
ccTSA: A Coverage-Centric Threaded Sequence
Assembler
Jung Ho Ahn*

Department of Intelligent Convergence Systems, Seoul National University, Seoul, Republic of Korea

Abstract

De novo sequencing, a process to find the whole genome or the regions of a species without references, requires much
higher computational power compared to mapped sequencing with references. The advent and continuous evolution of
next-generation sequencing technologies further stress the demands of high-throughput processing of myriads of short
DNA fragments. Recently announced sequence assemblers, such as Velvet, SOAPdenovo, and ABySS, all exploit parallelism
to meet these computational demands since contemporary computer systems primarily rely on scaling the number of
computing cores to improve performance. However, most of them are not tailored to exploit the full potential of these
systems, leading to suboptimal performance. In this paper, we present ccTSA, a parallel sequence assembler that utilizes
coverage to prune k-mers, find preferred edges, and resolve conflicts in preferred edges between k-mers. We minimize
computation dependencies between threads to effectively parallelize k-mer processing. We also judiciously allocate and
reuse memory space in order to lower memory usage and further improve sequencing speed. The results of ccTSA are
compelling such that it runs several times faster than other assemblers while providing comparable quality values such as
N50.

Citation: Ahn JH (2012) ccTSA: A Coverage-Centric Threaded Sequence Assembler. PLoS ONE 7(6): e39232. doi:10.1371/journal.pone.0039232

Editor: Carl Kingsford, University of Maryland, United States of America

Received February 21, 2012; Accepted May 21, 2012; Published June 19, 2012

Copyright: � 2012 Jung Ho Ahn. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Seoul National University Brain Fusion Program Research Grant. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gajh@snu.ac.kr

Introduction

Sequence assembly is a process of aligning and merging the

fragments of a DNA sequence to reconstruct the original one,

which is an important part of bioinformatics [1]. It can be

categorized into two types, mapped and de-novo assembly. The

mapped assembly has a reference sequence for the fragments to be

assembled, while the de-novo assembly does not. A de-novo

assembler is used to find the complete DNA sequence of an

organism without a reference genome and to assemble some parts

of the sequence that are largely different from the reference. The

lack of a reference sequence makes a de-novo assembler demand

much higher computational power than a mapped assembler to

assemble the same amount of fragments [1,2].

The advent and continuous evolution of next-generation

sequencing (NGS) machines enable the high-throughput sequenc-

ing of short DNA fragments called reads [3,4], whose length is

typically in the range of dozens to low hundreds of base pairs.

Traditional assembly methods, such as Smith-Waterman algo-

rithm [5], are not suitable to process these massive data effectively.

Instead, recently announced sequence assemblers such as Velvet

[6], ABySS [7], and SOAPdenovo [8] extract fixed length k-mers

from the reads and build de Bruijn graphs using the k-mers. These

assemblers [6–10] are all parallelized in order to meet the

computational demands of de-novo assembly. It is because

contemporary computer systems primarily rely on scaling the

number of computing cores to improve performance [11]. A

system with dozens of cores and terabytes of shared memory was

available only as a supercomputer and excessively expensive

before, but now it is even cheaper than a sequencing machine.

Even though the parallel versions of these assemblers provide a

noticeable improvement in assembly speed, those are not tailored

to exploit the full potential of modern computer systems. They

either statically divide workload to computing cores or assume

message passing between cores. Even if the reads are evenly

distributed across the cores, the time taken to build and access a

data structure that is storing k-mers heavily depends on the

distribution of the k-mer values extracted from the reads as well as

the memory system architecture of the computer systems. This can

lead to a huge load imbalance problem across the cores [12].

Message passing has been a technique primarily for programs on a

cluster of computers connected over a network, where the access

latency and communication throughput over the network are an

order of magnitude worse than those over shared memory on

multithreaded programs [12]. Because a de-novo assembler is a

memory intensive application, an application designed for a

message passing system typically does not perform effectively on a

shared-memory system. These all lead to suboptimal performance.

In this paper, we introduce ccTSA, a coverage-centric threaded

sequence assembler, which is written in C++. It utilizes k-mer

coverage, the number of k-mer instances in the DNA fragments, in

building a k-mer coverage table, pruning k-mers from the table,

finding preferred edges in the de Bruijn graph [13] made of k-mer

nodes, and resolving conflicts between the preferred edges. It

exploits the high-throughput and low-latency memory access

characteristics of modern shared-memory systems by spawning

multiple worker threads and making them access data structures

PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e39232

concurrently in the shared memory. In order to reduce memory

usage, ccTSA extensively utilizes bit fields, implements a custom

memory allocator [14], and has an option to prune low coverage

k-mers in the middle of building the k-mer coverage table, which

provides a tradeoff between the memory footprint and assembly

quality. The modular structure and careful design make ccTSA

run faster and have better scalability in sequencing speed than

other sequence assemblers, while providing comparable memory

usage and quality values such as N50.

Results and Discussion

We compared the performance (sequencing speed and memory

usage) and quality (such as N50 and NG50) of ccTSA with other

sequence assemblers using synthetic reads from 4 organisms and

real paired-end reads from 2 organisms. First, synthetic reads were

used for comparison, which enabled the results of the assemblers

to be compared to the original sequence. The scalability of

sequencing speed on ccTSA and other assemblers were evaluated.

We utilized the evaluation framework of GAGE [4] to compare

the quality of the assemblers using 2 whole-genome shotgun

paired-end data. We also explored one of the ccTSA’s interesting

features that provides the tradeoff between memory usage and

assembly quality by pruning low coverage k-mers in the middle,

not at the end, of building a k-mer coverage table.

