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Abstract

Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM).
They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling
regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we
ablated Notch1 in mouse (Notch1Flox/Flox) embryonic fibroblasts (MEFs). Notch1-deficient (Notch12/2) MEFs displayed faster
growth and motility rate compared to Notch1Flox/Flox MEFs. Such phenotypic changes, however, were reversible by
reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1) in Notch1-deficient
MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts
(FF2441), which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable
when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1).
Functionally, ‘‘Notch-activated’’ stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation
induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4) in FF2441 cells while deletion of Notch1 in MEFs
resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating
Notch1’s inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-
induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression
resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that
inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-
independent, but Wnt11-dependent WISP-1 expression.
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Introduction

Fibroblasts are key components of the interstitial tissue present

in most organs of the body [1]. They provide a delicately balanced

tissue-specific ECM that partitions the interstitial space between

tissue cells, blood vessels and nerves. Fibroblasts play an important

role in not only supporting tissue architecture, but also partici-

pating in maintenance of tissue homeostasis. Fibroblasts generate

soluble proteins including growth and differentiation factors [2]

and remodelling enzymes, for example, matrix metalloproteases

(MMPs) [3]. These important cells are also involved in synthesis of

ECM, such as collagen and fibronectin [4]. Fibroblasts are known

to play a role in a variety of fibrotic disorders (fibrosis/sclerosis).

Most recently, these cells have gained increasing attention since

they are important components of the supporting stroma in a

variety of solid tumors. Tumors have been characterized as a type

of ‘‘wound that does not heal’’ [5] and are now viewed as ‘‘organs’’

which have a unique microenvironment and specific stromal

compartment. Tumor stroma is comprised of inflammatory cells,

endothelial cells, fibroblasts and ECM. Fibroblasts in tumor tissues

have been termed carcinoma-associated fibroblasts (CAFs), tumor-

associated fibroblasts (TAFs) or cancer-associated fibroblasts

(CAFs) (herein termed as cancer-associated fibroblasts (CAFs))

[6]. CAFs are postulated to promote tumor growth through direct

stimulation of tumor cell proliferation and promotion of tumor

angiogenesis. Fibroblasts, thus, may represent a new therapeutic

target for modulating stroma-associated tissue regeneration and

tumor growth.

In normal adult tissue, resident fibroblasts are maintained in a

relatively quiescent state in which they are involved in slow

turnover of the ECM. Fibroblasts, once activated, undergo a

change in phenotype from the quiescent state to a proliferative and

contractile phenotype termed myofibroblasts (sometimes termed

‘‘activated fibroblasts’’). Myofibroblasts actively produce growth

factors and ECM, display an elongated spindle shape, and express

contractile a–smooth muscle actin (a-SMA) and vimentin [7].

Myofibroblasts can arise from the local, resident fibroblasts or

from circulating mesenchymal precursors/stem cells [8], and even

from epithelial cells via epithelial mesenchymal transition (EMT)

[9].

The Notch signaling pathway is an evolutionarily conserved

signaling cascade that regulates a variety of cellular activities

including proliferation, differentiation, quiescence and death [10].

The Notch receptor and its ligands are transmembrane proteins
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whose signaling requires cell to cell contact between neighboring

cells. Mammals have four Notch receptors (Notch1–4) and five

Notch ligands which fall into two classes: Delta-like (Dll) and

Jagged. Activation of Notch receptors is triggered by interaction

with Notch ligands on adjacent cells. The receptor-ligand binding

results in proteolytic cleavage (by TACE and c-secretase) of NICD

from the membrane bond Notch. NICD subsequently translocates

into the nucleus where it binds to CSL (CBF1/Suppressor of

Hairless/Lag-1)/RBP-Jk and recruits Mastermind-like (MAML)

to form a ternary complex that functions as a transcriptional

activator of Notch target genes. Notch target genes include those

belonging to the Hes and Hey families [11]. The diverse outcome of

Notch activation is dependent on several factors including the

specific timing, the signal strength/gene dosage, and the cell type

and context [12–14].

The role of Notch signaling in fibroblasts is poorly studied. In

this work we investigated the function of Notch signaling in

regulating the cell growth of fibroblasts through in vitro loss-/gain-

of-function approaches. We observed a suppressive effect of

activation of Notch signaling on fibroblast proliferation. We

demonstrated that the inhibitory effect of Notch signaling is

partially mediated by the induction of WISP-1 (CCN4) through a

Wnt11-dependent mechanism in fibroblasts.

