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Abstract

Bovine tuberculosis (bTB), caused by Mycobacterium bovis, continues to be a serious economic problem for the British cattle
industry. The Eurasian badger (Meles meles) is partly responsible for maintenance of the disease and its transmission to
cattle. Previous attempts to manage the disease by culling badgers have been hampered by social perturbation, which in
some situations is associated with increases in the cattle herd incidence of bTB. Following the licensing of an injectable
vaccine, we consider the relative merits of management strategies to reduce bTB in badgers, and thereby reduce cattle herd
incidence. We used an established simulation model of the badger-cattle-TB system and investigated four proposed
strategies: business as usual with no badger management, large-scale proactive badger culling, badger vaccination, and
culling with a ring of vaccination around it. For ease of comparison with empirical data, model treatments were applied over
150 km2 and were evaluated over the whole of a 300 km2 area, comprising the core treatment area and a ring of
approximately 2 km. The effects of treatment were evaluated over a 10-year period comprising treatment for five years and
the subsequent five year period without treatment. Against a background of existing disease control measures, where 144
cattle herd incidents might be expected over 10 years, badger culling prevented 26 cattle herd incidents while vaccination
prevented 16. Culling in the core 150 km2 plus vaccination in a ring around it prevented about 40 cattle herd breakdowns
by partly mitigating the negative effects of culling, although this approach clearly required greater effort. While model
outcomes were robust to uncertainty in parameter estimates, the outcomes of culling were sensitive to low rates of land
access for culling, low culling efficacy, and the early cessation of a culling strategy, all of which were likely to lead to an
overall increase in cattle disease.
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Introduction

Bovine tuberculosis (bTB), caused by Mycobacterium bovis,

continues to be a serious economic problem for the British cattle

industry. Eurasian badgers (Meles meles) are a significant reservoir

of bTB in large parts of England, Wales and Ireland [1], and

a large-scale field trial in England (the Randomised Badger

Culling Trial, RBCT) gave conclusive evidence that they are

responsible for a significant proportion of transmission of the

disease to cattle [2]. However, this trial also indicated that,

although proactive culling of badgers significantly reduced the

number of Cattle Herd Breakdowns (CHBs) within the culling

area, in the adjoining land the CHB rate increased significantly for

a period [3]. Thus, the net benefit of culling was somewhat

diminished by a temporary detriment experienced in the periphery

of the culling area [4]. The most likely reason for the observed

increase in the adjoining land was the apparent perturbation of

badger social structure [3]. This perturbation effect is where

badger culling causes a breakdown of the badger’s territorial social

system, increasing badger movements and, it is hypothesised,

increases contact rates and disease spread [5,6].

Following completion of a clinical evaluation of the use of

Bacillus Calmette-Guerin (BCG) as a vaccine for badgers [7], and

the granting of a limited marketing authorisation for the use of

injected BadgerBCG in badgers in 2010 [8], the government in

England has considered badger control strategies to reduce the

CHB rate in those parts of England where bTB is worst. Here, we

have used computer modelling to compare three possible badger

control strategies, as identified in the Department of Environment,

Food and Rural Affairs (Defra) public consultation [9]: (1) culling,

(2) vaccination, and (3) a combined strategy of vaccination in a ring

around a culling area (hereafter referred to as ‘‘culling plus ring

vaccination’’). The main objective was to compare the disease

outcomes of the suggested badger management strategies, relative

to a ‘‘business as usual’’ approach. Culling plus ring vaccination

was proposed specifically so that it might mitigate the negative

effects of badger culling (i.e. social perturbation at the edge of

a culled area). To this end we utilised and adapted an existing

computer model that has already been used to examine several

approaches to badger/cattle bTB management for Defra and the

Welsh Government.

Methods

The model used for this study was a modification of the Badger-

Cattle model used previously to model bovine tuberculosis
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infection [10,11,12,13,14,15,16]. It is an individual-based spatial

stochastic badger/bTB model combined with a cattle layer so that

spatially realistic interactions and bTB transmission between

badgers and cattle can be simulated. We used a model time step of

2 months so that farm management (such as repeat bTB tests)

could be simulated. The badger and cattle layers were both

modelled on a grid of 1006100 cells, each representing

2006200 m (total grid area represented 400 km2). The grid was

wrapped to form a torus to eliminate edge effects. Model

parameter settings (e.g. badger and farm density) were based on

means from an area of six counties in the South West of England

(Avon, Cornwall, Devon, Gloucestershire, Hereford & Worcester,

and Wiltshire) that comprises mixed farmland with high densities

of badgers and cattle and a high CHB rate.

Badger main setts were distributed randomly over the landscape

at a density of 0.75 setts/km2, and badger territories were created

by tessellation, each grid square assigned to the closest main sett.

This approach resulted in a landscape with no geometric bias [17].

Each badger territory was assigned a carrying capacity based on

historical field data (maximum number of breeding females) [13]

to limit population growth. Cattle grazing land was created by

distributing farms at random over the landscape at a density of

0.78 farms/km2 and then forming a grazing area within each

farm, positioned at random, appropriately sized, and allocated as

a beef, dairy or mixed herd. In the model, the badger territories

were fully contiguous, whereas only some cattle grazing areas were

in direct contact with a neighbouring herd.