Experimental Setup
As for the synthetic reads, we used the datasets of 4 organisms:

C.elegans (Caenorhabditis elegans), E.coli (Escherichia coli strain

K-12), L.major (Leishmania major strain Friedlin), and S.cerevi-

siae (Saccharomyces cerevisiae S288c). The reference genome of

each organism was downloaded from NCBI Genome Sequence

(Table 1, S1, and S2). MetaSim [15] was used to generate

synthetic reads for each reference genome. MetaSim provides

options to choose a read length, an average sequence coverage

value, and an empirical error model. The sequence coverage

stands for how many times a nucleotide in the original sequence

(the genome of an organism in our study) appears at the reads. We

set the read length to either 36 or 75 base pairs (bps), the sequence

coverage to 10, 20, 40, 80, or 160, and the empirical error model

to either error free (Exact) or an error model for the short reads of

the Illumina technology (Illumina). We used the error model

included in MetaSim for the error probabilities of 36 bp reads and

the one from Plantagora [16] for the probabilities of 75 bp reads.

For example, a dataset ‘E.coli-Illumina-75 bp-80x’ consists of a

sequence of reads from the E.coli reference genome with the

sequence coverage of 80, each of which has 75 base pairs, and

following the Illumina error probability model. All simulation

parameters of MetaSim are listed in Table S3. ccTSA relies on

separate scaffolding tools to orient and align the contigs into super-

contigs or scaffolds. In order to fairly compare the performance

and quality of the assemblers, we configured each assembler to

treat the synthetic sequences as single-end reads, and excluded

scaffolding and gap closure parts from comparison even though

MetaSim generated paired-end data.

We used the paired-end whole-genome shotgun data of the

following organisms: S.aureus (Staphylococcus aureus) and

R.sphaeroides (Rhodobacter sphaeroides). We downloaded the

data sets from the GAGE [4] web site at http://gage.cbcb.umd.

edu, which originated from NCBI Genome Sequence, and then

were preprocessed using the Quake [17] and ALLPATHS-LG

[18] error correctors. As for the real reads, we set all the

assemblers to perform scaffolding and gap closure parts to

compare the quality values of the assembly results. Because

ccTSA did not exploit paired-end reads, we used SSPACE [19] to

scaffold contigs. We ran ccTSA and SSPACE using both datasets

of preprocessed reads and reported the better assembly results. For

the other assemblers compared in this paper, we used their own

internal scaffolding features. We reported the NG50 values, the

numbers, and the error-corrected sizes of contigs and scaffolds

using the analysis tools available from the GAGE web site.

The parallel versions of Velvet 1.2.01 [6], SOAPdenovo 1.05

[8], and ABySS 1.2.7 [7] were used for assembly. We compared

the generated contigs (contiguous DNA sequences reconstructed

from the assemblers) with the reference genomes using megablast

[20] in NCBI BLAST+2.2.25 [21]. The parameters and config-

uration files used for BLAST+, Velvet, ABySS, SOAPdenovo, and

ccTSA are listed in Table S4. We measured the assembler

performance on a system with 4 octo-core Intel Xeon 4820

processors (total 32 computing cores) and 512GB of main memory

that ran RHEL 6, gcc 4.4.4, and Open MPI 1.4.3. We used 16

hardware threads for executing the assemblers by default, and

scaled the assemblers to utilize up to 32 cores. Unless mentioned

otherwise, ccTSA pruned the k-mers with coverage value 1 from

the k-mer coverage table before building a de Bruijn graph. We

used SSPACE 1.1 [19] for scaffolding contigs generated from

ccTSA.

Evaluation
We compared the execution time, the maximum memory

usage, and the quality of the generated contigs of ccTSA with

other assemblers. For the experiments using the synthetic reads,

we used the following quality metrics: the largest contig length

(Max), N20, N50, NG50, N80, and the fraction of the genome

covered by the assembled contigs, called covered genome ratio

(CGR). The assembled contigs were aligned to the reference

genome with NCBI BLAST+2.2.25 using megablast algorithm.

Among the generated contigs, we discarded the sequences that

were either lower than 98% identical to the reference or too short

(shorter than 100 bases for 36 bp reads and 200 bases for 75 bp

reads). We counted the bases in the genome that were mapped to

the remaining contigs to compute the covered genome ratio. The

NG50 value is the length of a contig when the aggregate size of the

contigs that are not smaller than the contig reaches half of the

reference genome length.

Figure 1 shows the NG50 values ccTSA produced for datasets

from 4 organisms when we varied the read length, the error

model, and the sequence coverage of the synthetic reads. Figure 1A

shows the NG50 of E.coli 36 bp synthetic reads without base-call

errors (E.coli-Exact-36 bp) on various k-mer lengths. At a given

sequence coverage, the NG50 values first increased then decreased

Table 1. Reference genome datasets downloaded from NCBI
Genome Sequence.

Taxonomy
ID Name Genomes Size

6239 Caenorhabditis Elegans 6 (Linear) 100,267,633

31685 Escherichia Coli str. K-12 Substr.
DH10B

1 (Circular) 4,686,137

347515 Leishmania Major Strain Friedlin 36 (Linear) 32,816,778

559292 Saccharmoyces Cerevisiae S288c 16 (Linear) 12,071,326

The details of the NGS data we got and used for the experiments are listed in
Table S1 and S2.
doi:10.1371/journal.pone.0039232.t001

A Coverage-Centric Threaded Sequence Assembler

PLoS ONE | www.plosone.org 2 June 2012 | Volume 7 | Issue 6 | e39232

A Coverage-Centric Threaded Sequence Assembler

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e39232

as the k-mer length increased. As the sequence coverage increased,

the NG50 values increased but were saturated starting from 80x.