Results

Deletion of Notch1 Increases Cell Growth and Motility of
MEFs

To study the physiological function of Notch1 in regulating

fibroblast proliferation and migration, we deleted Notch1 gene in

MEFs isolated from Notch1Flox/Flox mouse embryos at E13.5 by

transducing cells with Cre/lentiviruses versus GFP/lentiviruses

(control) in vitro. Greater than 95% cells were transduced based on

the percentage of GFP-positive cells observed under fluorescence

microscopy. A similar percentage of Cre-positive cells were

achieved using same MOI of Cre/lentiviruses (data not shown).

Knock-down of Notch1 was confirmed by Western blot analysis

(Figure 1A) a week after transduction. A small residual Notch1

expression observed can be explained by non-100% transduction

of MEFs by Cre/lentiviruses. Notch1-deficient (Notch12/2) MEFs

displayed faster cell growth rate as measured by MTT assay

compared to (Notch1Flox/Flox) MEFs (Figure 1B). Cell morphology of

the Notch12/2 MEFs appeared to be unaltered compared to the

Notch1 Flox/Flox MEFs. Cell motility was increased in Notch1-

deficient (Notch12/2) versus Notch1 Flox/Flox MEFs as demonstrated

by recording the trafficking of 15 randomly selected MEFs for

20 hours in an in vitro cell scratch assay (Figure 1C). To

functionally validate the phenotypes observed in Notch1-deficient

(Notch12/2) MEFs, we transduced these cells with NICD (an active

form of Notch1) and GFP (control), respectively, using lentiviral

vectors to reconstitute Notch1 activation. It was observed that

phenotypic changes resulted from Notch1 deletion were reversible

by reconstitution of Notch1 activation (Figure 1D). Notably,

constitutive activation of the Notch1 pathway by NICD overex-

pression even resulted in a significant growth inhibition of Notch1

null MEFs (Notch12/2) compared to wild type of MEFs (Notch1+/+).

This is consistent with what we observed in human dermal

fibroblasts (FF2441) (see below). Overall, these results indicate that

Notch1 signaling in MEFs exerts a suppressive effect on cell

growth and motility.

Constitutive Expression of Exogenous NICD1 Induces
Pan-Notch Activation in Human Fibroblasts

To further study the role of Notch signaling activation on cell

growth of fibroblasts, we aimed to examine the effects of

constitutive Notch1 activation on proliferation of primary human

dermal fibroblasts (FF2441) [14]. To this end, we transduced

FF2441 cells with lentiviral vectors encoding either the GFP

marker gene or the NICD1 gene linked to the GFP marker gene via

internal ribosome entry site (IRES) to express GFP and NICD1

independently [15]. The NICD1–GFP-transduced fibroblasts

simultaneously expressed NICD1 and GFP. At an MOI of 5,

greater than 95% of transduced fibroblasts expressed GFP as

observed by fluorescence microscopy (data not shown). Expression

of NICD1 in transduced FF2441 cells was confirmed by

immunoblotting analysis (Figure 2A). Interestingly, full-length of

Notch1 (,250 Kd) was undetectable in fibroblasts transduced with

GFP/lenti, while detectable in fibroblasts transduced with NICD-

GFP/lenti. It suggested that constitutive expression of exogenous

NICD induced expression of endogenous Notch1. We further

examined the gene profiles of Notch pathway components using

PCR array, we observed a ‘‘self-propagated’’ pan-Notch activation

mechanism induced by enforced expression of exogenous NICD1

in human fibroblasts. We found that constitutive expression of

NICD1 resulted in the up-regulation of gene expression of

multiple Notch pathway components in FF2441 cells, including

ligands (Dll1, Jagged1), receptors (Notch1, 3, and 4), and target genes

(Deltex1, Hes1, Herp2, and Hrt3). The changes in gene induction

were showed in Figure 2B. Thus, hyper-activation of Notch1

pathway caused a pan-Notch signaling activation. These results

thus revealed a ‘‘self-propagated’’ pan-Notch activation mecha-

nism induced by enforced expression of exogenous NICD1 in

human fibroblasts.