Disease spread was simulated with specified transmission

probabilities: within badger group, between badger groups, within

cattle herd, between cattle herds, badgers to cattle, and cattle to

badgers. Disease transmission was density dependent within each

herd or social group in the sense that each possible contact

between each individual is given a fixed probability of bTB

transmission. The spatial aspect of this model means that local

density dependent transmission does not result in global density

dependence [15]. A proportion of badgers and cattle were initially

infected with bTB at random. A new spatial configuration of

territories and farms and new initial populations (badger and

cattle) were created for each simulation.

Cattle movements
Cattle movements were simulated so that about 40% of cattle

moved each year (on the basis of Cattle Tracing Scheme data – A.

Mitchell, Animal Health and Veterinary Laboratories Agency,

pers. comm.). Priority was given for young males to move to beef

units and females to dairy, and distances moved were minimized

wherever possible to simulate market movement patterns. If a herd

was too small or too large in terms of its ideal stocking density,

extra movements were simulated to redress the balance.

Cattle bTB-testing
Cattle were tested routinely at a testing interval determined by

the local CHB rate. The testing interval of each simulated parish

of approximately 13 km2 (one-, two-, three-, or four-yearly) was

reassessed annually with the same decision process that is used in

real life. The detection of bTB during the testing regime was

determined probabilistically to simulate the sensitivity of the bTB

skin test, and a positive test triggered slaughter, post mortem

examination of the reactors, and movement restrictions plus

follow-up testing of the contacts.

Premovement testing (PrMT) of cattle was introduced in

England in March 2006 to try and limit the spread of undiagnosed

bTB into new areas. This required that, in areas already subjected

to routine bTB tests every 1 or 2 years, cattle over a certain age

had to have a recent negative bTB test before being allowed to

move from one farm to another. Premovement testing of cattle was

included as a default in the model to simulate the practice used in

the field and was applied for long enough that population and

disease dynamics had stabilized before badger control was started.

Table 1. Effects of culling, vaccination, and culling plus ring vaccination on the mean number of infected badgers per social
group.

(A) during No badger control Badger culling Badger vaccination Badger culling & ring vaccination

Core plus Ring 1.30 1.16 (210%) 1.10 (215%) 0.89 (231%)

Core Area 1.32* 0.71 (246%) 0.95 (228%) 0.64 (251%)

Ring Area 1.27 1.61 (+27%) 1.24 (23%) 1.14 (210%)

No-Control Area 1.26 1.39 (+11%) 1.26 (0%) 1.36 (+8%)

(B) after No badger control Badger culling Badger vaccination Badger culling & ring vaccination

Core plus Ring 1.30 0.69 (247%) 0.92 (229%) 0.41 (268%)

Core Area 1.33* 0.35 (274%) 0.66 (250%) 0.25 (281%)

Ring Area 1.27 1.02 (220%) 1.18 (28%) 0.58 (255%)

No-Control Area 1.31 1.27 (23%) 1.26 (24%) 1.19 (29%)

(C) whole period No badger control Badger culling Badger vaccination Badger culling & ring vaccination

Core plus Ring 1.30 0.92 (229%) 1.01 (223%) 0.65 (250%)

Core Area 1.33* 0.53 (260%) 0.81 (239%) 0.45 (266%)

Ring Area 1.27 1.31 (+3%) 1.21 (25%) 0.86 (232%)

No-Control Area 1.29 1.33 (+4%) 1.26 (22%) 1.27 (21%)

*Note that the numbers of infected badgers per social group are always higher in the core area because control is centred on the highest incidence area.
The percentage change from business as usual is also given. Mean numbers are from 100 runs of the model. Section (A) gives the results during control (years 1–5), (B)
after control (years 6–10) and (C) the results over the whole ten year period.
doi:10.1371/journal.pone.0039250.t001

Modeling Bovine TB Management

PLoS ONE | www.plosone.org 2 June 2012 | Volume 7 | Issue 6 | e39250



Variables and inputs
Default parameter values were taken from a previous model

version [11] and from available field data (see Text S1). Badger

parameters were mostly derived from a single study population

(Woodchester Park, southwest England; (see [18,19,20,21]).

Badgers were characterized by the following variables: social

group, sex, age, and bTB status. The age categories were juvenile,

yearling (1 yr old), and adult. The bTB status categories [20] were

defined healthy (free of TB infection), infected, infectious, and

superinfectious (persistently excreting bTB bacilli). Badger fecun-

dity in the model was density dependent on the basis of

a heterogeneous threshold carrying capacity (mean upper thresh-

old of three litters per social group) set at random for each social

group [13]. Litter size was modelled probabilistically from

a distribution of known litter sizes [22], with a mean of 2.94

cubs/litter and a sex ratio of 1:1. Mortality rates were taken from

Wilkinson et al. [21]. Badgers were allowed to disperse to smaller

social groups, if available, on the basis of sex-dependent

probabilities (males more often than females), independent of

age and season, and preferentially move to groups with no

members of the same sex.

Cattle population parameters (number of dairy and beef farms

and stocking densities) were derived from the UK June Census

2004 dataset (Defra, unpubl. data), cattle mortality (slaughter) rates

from the Cattle Tracing Scheme (CTS) 2002 to 2004 dataset, and

the cattle bTB disease parameters and CHB rates from the UK

VetNet dataset. Cattle were characterized by the variables herd,

sex, age (3062-month categories with the last category also used

for older cattle), and bTB status (healthy, infected, infectious,

superinfectious). Superinfectious cattle were defined as heavily

infectious yet anergic (not responding to the bTB skin test) [23].