Also, the k-mer length giving the best NG50 value increases as the

sequence coverage increases. When we introduced errors to the

reads using the Illumina error model, the trends of the NG50 over

the k-mer length and the sequence coverage were similar, but the

NG50 values were smaller than the ones without errors (Figure 1B).

When we increased the read length from 36 bp to 75 bp, the

trends were unchanged, but the NG50 increased as fewer regions

of a genome were aliased such that a read was mapped to multiple

regions (Figure 1C and 1D). On other organisms, the trends of the

NG50 were unchanged. However, the NG50 at a given sequence

coverage decreased as the length of a genome increased (Figure 1E,

1F, and 1G).

Figure 2 shows the NG50 values from ccTSA and the other

assemblers on E.coli 75 bp reads using the Illumina error model.

Other assemblers showed similar trends in NG50 when the k-mer

lengths and sequence coverage values were varied. The NG50

values of Velvet were higher than those of other assemblers on

small sequence coverage values, but became similar when the

coverage value exceeded 40x. The NG50 values on other

organisms showed similar trends and were not included in this

paper. Because the improvement on NG50 was marginal after the

sequence coverage of 80, we used 80x reads hereafter.

We compared the NG50 values of the four assemblers on the

E.coli datasets in Figure 3A and 3B. All the assemblers generated

similar NG50 values on a given k-mer length. No single assembler

produced the highest NG50 values on the entire range of k-mer

values, but the NG50 values of Velvet and ccTSA were higher

than others on many points. For the 75 bp reads with the Illumina

error model, the k-mer values that provided the highest NG50

were similar: 53 for Velvet, SOAPdenovo, and ccTSA, and 55 for

ABySS. The results on other organisms showed the same trends.

Among them, we presented the NG50 values on L.major 80x

reads with the Illumina error model in Figure 3C.

Figure 1. The NG50 of ccTSA on datasets from 4 organisms with different sequence coverage and k-mer values. (A) E.coli, Exact error
model (Exact), and 36 bp reads (36 bp), (B) E.coli, Illumina error model (Illumina), and 36 bp, (C) E.coli, Exact, and 75 bp reads (75 bp), (D) E.coli
Illumina, and 75 bp, (E) S.cerevisiae, Illumina, and 75 bp, (F) L.major, Illumina, and 75 bp, and (G) C.elegans, Illumina, and 75 bp. The k-mer values
were varied from 19 to 35 on 36 bp data and from 37 to 73 on 76 bp data. In most datasets, NG50 values increased then decreased as we increased
the k-mer values. The NG50 values were mostly saturated on the sequence coverage of 80x. The longer the genome size of an organism, the lower its
NG50 values were.
doi:10.1371/journal.pone.0039232.g001

Figure 2. The NG50 of 4 assemblers on datasets from E.coli with different sequence coverage and k-mer values. (A) 20x, (B) 40x, (C)
80x, and (D) 160x. Illumina error model and 75 bp reads were used. Note that (C) and Figure 3(B) are the same. The NG50 values are mostly saturated
on the sequence coverage of 80x for all the assemblers.
doi:10.1371/journal.pone.0039232.g002

A Coverage-Centric Threaded Sequence Assembler

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e39232

NG50 is not the only quality metric of the assembly results. We

report other metrics, such as N20, N50, N80, the largest contig

length, and the covered genome ratio (CGR), of ccTSA on 75 bp

reads with the Illumina error model in Figure 4. On a given k-mer

length, the aggregate contig length was the largest, followed by the

longest contig length, N80, N50, NG50, and N20 on most cases as

expected. The CGR of the generated contigs was higher than 95%

on most k-mer lengths, which shows the usefulness of ccTSA as a

sequence assembler. The CGR values ccTSA produced were also

similar to those from other assemblers, as shown in Figure S1.

Above results showed that the assembly quality, such as the

NG50 and the CGR, of ccTSA was on par with or surpassed that

of other sequence assemblers. We then compared the performance

of the assemblers, where ccTSA provided huge advantages over

the others in sequencing speed. Figure 5 shows the execution time

of ccTSA, Velvet, SOAPdenovo, and ABySS, when we increased

the number of utilized hardware threads from 1 to 32. On each

dataset, we used the k-mer length that gave the highest NG50

value, which was also the function of the assembler. The

sequencing speed was improved by utilizing multiple threads on

all the assemblers and it scaled better on larger datasets, but the

sequencing speed of ccTSA was substantially better than other

assemblers. ccTSA was 23.1, 5.6, and 13.3 times faster than

Velvet, SOAPdenovo, and ABySS, respectively, on E.coli-Exact-

36 bp reads, 13.0, 4.6, and 17.9 times faster than Velvet,

SOAPdenovo, and ABySS on E.coli-Illumina-75 bp reads, and

9.7, 5.3, and 16.6 times faster than Velvet, SOAPdenono, and

ABySS on L.major-Illumina-75 bp reads, when 16 hardware

threads were used. The sequencing speed of ccTSA also scaled

better than others. When the number of threads was increased

from 1 to 16, the sequencing speed of ccTSA improved 9.0 times

while that of Velvet, SOAPdenovo, and ABySS improved 2.8, 5.3,

and 3.3 times on L.major-Illumina-75 bp reads. Table 2 summa-

rized the contig length, quality, sequencing speed, and memory

usage of the assemblers. Even though ccTSA was substantially

faster than others, it used more main memory than others except

SOAPdenovo on many datasets. Because a genome could have

billions of base pairs, it is important to lower the memory usage.