Enforced Activation of Notch Pathway Inhibits Human
Fibroblast Proliferation, but Did Not Induce Cell
Apoptosis

We therefore investigated the effect of enforced activation of

Notch1 pathway on cell biology of human fibroblasts. The

constitutive activation of Notch1 by introduction of NICD into

FF2441 cells significantly inhibited cell growth and motility in

human dermal fibroblasts. As determined by MTT assay, cell

proliferation rate of FF2441-NICD1–GFP significantly decreased

compared to FF2441-GFP cells (Figure 3A). However, such a

phenotypic change was reversible when the Notch activation was

countered with DN-MAML-1, an antagonist of Notch pathway

activation. As shown in Figure 3B, cell growth rate of FF2441-

NICD1–GFP-DN-MAML-1 was significantly re-boosted com-

pared to the control (FF2441-NICD1–GFP- Mock). Moreover,

Notch pathway activation retarded the cell growth of FF2441, but

did not induce cell apoptosis as no increase in apoptotic cells was

detectable by TUNEL assay (Figure 3C). Constitutive Notch

pathway activation down-regulated expression a panel of cell cycle

genes, including cyclin D2, cyclin C, cycling E1 and cdk 4, 6, 7 and 8

while up-regulated expression of CDK inhibitor 3 (Table 1),

suggesting that Notch pathway activation results in cell cycle

arrest in human dermal fibroblasts. Similarly, as determined by

time-lapse photography to track and measure cell trafficking in a

modified scratch assay (in vitro wound healing assay), the average

distance traveled by cells toward the middle line of the gap was

smaller at all time points for FF2441-NICD1–GFP compared to

FF2441-GFP cells. Velocity of FF2441-NICD1–GFP versus

FF2441-GFP cells was 14.8+/24.9 (mean +/2 SD) versus

35.9+/26.1 mm/hour (data not shown). These observations

Notch Regulates Fibroblasts via WISP-1
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indicated that constitutive activation of Notch pathway inhibits cell

proliferation and migration in human dermal fibroblasts. Taken

together, the above experiments revealed that deletion of Notch1

increases cell growth and motility in MEFs, while activation of

Notch pathway inhibits cell growth and motility in human dermal

fibroblasts. These data consistently pointed to a role of Notch

signaling in modulating the growth and motility of fibroblast cells.

Status of Notch Signaling Is Correlated with the
Biological Activity of Fibroblasts

To further study the correlation between the Notch pathway

activation and the biological activity of fibroblasts, we examined

the status of Notch signaling in cultured, proliferating FF2441,

which were basically ‘‘activated’’ due to stimulation of serum and

growth factors in the culture medium, versus quiescent FF2441

cells, which were induced by cell-contact inhibition and serum

starvation. The expression of Notch receptors, ligands and known

target genes (including Hes and Hey) were analyzed by the RTu
ProfilerTM PCR Array system. None of the Notch signaling

pathway genes was significantly expressed in the proliferating

fibroblasts. In drastic contrast, the expression of Dll-1, Jagged-2,

Notch1, Notch-3, Notch-4, TACE (ADAM-17) and Hey-1 were

significantly up-regulated (.1.5-fold) in quiescent fibroblasts

(Table 2). The increased protein expression of Hey-1 (in quiescent

compared to proliferating fibroblasts) was confirmed by immuno-

blotting analysis (Figure 4). These data indicate that the Notch

pathway is maintained in a less-activated or inactivated status in

proliferating human dermal fibroblasts whereas when these cells

become quiescent, they upregulate several Notch signaling

components. Thus, the status of Notch signaling appears to be

tightly correlated with the biological activity of fibroblasts.

‘‘Notch-Activated’’ Stromal Fibroblasts Inhibited Tumor
Growth/Invasion in a 3D Skin Melanoma Model

To address the potential biological relevance of Notch pathway

activation in fibroblasts, we tested the role of ‘‘Notch-activated’’

fibroblasts as stromal cells in modulating the growth and invasion/

migration of melanoma cells since it is well established that stromal

fibroblasts/CAFs play a critical role in regulating tumor growth

and metastasis. For this purpose, a 3D skin melanoma reconstruct

model, which resembles human physiological condition, was

utilized. Skin reconstructs consist of a ‘dermis’ of collagen with

embedded fibroblasts (FF2441-NICD1–GFP versus FF2441-GFP)

and an ‘epidermis’ of multi-layered keratinocytes with equal

number of metastatic melanoma cells (1205Lu) [16] [17]. After 14

days in culture, more 1205Lu cells were countable and many

1205Lu cells were able to invade into ‘dermis’ in which FF2441-

GFP were embedded. Strikingly, invasion/migration of melanoma

cells into ‘dermis’, in which FF2441-NICD1–GFP were embed-

ded, was remarkably suppressed, and less 1205Lu cells were

detectable (Figure 5). These data indicated that ‘‘Notch-activated’’