All female cattle aged over 22 months gave birth to one calf

annually (sex ratio 1:1). Herds were categorized as beef or dairy,

and parameter values varied according to herd type. Stocking

density distributions from the June Farm Census were dependent

on herd type and were used in the model to allocate a stocking

density to each farm. Bovine tuberculosis transmission rates for

badgers and cattle were adjusted so badgers directly contributed to

about 60% of CHBs (when PrMT was in effect), prevalence of

bTB in the badger population (before control) stabilized to about

17%, and the mean CHB rate stabilized at about 6% of farms per

year when PrMT was in effect [11]. Between-group badger

transmission rates were set to one twentieth of the within-group

rates to simulate historical spatial and temporal occurrence of

diseased social groups [20]. Similarly, between-herd (over-the-

fence) rates were set to be one twentieth of the within-herd rates.

Within-herd transmission rates for beef herds were set the same as

those for dairy. The standard bTB test sensitivity was set at 70%

and increased to 90% to simulate the severe interpretation (Defra,

unpublished data). Test specificity was set from 99.7 to 99.9%.

Badger Control Strategies
The model of Wilkinson et al. [11] was modified to allow

inclusion of combined badger vaccination and culling strategies, in

addition to cull-only and vaccination-only. All simulated badger

control was based on intensive large-scale proactive trapping of

badgers and either culling, or vaccination by injection and release.

For each simulation, it was assumed that treatment would be

initiated in the worst-affected area. Therefore, a bTB-hotspot was

located by identifying the parish with the highest CHB rate over

the three years prior to initiation of control. A core control area of

150 km2 centred around that hot-spot area was then defined (the

core area), and a ring of two farm widths (approximately 2 km)

around that core area (the ring area) was also defined. The ring

area approximated a further 150 km2, hence the core area

represented just over one-third of the total simulation area

(400 km2), and the core plus ring areas represented about three-

quarters. On average the modelled treatment areas consisted of

117 farms in the core area and 234 farms in the core plus ring.

Unless otherwise stated, control lasted 5 years, to approximate the

approach of the RBCT, and as suggested by the UK government

consultation. The modelled strategies were:

1. Business as usual. No badger control.

2. Badger culling in the core area.

3. Badger vaccination in the core area.

Figure 1. Effect of culling, vaccination, and culling plus ring
vaccination on the number of TB-infected badgers. Model
outcomes for the mean number of infected badgers per social group at
the end of each year. Each control strategy was separately applied in
years one to five. For each control strategy the model parameters were
re-initialised to match the no-control at year zero. The green line is
business as usual, the blue line is vaccination-only in the core area, the
brown line is culling-only in the core area, and the pink line is
a combination of culling in the core area and vaccination in the
adjacent ring area. The combined strategy comprised control over
about twice the area as either the culling-only or the vaccination-only
strategy and so took about twice the effort.
doi:10.1371/journal.pone.0039250.g001
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4. Badger culling in the core area plus vaccination in the ring

area.

Although these were the treatments considered by the

government in England, for completeness of comparison among

the approaches, we supplemented these with further simulations

with both culling only and vaccination only in a 300 km2 area

(equivalent to the treatment area under strategy 4), to ensure

comparability of effort. Additional simulations were performed

with continuous vaccination for 40 years to examine the long-term

consequences of this strategy.

It was assumed for the model that 70% of the farms were

compliant (accessible for trapping badgers) for either culling or

vaccination, in line with reported rates in the RBCT [2]. Badger

culling was applied at 70% trapping efficacy [24]. Vaccination was

applied at 70% trapping efficacy and a nominal vaccination

efficacy of 70%, recognising that recent field trials do not provide

full support for this as an absolute measure of efficacy [7]: hence in

the model the probability of a susceptible badger in a vaccine

control area being trapped, injected with vaccine, and becoming

immune to bTB, was 49%.

The model was established and run for 120 simulated years

before control started, to obtain stable badger and cattle

populations, and patterns of bTB prevalence and distribution,

before any control measures were implemented. For clarity most

of the pre-control output is not shown on the graphs: the year

labelled 1 in the figures represents the first year of control.

Badger Perturbation
Perturbation of the badger population following culling was

included in the model. The precise mechanisms of perturbation

that give rise to increased cattle disease are not known, therefore

we adopted a pragmatic approach to modelling the process, the

outcomes of which are consistent with empirical observations on

CHB rate [4,25]. Here, perturbation was comprised of (a) extra

movements of badgers following culling, where badgers would

move in to re-colonise badger territories with few or no badgers,

and (b) increased badger-to-badger bTB transmission rates in

culled areas and nearby territories to simulate higher contact rates

that occur as a result of the extra roaming of surviving badgers

[26,27]. In the model, with perturbation, a badger could

potentially move two social groups each time step of 2 months.

The migration distances simulated by the perturbation routine

were thus comparable to those seen in the field after culling [6]

[28]. It was assumed that during perturbation, contact between

badgers in adjacent territories became similar to those within

a territory (i.e. increasing between-group transmission rates to

equal within-group rates). The perturbation effect was simulated to

extend a width of two badger territories beyond the edge of the

culling boundary, which again closely matches the findings during

the RBCT.

Sensitivity Analysis
Previous sensitivity analysis of the model [14] has shown that

the modelled badger population was the most sensitive to badger

mortality rates, female badger breeding probabilities, and within-

group bTB transmission probabilities. Disease prevalence in

badgers was most sensitive to badger mortality rates, badger

bTB transmission rates, and bTB disease progression rates. The

cattle CHB rate was most sensitive to badger mortality rates, and

cattle test sensitivity, followed by badger within-group transmission

rates and badger bTB disease progression.