We implemented a feature in ccTSA that trades the memory

usage during execution for the quality of the generated contigs.

This feature is based on the observation that the histogram of the

coverage values on a k-mer coverage table reveals that a large

portion of k-mers have low coverage values, mostly from base-call

errors. If we prune these low coverage k-mers in the middle of

building the table periodically instead of pruning them after all

reads are processed, we can considerably lower the memory usage

at the cost of slightly worse assembly quality due to the small

possibility that the k-mers to be pruned are not from errors. If we

increase the pruning frequency, low coverage k-mers are pruned

more often so that ccTSA uses less memory, but the quality gets

lowered as well. On the contrary, lowering pruning frequency

leads to more memory usage, but better contig quality. Figure 6

showed that pruning the k-mers with coverage value 1 after

processing every 50 M reads lowered the memory usage and

execution time by 47.3% and 9.5%, respectively, at the cost of

5.6% degradation in NG50 compared to the default option that

pruned the k-mers with coverage value 1 after finishing coverage

table construction on C.elegans-Illumina-75 bp reads. Changing

the pruning frequency to every 20 M reads further lowered the

memory usage and execution time by 43.4% and 6.7% at the cost

of additional 5.1% degradation in NG50.

Table 3 shows the assembly quality of ccTSA and the other

assemblers on S.aureus and R.sphaeroides. ABySS, SOAPdenovo,

and Velvet could exploit paired-end reads and generate scaffolds.

We used SSPACE, a separate scaffolding tool, to take the output

contigs from ccTSA and generate scaffolds. We configured ccTSA

not to prune k-mers. We used the following quality metrics, which

were used for the GAGE evaluation study: the number, NG50,

and corrected NG50 of the contigs and scaffolds from the

assemblers as well as the number of errors. The number of

misjoins and indel errors larger than or equal to 5 base pairs was

Figure 3. The NG50 of 4 assemblers on E.coli and L.major 80x
with various k-mer values. (A) E.coli, Exact, and 36 bp, (B) E.coli,
Illumina, and 75 bp, and (C) L.major, Illumina, and 75 bp. All the
assemblers show similar trends on the NG50 values over various k-mer
values. No single assembler produced the highest NG50 values on the
entire range of k-mer values, but the NG50 values of Velvet and ccTSA
were higher than others on many points.
doi:10.1371/journal.pone.0039232.g003

A Coverage-Centric Threaded Sequence Assembler

PLoS ONE | www.plosone.org 5 June 2012 | Volume 7 | Issue 6 | e39232

counted as the errors for contigs, and the number of misjoins

became the errors for scaffolds. We broke contigs and scaffolds at

each error and reported the broken ones as the corrected NG50

values. As for the results of ABySS, SOAPdenovo, and Velvet, We

listed the values reported in the GAGE evaluation paper [4].

When we set the k-mer length to 31, which was the number used

at the GAGE paper, the quality values of ccTSA were better than

those of ABySS and comparable to those of SOAPdenovo and

Velvet. By changing the k-mer length, we could find the

configurations that had better quality values. For example, when

we set the k-mer length to 45 base pairs, the NG50 value of

S.aureus scaffolds was 1.56 million base pairs, which was much

longer than those of other assemblers.

Methods

In this section, we first provide an overview of the algorithms

implemented in ccTSA. Then, we explain the techniques that

exploit the characteristics of contemporary computer systems to

effectively parallelize and save the memory usage of ccTSA.

Execution Flow of ccTSA
ccTSA reads input files, each of which is composed of the short

fragments (reads) of an original DNA sequence, and generates an

output file that contains the result of sequence assembly.

Sequencing machines [3] occasionally make mistakes in reading

base-pairs, which are called base-calling errors, and some k-mers

are mapped to the multiple regions of the original sequence, which

are called repeats. As a result, it is not always possible for a

sequence assembler to perfectly reconstruct the original sequence.

So the output file of ccTSA typically consists of multiple DNA

sequences called contigs and none of the contigs might be mapped

to some regions of the original sequence. Currently, ccTSA can

read FASTA and FASTQ files and writes the generated contigs to

a FASTA file.

Figure 7 illustrates an overview of the execution flow of ccTSA,

which consists of multiple phases. First, it reads the series of short

reads and extracts k-mers from each read. Because a k-mer

consists of k nucleotides, a read that has fewer than k nucleotides is

discarded. ccTSA also discards k-mers that have ambiguous or

unidentified nucleotides. It checks a dictionary called a k-mer

coverage table, which has a k-mer as a key and its coverage as a

value, to see if the extracted k-mer exists in the table. If so, its

coverage value is incremented by one. If not, the k-mer is added to

the table with the coverage value 1. Note that k-mer coverage is

different from the sequence coverage of the original DNA

sequence. The former is the number of a k-mer instance from

the sequenced reads, while the latter stands for how many times a

nucleotide in the original sequence appears at the reads.

