefully,

our finding of the context dependent behavior of the short amyloid

stretches within long amyloidogenic sequences may help to

understand many experimental observations.

Materials and Methods

Based on the previous published collections of amyloidogenic

proteins [12,39,48], we searched the SwissProt database and

obtained 46 protein sequences with 17102 amino acids, in which

there are 1370 experimentally verified fibril-forming sites.

In the first step, each peptide chain is represented by 918 features;

and 5 physicochemical and biological features of them are taken

from AAIndex (http://www.genome.ad.jp/aaindex/), a database of

numerical indices representing various physicochemical and

biochemical properties. Amino acid disorder score in a protein

sequence was calculated using VSL2 [49]. The secondary structure

and solvent accessibility scores were obtained using predictors

SSpro 4 [50]. We included features of amino acid evolution [51],

the conservation of an amino acid on protein exposed surface [52].

The PSSM conservation score was used to quantify the conservation

status of each amino acid in the protein sequence. Target sequences

are scanned against the reference data sets UniRef100 (Release:

15.9, 13-Oct-2009) to generate the position specific scoring matrices

(PSSMs) [41,42,43] using Position Specific Iterative BLAST (PSI

BLAST) program (Release 2.2.12) [53].

In this study, Nearest Neighbor (NN) algorithm [54,55,56,57]

was used to construct classifiers to classify each sample to a fibril-

forming one or a non-fibril-forming one. Besides the NN

algorithm, random forest (RF) algorithm [33] was also used to

construct classifier for it has been successfully applied in the

diverse biological prediction problems [34,35,36]. RF classifier

consists of many decision trees and makes decisions by choosing

the class with the most votes of the decision trees in the forest.

Maximum Relevance, Minimum Redundancy method [58] is

used to rank each feature according to both its relevance to the target

(highly related to the prediction accuracy) and the redundancy

between the features. A ‘‘good’’ feature is characterized by maximum

relevance with the target variable and minimum redundancy within

the features. With the mRMR result, we know the order of the

features from the best feature to the worst feature. In order to get the

optimal feature set which contains the optimal number of the

features, Incremental Feature Selection (IFS) was used.

Jackknife Cross-Validation Method [54,59] is used to evaluate

statistical predictions. In Jackknife Cross-Validation Method, each

sample in the data set is knocked out and tested by the predictor

trained by the other samples in the data set.

To evaluate the performance of a predictor, the accurate rate

for positive samples, negative samples and the overall accurate rate

will be used:

accuracy of positive dataset ~ correctly predicted true samples
true samples

accuracy of negative dataset ~ correctly predicted false samples
false samples

overall accuracy ~
correctly predicted true sampless z correctly predicted falsesamples

true samples z false samples

8>>>>><
>>>>>:

Please see the Text S1 for detailed description of the methods.
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