Since the output of this model was, in part, used to help inform

potential policy development, the sensitivity analysis was designed,

not to examine the scale of any changes in magnitude of the

outputs, but to determine whether the relative benefits of each

badger control strategy were consistent in the face of uncertainty

in parameter estimates. Thus, we looked specifically for any

parameter changes that altered the order of success of the different

strategies, as determined by changing CHB rates.

A novel approach was used for the sensitivity analysis of the

model. Parameters were adjusted in a balanced way to maintain

badger prevalence and cattle herd breakdown within an appro-

priate range (see below), whilst analysing the effects on the control

strategies that were most pertinent to policy decision-making.

Table 2. Effects of culling, vaccination, and culling plus ring vaccination on the mean prevalence of bTB in badgers.

(A) during No badger control Badger culling Badger vaccination Badger culling & ring vaccination

Core plus Ring 0.17 0.24 (+38%) 0.15 (216%) 0.19 (+8%)

Core Area 0.18 0.22 (+23%) 0.13 (228%) 0.19 (+8%)

Ring Area 0.17 0.26 (+54%) 0.16 (23%) 0.18 (+8%)

No-Control Area 0.17 0.19 (+13%) 0.17 (0%) 0.18 (+10%)

(B) after No badger control Badger culling Badger vaccination Badger culling & ring vaccination

Core plus Ring 0.17 0.12 (232%) 0.12 (230%) 0.07 (259%)

Core Area 0.18 0.08 (256%) 0.09 (251%) 0.05 (270%)

Ring Area 0.17 0.16 (26%) 0.16 (28%) 0.09 (248%)

No-Control Area 0.17 0.17 (0%) 0.17 (24%) 0.16 (27%)

(C) whole period No badger control Badger culling Badger vaccination Badger culling & ring vaccination

Core plus Ring 0.17 0.18 (+3%) 0.13 (223%) 0.13 (226%)

Core Area 0.18 0.15 (217%) 0.11 (240%) 0.12 (231%)

Ring Area 0.17 0.21 (+24%) 0.16 (25%) 0.14 (220%)

No-Control Area 0.17 0.18 (+7%) 0.17 (22%) 0.17 (+1%)

The percentage change from business as usual is also given. Mean prevalence is from 100 runs of the model. Section (A) gives the results during control (years 1–5), (B)
after control (years 6–10) and (C) the results over the whole ten year period.
doi:10.1371/journal.pone.0039250.t002
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Working within this constraint we did not consider any economic

analysis of the management, and emphasise that culling plus ring

vaccination required approximately twice the effort of the other

management strategies, and that vaccination was only applied for

the same duration as the other strategies (five years), in line with

the government’s consultation document.

In this study, rather than a standard one-at-a-time (OAAT)

sensitivity analysis, we looked at what the effect of changing

parameter values might be on the success (or otherwise) of the

choice of control strategies. Therefore, we first ran a standard

OAAT sensitivity analysis changing parameters to values consid-

ered to be reasonable extreme limits of variability of uncertainty

(see Table S1 for the parameter changes). For each of these

OAAT changes, the resulting outputs of mean badger prevalence

and CHB rate for the no-control scenario were examined, and where

they had changed too much, one or more other parameters, with

the greatest uncertainty, were then also changed to counteract the

extreme effect (re-balance the output), and the simulations re-run.

The output changes that were considered to be too great, and

hence required a re-balance were an increase in badger prevalence

greater than 100%, a decrease in badger prevalence of more than

30%, an increase in CHB rate greater than 33%, or a decrease in

CHB of more than 17%. The outputs used for this analysis were

the means over the 10-year period from the start of control (i.e.

5 years control plus 5 years post-control), so that the size of any

changes could be related to the findings reported from the RBCT.

The parameters that had to be changed to rebalance the output,

and the required sizes of those changes, are listed in Table S2. The

only parameter change that was allowed to result in a final output

change outside the specified range was the badger-to-badger

transmission rates for doubling the badger bTB-prevalence. This

was included as it has been suggested that the true badger bTB

prevalence might be as much as twice the commonly accepted

value, as the standard post-mortem tests may be underestimating the

numbers of bTB infected badgers [29].

Outputs
The output parameters calculated at the end of each simulated

year were badger population size, badger disease status (number

infected and prevalence), and CHB rates. The mean number of

bTB-infected badgers per social group is a direct measure of the

weight of infection present in wildlife. The mean number of cattle

herd breakdowns (CHBs) per farm is a measure of the effect of

badger management on the farms, but this measure also includes

an assumption on the proportion of herd breakdowns caused by

badgers (,60%) and additional stochastic effects resulting in

greater variation. To get a clearer picture of the differences

between strategies, we calculated the means for the outputs of two

five-year periods: during the five years of control and the

subsequent five years. Outputs were summarized across 100

simulations for each strategy. Output metrics were calculated

separately for the core area, ring area, and outer no-control area.

It was important to include areas outside the culling boundary, so

factors such as perturbation, which can affect the overall

outcomes, were included in the analysis.