After all the reads are processed, ccTSA optionally prunes k-

mers with too low or high coverage values. Assuming that the

original sequence consists of g nucleotides, the k-mer coverage

table would have (g–k+1) entries if the sequence has no repeats and

the reads have no base-calling errors. If a k-mer generated from a

sequenced read contains one or more base-calling errors, the k-

mer typically has very low coverage because it is unlikely that the

original DNA sequence includes the k-mer. When the base-calling

error rate of the reads is high, the k-mer coverage table has much

more than (g–m+1) entries. If the coverage table has more entries,

more memory space is required and it takes more time to access

Figure 4. The quality values of ccTSA on 75 bp, Illumina, 80x datasets from 4 organisms with various k-mer values. (A) E.coli, (B)
S.cerevisiae, (C) L.major, and (D) C.elegans. The k-mer values were varied from 19 to 35 on 36 bp data and from 37 to 73 on 76 bp data. Max stands
for the largest contig length. Other quality values, such N20, N50, N80, and the largest contig length, have the trends similar to NG50.
doi:10.1371/journal.pone.0039232.g004

A Coverage-Centric Threaded Sequence Assembler

PLoS ONE | www.plosone.org 6 June 2012 | Volume 7 | Issue 6 | e39232

and update the table. Assuming that the coverage of the original

DNA sequence is sufficiently high, most of low coverage k-mers

are due to base-calling errors and most of high coverage k-mers

are from the original sequence. As a result, pruning these low

coverage k-mers can be useful for removing the base-calling errors,

saving memory usage and improving sequencing speed. However,

because the coverage of the original sequence is not uniform over

all the nucleotides, some of the low coverage k-mers could be from

the original sequence hence pruned incorrectly. This lowers the

average length of the generated contigs, but it would be possible to

restore them during phases after assembly, such as the scaffolding

phase, which will be further discussed later in this section. k-mers

with very high coverage are typically from repeats, so we can

optionally mark them as repeats and exclude them hereafter.

Remaining k-mers become k-mer nodes, among which the

nodes that share k-1 nucleotides are linked together through edges

building a de Bruijn graph. Because there are 4 types (Adenine,

Thymine, Guanine, and Cytosine) of nucleotides in DNA, a k-mer

node has up to 8 neighbors, 4 to the left side that share the first k-1

nucleotides and 4 to the right side that share the last k-1 ones. A

node that has multiple neighbors to either side is called a junction

node. After linking, the k-mers that are connected without any

junction are merged, forming a contig node.

Then, for each side of a node, the weights of the edges are

computed and the neighbor with the highest weight is called a

preferred neighbor. The weight of an edge represents the

likelihood of the neighbor, which is highly correlated to the

coverage of the neighbor nodes. As of now, the weight of an edge

on each side is computed by adding the coverage of the neighbor

k-mer connected through the edge with the maximum coverage

value among the k-mers connected to the neighbor k-mer on the

same side (Figure 8). This gives a priority to the neighbor node

with higher k-mer coverage, at the same time prefers a longer path

and enables ccTSA not to miss a strong or more likely path that is

connected through a low coverage k-mer. ccTSA is designed to

easily implement other ways to calculate weights.

After finding preferred neighbors, we check each junction node

JN1 whether its preferred neighbor JN2 also points JN1 back as a

preferred neighbor. If not, we call that there is a conflict between

JN1 and JN2, which is resolved as follows: if the coverage of JN1 is

higher, we enforce JN2 to point JN1 as a preferred neighbor; if the

coverage of JN2 is higher, we disconnect the edge between JN1

and JN2, find the preferred neighbor among the remaining edges,

and repeat the above steps until there is still a conflict. Our conflict

resolution algorithm (Figure 9) is simpler than those of other

assemblers such as tip removal and tour bus algorithms [6] in

Velvet, ABySS, and SOAPdenovo. It is a future work to refine the

conflict resolution algorithm. After all conflicts are resolved,

finally, contigs are generated by traversing the nodes connected

through preferred neighbors. Unlike other assemblers, ccTSA does

not exploit paired-end reads to orient and align multiple contigs

into a single super-contig or scaffold. ccTSA can leverage a

separate tool, such as SSPACE [19], or the part of other

assemblers to perform this scaffolding and finishing phase.

Optimizations
Continuous improvement in semiconductor process technology

enables a single chip to integrate billions of transistors and a rack

server to have dozens of computing cores and terabytes of shared

memory [11]. We assume that the entire working set of ccTSA fits

in a shared memory space. This simplifies programming and

provides better performance than the systems that distribute k-mer

entries across a cluster of computers connected over a network

such as InfiniBand or Ethernet [11]. Any computing core can

access any k-mer entry through low latency (tens of nanoseconds)

memory loads and stores in a shared memory system, while the k-

mer information must be encapsulated by request and reply

packets and transferred over a high latency (a few microseconds or

Figure 5. The execution time of 4 assemblers on E.coli and
L.major 80x with thread numbers varied. (A) E.coli, Exact, and
36 bp, (B) E.coli, Illumina, and 75 bp, and (C) L.major, Illumina, and
75 bp. The k-mer value that produced the highest NG50 value was
chosen for each assembler. As the dataset size increases, the scalability
of the execution time improves. ccTSA ran faster and had better
scalability in speed than the other assemblers.
doi:10.1371/journal.pone.0039232.g005

A Coverage-Centric Threaded Sequence Assembler

PLoS ONE | www.plosone.org 7 June 2012 | Volume 7 | Issue 6 | e39232

more) network. Because the size of a k-mer entry is rather small,

the overhead of packing and unpacking the entry is relatively high,

further reducing program speed.