Results

Badger Population
For the no-control strategy the 10-year mean badger population

was 7.5 badgers per group, of which 1.3 were infected with bTB,

giving a prevalence of 17%. As expected, the simulated badger cull

had a dramatic effect on the badger population during the years of

culling (mean social group size 3.12 in the core during the cull

period), and complete recovery of population densities took, on

average, ten years after culling ceased. In the core area, the badger

population was reduced by about 65% by the end of the 5-year

control period. In contrast, badger vaccination caused an in-

significant increase in the population in the core.

bTB-infected badgers
Over the core plus ring area and the whole period of ten years,

culling in the core reduced the number of infected badgers by

29%, vaccination by 23% and culling plus ring vaccination by

50% (Table 1). During the five-year period of active control, over

the core plus ring area, culling caused a 10% reduction,

vaccination a 15% reduction and culling plus ring vaccination

Figure 2. Effect of culling, vaccination, and culling plus ring
vaccination on bTB prevalence in badgers. Model outcomes for
the badger TB-prevalence for each area at the end of each simulated
year. The control strategies were separately applied in years one to five.
For each control strategy the model parameters were re-initialised to
match the no-control at year zero. The green line is business as usual,
the blue line is vaccination-only in the core area, the brown line is
culling-only in the core area, and the pink line is a combination of
culling in the core area and vaccination in the adjacent ring area. The
combined strategy comprised control over about twice the area as
either the culling-only or the vaccination-only strategy and so took
about twice the effort.
doi:10.1371/journal.pone.0039250.g002
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a 31% reduction in the number of infected badgers. In the five

years after control the benefits of culling exceeded those of

vaccination, while culling plus ring vaccination continued to be the

best of the three options (Table 1).

Culling caused a marked decrease (maximum mean benefit of

281% at the end of control) in the number of infected badgers in

the core (Figure 1a), but an increase (maximum mean increase of

+56%) in the ring (Figure 1b) during control. The vaccination-only

strategy achieved a decrease in the number of infected badgers in

the core (maximum benefit of 250%), and avoided the

detrimental effects of perturbation seen with the culling strategies

(Figure 1). Culling plus ring vaccination mitigated the detrimental

effects of perturbation in the ring outside the cull area resulting in

a smaller initial increase in the ring (maximum +28%) (Figure 1b),

but overall resulted in a mean decrease of 10% in the ring over the

five years of control (Table 1). Overall, the culling plus ring

vaccination strategy resulted in the lowest number of infected

badgers, both during and after control (Table 1c), in the core

(266%). The next best strategy in the core was culling (260%),

and then vaccination (239%) (Table 1c). It should also be noted

that culling increased the number of infected badgers in the outer

no-control area during culling (Table 1a), suggesting that the

simulated detrimental effects of culling were not entirely captured

in the two-farm widths of the ring.

Since the above strategies differed in the area of control, it is

also sensible to compare these three strategies where all the control

areas are approximately 300 km2, and thus all require an

equivalent effort. Over this larger area of culling, the number of

infected badgers decreased by 60% during the five years of control

(c.f. 46%), approximately double that of the other strategies

(Table S3). Thus, for comparable effort over ten years, culling was

the preferred strategy (275%, although there was a net increase of

10% outside the culled area), then culling with ring vaccination

(251%) and then vaccination (242%).

Badger bTB-prevalence
Over the core plus ring area for the period of ten years, culling

increased prevalence of bTB in badgers by 3%, vaccination

reduced it by 23% and culling plus ring vaccination reduced

prevalence by 26% (Table 2). During the five-year period of

control, culling increased prevalence by 38%, vaccination reduced

it by 16% and culling plus ring vaccination increased prevalence

by 8%. In the five years after control, all strategies produced

a reduction in prevalence, with culling plus ring vaccination

continuing to be the best of the three options (Table 2).

Generally, badger bTB-prevalence followed similar trends to

the numbers of infected badgers (Figure 2). However, the two

main differences are firstly that the effects of perturbation were

more marked (maximum mean increase in prevalence was 95% in

the ring), and secondly that those effects were clearly shown not

only for the whole area, but also in the core (Figure 2a). However,

this latter increase in prevalence, when off set against a reduction

in badger density by culling was not sufficient to cause an increase

in the final number of infected badgers.

Again, when comparing these strategies with a similar amount

of effort (300 km2), badger culling reduced prevalence by 34%

over ten years (although note that outside this larger culled area

prevalence increased by 25%). Vaccination gave a 43% reduction

in prevalence with no significant edge effect, and culling plus ring

vaccination reduced prevalence by 24% (Table S4).

Cattle herd breakdowns
The 10-year mean rate of cattle herd breakdowns with business

as usual was approximately 6 per year per 100 farms. Over the

core plus ring area and the whole period of ten years, badger

culling reduced the herd breakdown rate by 18%, vaccination by

11% and culling plus ring vaccination strategy reduced the CHB

rate by 28% (Table 3). During the five-year period of control,

culling caused an 9% reduction, vaccination a 5% reduction and

culling plus ring vaccination a 14% reduction in CHB rate. In the

Table 3. Effects of culling, vaccination, and culling plus ring vaccination of badgers on disease incidence in cattle reported as the
mean annual Cattle Herd Breakdown rate.