We apply several optimization techniques to ccTSA. To reduce

execution time, we parallelize the phases where we construct the k-

mer coverage table, populate and link k-mer nodes, and merge

consecutive k-mers without junction, which take 99% of the single

threaded execution of ccTSA on average over the Illumina-75 bp-

80x datasets from 4 organism explained in the Results and

Discussion section. When each phase is started, we first divide

workload into many small chunks, each having the same size, and

spawn multiple worker threads. Each worker repeats the process of

receiving a chunk, processing it, and asking for another chunk that

is not processed yet until all the chunks are processed. Because

time for a thread to access data heavily depends on the address,

the internal status of a complicated memory system within a

processor, and interaction with concurrent accesses from other

threads, time to process a chunk is not the same either [12]. As a

result, statically dividing the workload into the worker threads

suffers from the load balancing problem, while dynamically

Table 2. The contig lengths, quality, sequencing speed, and memory usage of the sequence assemblers.

Read Error Time Memory

Organism length Model Assembler k-mer N20 N50 N80 Max NG50 CGR (s) (GB)

E.coli 36x Exact Velvet 29 43126 23964 9880 138180 21593 0.990 164.1 1.15

SOAP 29 41945 20161 9218 127974 18951 0.988 46.0 0.20

ABySS 31 41813 20762 9047 127976 18720 0.988 109.9 0.50

ccTSA 29 41950 23404 9865 129729 22251 0.982 8.3 0.71

Illumina Velvet 27 42081 20559 9650 120911 19112 0.989 148.4 1.06

SOAP 27 32335 15785 7658 120913 15339 0.986 60.6 1.15

ABySS 29 35359 17045 8015 74618 16305 0.985 144.0 1.91

ccTSA 27 35538 17765 9474 120914 16566 0.982 14.6 2.13

75x Exact Velvet 63 140955 67344 30857 326386 63602 0.996 127.5 0.74

SOAP 59 131882 60346 30851 326380 59806 0.995 39.0 2.61

ABySS 63 131888 60352 31019 326386 59812 0.996 140.1 1.32

ccTSA 59 134957 73692 34655 326382 72272 0.993 8.6 0.75

Illumina Velvet 53 140928 67324 31713 269798 60146 0.996 120.1 2.75

SOAP 53 123955 59642 27864 180837 58773 0.994 58.1 4.45

ABySS 55 123957 59644 29823 269799 57834 0.994 209.5 3.23

ccTSA 53 123953 60418 32481 269712 60146 0.998 14.5 2.74

S.cerevisiae 75x Illumina Velvet 55 73808 42367 19557 151220 39645 0.974 245.0 6.62

SOAP 51 69026 37752 17390 140363 35826 0.962 169.1 9.76

ABySS 55 69403 38353 17645 140369 36100 0.963 552.0 5.59

ccTSA 55 82638 42169 18698 150817 39763 0.982 32.2 6.48

L.major 75x Illumina Velvet 63 52565 25446 10053 205626 22857 0.976 1242.6 27.02

SOAP 61 49947 24148 9542 160354 22121 0.973 680.0 30.11

ABySS 65 51281 24348 9710 205630 22226 0.971 2135.3 13.72

ccTSA 63 55290 28582 11915 228670 26404 0.988 128.6 23.56

C.elegans 75x Illumina Velvet 55 39346 15891 4729 130754 14450 0.953 2395.0 53.49

SOAP 53 32571 12928 3646 130752 11595 0.946 1391.0 58.40

ABySS 57 34652 13753 3944 130760 12532 0.949 4643.0 34.63

ccTSA 55 33498 13902 4252 125563 12817 0.962 383.1 53.97

Max stands for the largest contig length. While ccTSA produced comparable sequencing quality and superior sequencing speed, its memory usage was not much better
than the other assemblers, especially compared to ABySS on large datasets.
doi:10.1371/journal.pone.0039232.t002

Figure 6. The relationship between the NG50, execution time,
and memory usage of ccTSA. We used the C.elegans, Illumina, and
75 bp reads, chose the pruning interval as 10 M reads, and increased it
by 10 M for subsequent configurations. Note that the dataset had
about 105 M reads. As the pruning interval increases, the execution
time increases slowly, the NG value improves slightly, but the memory
usage grows rapidly.
doi:10.1371/journal.pone.0039232.g006

A Coverage-Centric Threaded Sequence Assembler

PLoS ONE | www.plosone.org 8 June 2012 | Volume 7 | Issue 6 | e39232

assigning chunks to idle threads leads to better performance [12].

As more worker threads are used, the performance advantage of

the dynamic load balancing method becomes even higher. At the

k-mer coverage construction phase, the workload is the sequences

of short reads. We compose the k-mer coverage table of thousands

of hash maps and use two different hash functions to identify a

hash map and an entry in the hash map. Each hash map is

protected by a mutex to prevent a simultaneous access to a hash

Table 3. The quality values of the sequence assemblers on paired-end data sets.

Contigs Scaffolds

Num NG50 (kb) Errors NG50 corr (kb) Num NG50 (kb) Errors NG50 corr (kb)

S.aureus

ABySS 302 29.2 14 24.8 246 34 1 28

SOAPdenovo 107 288.2 48 62.7 99 332 8 284

Velvet 162 48.4 28 41.5 45 762 17 126

ccTSA (k-mer = 31) 167 70.2 74 35.0 95 248.2 2 248.2

ccTSA (k-mer = 45) 103 104.8 58 42.5 51 1,565.0 6 238.6

R.sphaeroides

ABySS 1915 5.9 55 4.2 1701 9 3 5

SOAPdenovo 204 131.7 414 14.3 166 660 3 658

Velvet 583 15.7 35 14.5 178 353 6 270

ccTSA (k-mer = 31) 350 36.2 592 9.3 144 341.8 23 149.1

ccTSA (k-mer = 29) 360 47.3 206 16.8 254 154.3 12 82.2

Two organisms, S. aureus and R.sphaeroides, were used. We used the following quality metrics, which were used for the GAGE evaluation study: the number, NG50, and
corrected NG50 of the contigs and scaffolds from the assemblers as well as the number of errors. The number of misjoins and indel errors larger than or equal to 5 base
pairs was counted as the errors for contigs, and the number of misjoins became the errors for scaffolds.
doi:10.1371/journal.pone.0039232.t003