(A) during No badger control Badger culling Badger vaccination Badger culling & ring vaccination

Core plus Ring 0.061 0.056 (29%) 0.058 (25%) 0.053 (214%)

Core Area 0.064 0.048 (225%) 0.058 (29%) 0.047 (227%)

Ring Area 0.059 0.064 (+10%) 0.058 (21%) 0.059 (0%)

No-Control Area 0.052 0.054 (+3%) 0.051 (23%) 0.053 (+1%)

(B) after No badger control Badger culling Badger vaccination Badger culling & ring vaccination

Core plus Ring 0.062 0.046 (226%) 0.051 (217%) 0.036 (242%)

Core Area 0.065 0.037 (243%) 0.046 (228%) 0.030 (253%)

Ring Area 0.060 0.054 (210%) 0.056 (26%) 0.042 (230%)

No-Control Area 0.054 0.050 (26%) 0.051 (25%) 0.047 (212%)

(C) whole period No badger control Badger culling Badger vaccination Badger culling & ring vaccination

Core plus Ring 0.062 0.051 (218%) 0.055 (211%) 0.044 (228%)

Core Area 0.064 0.042 (234%) 0.052 (219%) 0.039 (240%)

Ring Area 0.059 0.059 (0%) 0.057 (23%) 0.050 (215%)

No-Control Area 0.053 0.052 (22%) 0.051 (24%) 0.050 (25%)

The percentage change from business as usual is also given. Mean values are from 100 runs of the model. Section (A) gives the results during control (years 1–5), (B)
after control (years 6–10) and (C) the results over the whole ten year period.
doi:10.1371/journal.pone.0039250.t003
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five years after control this order of preference stayed the same

(Table 3).

The CHB rate followed the trends of the numbers of infected

badgers, although with more variation (Figure 3). Despite this

stochasticity, it can be seen that culling plus ring vaccination was

more successful than the cull-only strategy, which in turn was

more successful than the vaccination-only strategy in both the core

(Figure 3a) and the ring (Figure 3b), although these differences

were less pronounced for CHBs than for infected badgers.

Thus across the core plus ring area, when compared to business

as usual (mean 144.2 breakdowns over 10 years), the best badger

control strategy over ten years was culling plus ring vaccination

(mean 103.9 breakdowns over ten years), then culling (mean 118.4)

and then vaccination (mean 127.7) (Table 4). Thus, over a ten-

year period, vaccination in the core prevented 16.5 breakdowns,

culling in the core prevented 25.8 and culling plus ring vaccination

prevented 40.3.

When the control areas were comparable in area (300 km2) and

effort, compared to business as usual (147 breakdowns over

10 years), badger culling was the preferred strategy (mean 79.6

breakdowns), then culling plus ring vaccination (mean 102.3) and

then vaccination (mean 115.3) (Tables S5 and S6).

Sensitivity Analysis
There was a clear preference for the culling plus ring

vaccination strategy among the original three choices. Sensitivity

analysis was performed to determine if changes to any of the

model’s parameters would lead us to change this decision.

Adjusting nine parameter values to plausible extremes resulted

in either badger prevalence or cattle herd breakdowns changing to

be outside the values observed in reality. To compensate for this

the most highly uncertain parameters (i.e. disease transmission

rates) were adjusted to bring the model output into line with field

data (Table S2). Additionally, we changed the badger-to-badger

transmission rates (intentionally increased to double disease

prevalence in badgers to compensate for under-reporting with

the currently available diagnostic tests) and then adjusted in-

terspecies transmission to match disease incidence in cattle.

In the absence of control, prevalence of bTB in badgers was

most sensitive to changes in bTB progression in badgers, badger

carrying capacity, and mortality, particularly pre-emergent

mortality (Table S7). It can be seen from this table that changes

in the order of a few percent are due to chance (e.g. reducing

vaccine sero-conversion was associated with a 3% reduction in

prevalence even without control being applied). The parameter

changes that had most further effect on the badger prevalence

because control was being implemented (i.e. in addition to the

sensitivity shown for the no-control strategy) were duration of

perturbation, trapping efficacy, land-owner compliance, and

increasing badger-to-badger transmission rates to double the

prevalence.

In the absence of badger control, the CHB rate was most

sensitive to changes in cattle stocking density, farm density, bTB

progression in cattle, and bTB progression in badgers (Table S8).

The parameter changes that had most further effect on the CHB

rate because control was being implemented (i.e. in addition to the

sensitivity shown for the no-control strategy) were perturbation

period, badger-to-cattle bTB transmission rates, badger trapping

efficacy, and land-owner compliance.

However, in order to assess the outcome of uncertainty on the

choice of strategy we need to compare each strategy against each

other, in this case using no control as the default position

(Table S9). With the default parameter settings, culling plus ring

vaccination strategy was most successful at reducing the CHB rate

(221% over the entire simulated area), culling-only was the next

best strategy (213%), followed by vaccination-only (29%).

Despite all the parameter changes, the ranking of the culling plus

ring vaccination strategy did not change.

When comparing culling-only and vaccination-only, vaccina-

tion became the preferred strategy with any of the following:

decreased landowner compliance, decreased cull efficacy, in-

creased duration of perturbation, and decreased number of badger

groups (Table S9).