Figure 7. An overview of the execution flow of ccTSA. ccTSA reads short reads listed in FASTA/FASTQ files, generates k-mers from each read,
and push those k-mers to a k-mer coverage table. After processing all the short reads, ccTSA optionally prunes k-mers, builds a de Bruijn graph using
the remaining k-mers, merges contiguous nodes without junction, finds preferred links, resolves conflicts among preferred links, and produces
contigs by traversing the graph.
doi:10.1371/journal.pone.0039232.g007

A Coverage-Centric Threaded Sequence Assembler

PLoS ONE | www.plosone.org 9 June 2012 | Volume 7 | Issue 6 | e39232

Figure 8. A snippet of a de Bruijn graph consisting of k-mer nodes and links. In Figure A, k-mer nodes are connected to neighbors through
links. Figure B illustrates how to calculate the weight of an edge in a k-mer node. Currently, the weight of an edge on each side is computed by
adding the coverage of the neighbor k-mer connected through the edge with the maximum coverage value among the k-mers connected to the
neighbor k-mer on the same side.
doi:10.1371/journal.pone.0039232.g008

A Coverage-Centric Threaded Sequence Assembler

PLoS ONE | www.plosone.org 10 June 2012 | Volume 7 | Issue 6 | e39232

Figure 9. Conflict resolution between neighbor k-mer nodes. Preferred neighbors of a k-mer node, up to one on each side, are shown as
thick, red-colored arrows in Figure A. There is a conflict between the ATTGG node and the CATTG node. ATTGG directs CATTG as a preferred
neighbor, but CATTG directs ATTGC as a preferred neighbor. Because CATTG has a higher k-mer coverage value, the link between ATTGG and CATTG
is disconnected and ATTGG finds a new preferred edge among the remaining one, which directs TATTG (Figure B).
doi:10.1371/journal.pone.0039232.g009

A Coverage-Centric Threaded Sequence Assembler

PLoS ONE | www.plosone.org 11 June 2012 | Volume 7 | Issue 6 | e39232

map by multiple worker threads from destroying the data

structure. Because there are much more hash maps than the

worker threads and hash-map update is a simple operation, the

worker threads rarely access the same hash map at the same time.

As a result, the mutex operations do not incur significant

performance overheads. Still, it is possible to further alleviate the

overheads. Because a mutex is designed to protect a block of

memory, not just a single word, it is heavier than an atomic CPU

operation, which reads, modifies, and writes a word atomically.

When the length of a k-mer is shorter than 32 base pairs, it can be

represented as a single 64-bit word. Jellyfish [22] exploited this to

replace the mutex operations into atomic memory operations,

such as compare-and-swaps, in building concurrent hash maps

and updating k-mer coverage values, and achieved a higher k-mer

coverage construction performance for short k-mers. At the k-mer

node populating, linking, and merging phases, each hash map

becomes a chunk. Mutexes are not needed for these phases

because no data is updated concurrently by the multiple threads.

To save memory usage, ccTSA compares a k-mer with its

reverse complement and only stores the value which is earlier in

the lexicographical order. It utilizes bit fields extensively and has

different data structures for the k-mer nodes with and without

junctions. It includes a custom memory allocator [14], which

provides multiple allocation classes. Each class is implemented as a

chain of memory blocks. When the custom allocator is used to

allocate an object, the object is categorized into a class and stored

at the last block of the class. If the block does not have enough free

space, the default memory allocator in C++ is used to allocate a

block to the class. It cannot deallocate a single object, but can

quickly deallocate all the objects of a certain class simply by freeing

the blocks of the class. ccTSA utilizes this custom allocator in

pruning low coverage k-mers by having separate tables for low

coverage and high coverage k-mers, assigning the low coverage k-

mer objects and the k-mer coverage table for them to a same class,

and deallocating the class. The remaining k-mer coverage table

has fewer entries than the table without pruning, which has fast

access time. So pruning also helps reducing execution time. We

can even prune low coverage k-mers in the middle of building the

k-mer coverage table, not just at the end, which provides an

interesting tradeoff between the memory footprint and assembly

quality, which is evaluated in the Results and Discussion section.

Availability and Future Directions
ccTSA is written in C++ and can be run on Unix-like systems.

Source code is freely available from http://code.google.com/p/

cctsa/. ccTSA can be extended to multiple directions. First,

alternative data structures and algorithms can be explored in

search of better sequencing speed and lower memory usage.

Second, ccTSA does not target current General-Purpose comput-

ing on Graphics Processing Units (GPGPUs) [11] because they do

not provide enough memory capacity. However, it would be

interesting to see if ccTSA can take advantage of their high

computation power and memory bandwidth once future GPGPUs

or many integrated core systems address the memory capacity

issue. Third, ccTSA can be integrated with other scaffolding tools

or extended to exploit paired-end reads to further orient and align

the contigs.

Supporting Information

Figure S1 The covered genome ratio of assemblers on E.coli

and L.major 80x with various k-mer values. (A) E.coli, Exact, and

36 bp, (B) E.coli, Illumina, and 75 bp, and (C) L.major, Illumina,

and 75 bp. The covered genome ratio (CGR) was more than 95%

over most k-mer values regardless of the assemblers used.

(TIFF)

Table S1 Datasets used for generating synthetic reads. The

chromosome data of Caenorhabditis elegans (C.elegans), Esche-

richia coli str. K-12 substr. DH10B (E.coli), Leishmania major

strain Friedlin (L.major), and Saccharomyces cerevisiae S288c (S.

cerevisiae) were downloaded from NCBI Genome Sequence.

Detailed information of L.major is listed in Table S2.

(TIFF)

Table S2 Datasets used for generating synthetic reads. The

chromosome data of Leishmania major strain Friedlin (L.major)

were downloaded from NCBI Genome Sequence. Detailed

information of C.elegans, E.coli, and S.cerevisiae is listed in Table

S1.

(TIFF)

Table S3 MetaSim options used to generate synthetic reads.

(TIFF)

Table S4 Parameters and configuration files used for BLAST+,

Velvet, ABySS, SOAPdenovo, ccTSA, and SSPACE.

(TIFF)

Acknowledgments

We gratefully acknowledge Sungwoo Choo and DongYul Lee for their help

on generating synthetic reads and executing the assemblers.

Author Contributions

Conceived and designed the experiments: JA. Performed the experiments:

JA. Analyzed the data: JA. Contributed reagents/materials/analysis tools:

JA. Wrote the paper: JA.

References

1. Miller JR, Koren S, Sutton G (2010) Assembly algorithms for next-generation

sequencing data. Genomics. 95(6): 315–27.

2. Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, et al. (2008)

ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome

Research. 18(5): 810–20.

3. Elaine RM (2008) Next-Generation DNA Sequencing Methods. Annu. Rev.

Genom. Human Gene t . 9 : 387–402 . do i :10 .1146/annurev . -

genom.9.081307.164359.

4. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, et al. (2011) GAGE: A

critical evaluation of genome assemblies and assembly algorithms. Genome

Research. doi: 10.1101/gr.131383.111.

5. Smith TF (1980) Identification of common molecular subsequences. J. Mol. Bio.

147(1): 195–197.

6. Daniel RZ, Birney E (2008) Velvet: Algorithms for de novo short read assembly

using de Bruijn graphs. Genome Research. 18(5): 821–829.

7. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, et al. (2009) ABySS: A

parallel assembler for short read sequence data. Genome Research. 19(6): 1117–

1123. doi:10.1101/gr.089532.108.

8. Li R, Zhu H, Ruan J, Qian W, Fang X, et al. (2009) De novo assembly of

human genomes with massively parallel short read sequencing. Genome

Research. 20(2): 265–72.

9. Jackson BG, Regennitter M, Yang X, Schnable PS, Aluru S (2010) Parallel de

novo assembly of large genomes from high-throughput short reads. 2010 IEEE

International Symposium on Parallel & Distributed Processing (IPDPS).

doi:10.1109/IPDPS.2010.5470397.

10. Wenyu Z, Jiajia C, Yang Y, Yifei T, Jing S, et al. (2011) A Practical Comparison

of De Novo Genome Assembly Software Tools for Next-Generation Sequencing

Technologies. PLoS ONE. 6(3): e17915. doi:10.1371/journal.pone.0017915.

11. Hennessy JL, Patterson DA (2011) Computer Architecture, 5th Edition: A

Quantitative Approach. Morgan Kaufmann. 708 p.

12. Culler D, Singh JP, Gupta A (1998) Parallel Computer Architecture: A

Hardware/Software Approach. Morgan Kaufmann. 1056 p.

A Coverage-Centric Threaded Sequence Assembler

PLoS ONE | www.plosone.org 12 June 2012 | Volume 7 | Issue 6 | e39232

13. Pevzner PA, Tang H, Waterman MS (2001) An Eulerian path approach to DNA

fragment assembly. Proc. Natl. Acad. Sci. 98: 9748–9753.

14. Berger ED, Zorn BG, McKinley KS (2002) Reconsidering custom memory

allocation. ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications. doi:10.1145/582419.582421.

15. Richter DC, Ott F, Auch AF, Schmid R, Huson DH (2008) MetaSim-A

Sequencing Simulator for Genomics and Metagenomics. PLoS ONE.

doi:10.1371/journal.pone.0003373.

16. Plantagora Template website. Available: http://www.plantagora.org/tools_

downloads/read_simulation.html. Accessed 2012 Feb 1.

17. Kelley DR, Schatz MC, Salzberg SL (2010) Quake: Quality-aware detection

and correction of sequencing errors. Genome Biol 11: R116. doi: 10.1186/gb-

2010–11–11-r116.

18. Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, et al. 2011. High-

quality draft assemblies of mammalian genomes from massively parallel
sequence data. Proc Natl Acad Sci 108: 1513–1518.

19. Marteb B, Christiaan VH, Hans JJ, Derek B, Walter P (2010) Scaffolding pre-

assembled contigs using SSPACE. Bioinformatics. 27(4): 578–579. doi:10.1093/
bioinformatics/btq683.

20. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for
aligning DNA sequences. J Comput Biol. 7(1–2): 203–14.

21. Stephen FA, Warren G, Webb M, Eugene WM, David JL (1990) Basic local

alignment search tool. J. Mol. Bio. 215(3): 403–410. doi:10.1006/
jmbi.1990.9999.

22. Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics. 27 (6): 764–770. doi:10.1093/

bioinformatics/btr011.

A Coverage-Centric Threaded Sequence Assembler

PLoS ONE | www.plosone.org 13 June 2012 | Volume 7 | Issue 6 | e39232