Given that the parameters that most affected the choice of

strategy included two management variables, we needed to

investigate further. If, for example, badger culling efficacy reduced

from the currently proposed minimum of 70%, then one recourse

might be to suspend the badger control, which could potentially

Figure 3. Effect of culling, vaccination, and culling plus ring
vaccination on the cattle herd breakdown rate. Model outcomes
for the Cattle Herd Breakdown (CHB) rate for each area in terms of the
mean number of CHBs per farm per year. The control strategies were
separately applied in years one to five. For each control strategy the
model parameters were re-initialised to match the no-control at year
zero. The green line is business as usual, the blue line is vaccination-
only in the core area, the brown line is culling-only in the core area, and
the pink line is a combination of culling in the core area and vaccination
in the adjacent ring area. The combined strategy comprised control
over about twice the area as either the culling-only or the vaccination-
only strategy and so took about twice the effort.
doi:10.1371/journal.pone.0039250.g003
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make herd breakdown rates worse. Thus we ran additional

sensitivity analyses to investigate the effect of stopping control

early, and of stopping control early because of either low rates of

land access for badger management (drop-out or reduced

compliance) or low trapping/culling efficacy (in case of deliberate

disruption or less effective delivery of culling, e.g. reliance on

ineffective methods or poor co-ordination).

The model showed an increase in CHBs when culling was

suspended early. This was the case when the culling-only strategy

was stopped after just one year. In addition, the model confirms

the idea that culling needs to continue for a minimum of four years

to gain an overall benefit in CHB rate (Figure S1). The adverse

effects were less pronounced for the combined cull and vaccination

strategy, and the vaccination-only strategy did not show any

adverse effects of early stopping. The adverse effects of stopping

culling early were further exacerbated if either the compliance or

the trapping efficacy were lower than expected (Figures S2 and

S3). These model results strongly suggest that if either compliance

or trapping efficacy were as low as 50%, then overall reductions in

CHB numbers would be unlikely to be realized at all with a cull-

only strategy of five years or less.

It can be argued that a vaccination strategy should not run for

just five years, so additional sensitivity analysis was performed by

running all control strategies continuously for 40 years. The

output of these simulations indicates that (although not proposed

as a strategy) continuous culling leads to the greatest reduction in

the number of infected badgers, badger prevalence and herd

breakdown rate. Culling with ring vaccination in the next best

strategy, and then vaccination on its own (Tables S10, S11, S12,

S13).

Discussion

In this study we examined the effects of proposed badger

management strategies on the epidemiology of bTB in badgers

and cattle. Sensitivity analysis of the model has identified that

cattle herd breakdowns (CHBs) were most sensitive to cattle

stocking density, cattle farm density, and TB progression in both

cattle and badgers. This agrees with findings that increasing herd

size is associated with a greater risk of a breakdown [30,31]. The

approach used here for sensitivity analysis could usefully be

adopted for many models that are used to inform decision-making.

It is not the size of the change in the output value that is

important, but rather whether any natural variability, or un-

certainty, in parameter values, would lead us to make a different

management decision. We believe this approach of adjusting and

rebalancing uncertain parameters (to match output with field data)

is a useful method to examine model sensitivity for management

decisions.

How does the model compare to field data? The specifics of the

RBCT field trial differed from the simulation model in having

variable start dates to each treatment area and a break in trapping

during one year (2001). Thus, it is hard to identify the exact same

periods of time (e.g. the post-cull period in the RBCT was analysed

from 12 months after culling ceased, whereas in the simulation we

used the month of cessation). Nevertheless, the results are

remarkably similar. Badger culling in the RBCT caused a re-

duction in CHB of 23% (95% CI=232% to 212%) in the core

during the trial and by 38% (95%CI=248% to 225%) in the

period after the trial [4], compared to the modelled mean

estimates of 225% and 243% respectively. In the adjoining ring

the RBCT data indicate a 24% increase (95%CI=21% to 56%)

during the trial and a 5% decrease (95% CI=231% to 30%) after

the trial, compared to means of +10% and 210% respectively in

the simulation. Thus, despite the differences in methodology, no

qualitative difference occurred in the herd incident rate.

Additionally, after 5 years of trapping the model predicted a 65%

reduction in badger density which is very similar to the

approximately 70% seen in the RBCT [32]. Prevalence of bTB

in badgers at the end of the RBCT had increased by a factor 1.92

[33], although this figures includes a significant increase caused by

the suspension of cattle testing in 2001. In the core area average

Table 4. Effects of culling, vaccination, and culling plus ring vaccination of badgers on the mean total number of Cattle Herd
Breakdowns.

(A) during No badger control Badger culling Badger vaccination Badger culling & ring vaccination

Core plus Ring 71.6 65.5 (26.1) 67.7 (23.9) 61.6 (210.0)

Core Area 37.3 27.9 (29.4) 33.8 (23.5) 27.4 (29.9)

Ring Area 34.4 37.7 (3.3) 34.0 (20.4) 34.2 (20.2)

No-Control Area 20.4 21.0 (0.6) 19.8 (20.6) 20.6 (0.2)

(B) after No badger control Badger culling Badger vaccination Badger culling & ring vaccination

Core plus Ring 72.6 52.9 (219.7) 60.0 (212.6) 42.3 (230.3)

Core Area 37.8 21.5 (216.3) 27.1 (210.7) 17.8 (220.0)

Ring Area 34.8 31.4 (23.4) 32.9 (21.9) 24.5 (210.3)

No-Control Area 20.9 19.7 (21.2) 19.8 (21.1) 18.4 (22.5)

(C) whole period No badger control Badger culling Badger vaccination Badger culling & ring vaccination

Core plus Ring 144.2 118.4 (225.8) 127.7 (216.5) 103.9 (240.3)

Core Area 75.0 49.4 (225.6) 60.9 (214.1) 45.2 (229.8)

Ring Area 69.2 69.0 (20.2) 66.9 (22.3) 58.8 (210.4)

No-Control Area 41.3 40.6 (20.7) 39.6 (21.7) 39.0 (22.3)

Figures in parentheses are the differences in the number of breakdowns with respect to business as usual, thus negative numbers are a net reduction in the number of
breakdowns. Section (A) gives the results during control (years 1–5), (B) after control (years 6–10) and (C) the results over the whole ten year period.
doi:10.1371/journal.pone.0039250.t004
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prevalence in the badger increased by a maximum factor of 1.68,

and in the ring by 1.95 (Figure 2).

It is important to note that we were not trying to optimise

badger management in terms of efficacy, nor cost effectiveness, but

to compare between three proposed management strategies that

emerged from Defra’s public consultation on badger culling in

England. It is important to note that the proposed control

strategies tested in this modelling study were not equal in either the

area managed or the effort deployed, so comparisons between the

proposed strategies must be made in context and with caution, and

are not predictions for specific geographical areas. Although the

combined culling plus ring vaccination appeared better than either

culling-only or vaccination-only, the area over which control was

applied, and therefore the effort deployed, was about twice as large

for this combined strategy as for the other two. So it would be

incorrect to assume that a combined strategy is better per-se than

either single strategy. Indeed, for comparable areas of control,

culling appears to be the best strategy (see Table S8), although this

makes no comment on its public or economic acceptability.

Vaccination of badgers is an optional or additional approach to

disease control because there is now a licensed vaccine,

BadgerBCG. Our modelling has shown that while the differences

between the outcomes of strategies using culling and/or vaccinat-

ing badgers are quite modest (,17–41 CHBs prevented over

10 years out of an expected 144: Table 4), their risk profile is

markedly different. Culling results in the known hazard of

perturbation, leading to increased CHBs in the periphery of the

culling area. Culling also risks being ineffective or making the

disease situation worse, if it is conducted partially (because of low

compliance) or ineffectually (because of disruption or poor co-

ordination) or it is stopped early (because of licensing infractions or

changes in policy). Vaccination carries no comparable risks or

hazards. However, as a management strategy in its own right, it

would not be used for just five years, as previous work suggests that

bTB elimination using badger vaccine would take many years, and

clearly depends on vaccine efficacy [10,34].

Another important caveat is that because there is marked

stochasticity in the simulated cattle herd breakdown rates, despite

averaging over 100 simulations, there is no guarantee that real life

will follow the mean result. As such the model results should be

treated as a guide to the relative likelihood of outcomes from the

control strategies tested and compared, rather than a prediction.

Similar to the stochasticity in the model, there are sometimes

confounding factors in the real world (not included in the model)

that can lead to unexpected results. Specifically, the model

assumed that the background rate of herd breakdowns, farm size,

herd size and cattle management do not change over the ten years.

Over a 300 km2 area, over a ten-year period, vaccination in the

core prevented 16.5 breakdowns, culling in the core prevented

25.8 and culling plus ring vaccination prevented 40.3. Thus the

difference between strategies with comparable effort (culling and

vaccination) appears to be less than one herd breakdown per year.

Thus, in the real world, the difference between these strategies

would be difficult to determine statistically in any but the longest

data sets.

For many parameters, uncertainty will affect the outcome of

badger management in similar ways, thus retaining the order of

preference of the three strategies tested. However, for two badger

parameters this order of preference changed. Badger perturbation

was simulated as an increase in movement rates and disease

transmission for a 12-month period after culling starts. This period

resulted in CHB rates most similar to those seen during and after

the RBCT (see [4]). However, the form and duration of badger

social perturbation is still poorly understood and significant

changes to our assumption may alter the order of preference.

The badger perturbation effect seen in the model output was most

striking in terms of the badger prevalence (with an increase up to

95%), rather than the number of infected badgers (compare

Figures 1 and 2). Assuming the pressure of disease transmission

from badgers to cattle is correlated more closely with actual

numbers of bTB-infected badgers rather than prevalence, we

expect that the perturbation effect would be partly mitigated if

sufficient badgers were removed, as this model has suggested and

the RBCT has demonstrated [3,19]. We therefore have to be very

cautious in interpreting the consequences of a change in disease

prevalence in a culled badger population.

Culling plus ring vaccination did mitigate the effect of

perturbation to some extent. A major concern of applying a culling

strategy has been that farms adjacent to the control area could

suffer an increase in herd breakdowns. This study suggests that

such an undesirable effect could be somewhat reduced by applying

a ring of badger vaccination. However, if cull efficacy, or land

access (compliance) rates are much below the anticipated 70%,

then no overall benefit from either approach that included culling,

may be seen even after five years of control.
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vaccination in the adjacent ring area. Generally, the shorter the

duration of control, the less was the success of the control

compared with the no-control strategy. The combined strategy

comprised control over about twice the area as either the culling-

only or the vaccination-only strategy.

(DOC)

Figure S2 For each area, the mean Cattle Herd Breakdown
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Figure S3 For each area, the mean Cattle Herd Breakdown

(CHB) rate was calculated for years one to ten, for a range of

control durations of between one and five years, and for the

different control strategies. In addition the badger trapping

efficacy for all control was set to a low value of 50% probability.

The green line (circles) is no-control, the blue line (diamonds) is

vaccination-only in the core area, the brown line (triangles) is

culling-only in the core area, and the pink line (squares) is

a combination of culling in the core area, and vaccination in the

adjacent ring area. Generally, the shorter the duration of control,

the less was the success of the control compared with the no-

control strategy. The combined strategy comprised control over
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