Figure 1. Deletion of Notch1 relieves its suppressive effect on cell growth and motility of MEFs. (A) Expression of full length Notch1 (250
Kd) and Trans-Membrane and Intra-Cellular domain (TMIC, 120 Kd) in Cre/lenti- versus GFP/Lenti-transduced Notch1Flox/Flox MEFs. Knock-out Notch1 in
Cre/lenti-transduced Notch1Flox/Flox MEFs was analyzed by Western blotting assay. b-actin was used as loading control. (B) Rate of cell growth of MEFs
in the presence 2% or absence of serum was measured by MTT assay. 5,000 cells/well were plated. Deletion of Notch1 promotes cell growth of MEFs.
(C) Deletion of Notch1 increases cell motility of MEFs. The migration of 15 randomly selected cell pairs was tracked over time (20 hours) by time-lapse
photography and velocity was calculated with software. (D) Left: Expression of endogenous full length Notch1 (250 Kd), TMIC (120 Kd) and
exogenous NICD (119 Kd) in MEFs was shown. Expression of activated Notch1 (NICD) was detected by specific antibody recognizing Val1744. Right:
Increased cell growth rate was reversed by reconstituted Notch1 activation in Notch1-deficint (Notch1 2/2) MEFs by NICD overexpression as
demonstrated by immunoblotting (b-actin was used as loading control). Cell growth rate of MEFs in the presence 2% or absence of serum was
measured by MTT assay. * P,0.05; ** P,0.01. Data are presented as mean 6 SD of three independently performed experiments in (B), (C), and (D).
doi:10.1371/journal.pone.0038811.g001
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fibroblasts inhibited growth of melanoma cells in ‘‘skin’’ and their

invasion into ‘dermis’.

Effect of Notch Signaling on Regulating WISP-1/CCN4
Expression in Fibroblasts

To understand the signaling mechanisms for the pronounced

effects of the Notch signaling on cell biology of fibroblasts, we

examined the gene expression profile of Notch pathway activation

in FF2441 cells using quantitative Human Notch Signaling

Pathway RT2 ProfilerTM PCR array, and found an approximately

6.5-fold increase in the gene expression of WISP-1/CCN4 in

FF2441-NICD1–GFP compared to FF2441-GFP cells (Figure 6A).

To validate the observed up-regulation of mRNA of WISP-1/

CCN4, we conducted immunoblotting analyses and confirmed an

up-regulated protein expression of WISP-1/CCN4 in FF2441-

NICD1–GFP compared to FF2441-GFP cells (Figure 6B). Con-

sistently, levels of WISP-1/CCN4 protein were down-regulated in

Notch1-deficient (Notch12/2) MEFs compared to Notch1Flox/Flox

MEFs as demonstrated by immunoblotting analyses (Figure 6C).

Transcriptional activation of WISP-1 gene was also tested in

FF2441-NICD1–GFP versus FF2441-GFP cells. Cells were

transduced with WISP1 promoter-Luc2/Lentivirus, control

RPL10PROM/Lentivirus and R01_PROM/Lentivirus, respec-

tively, and lucifease activities were measured 48 hours post-

transduction. As shown in Figure 6D, constitutive activation of

Notch1 significantly increased WISP-1 promoter activity in

fibroblasts compared with control. Thus, these experiments

identified WISP-1/CCN4 as one of the down-stream targets of

Notch pathway in fibroblasts. An in silico analysis of CSL binding

site in the promoter of WISP-1 gene did not reveal a matching

sequence, implicating that Notch indirectly regulates WISP-1 gene

expression. This is consistent with our findings showed below that

the regulation of WISP-1 by Notch is mediated by Wnt-11 in

fibroblasts.

Figure 2. Activated Notch1 induces pan-Notch activation in human fibroblasts. (A) FF2441 cells were transduced with either NICD1-GFP/
lenti or GFP/lenti. Two days after transduction, transductants were harvested and subjected to Western blot analysis. Expression of endogenous full
length Notch1 (250 Kd), TMIC (120 Kd) and exogenous NICD (119 Kd) in MEFs was shown. Expression of activated Notch1 (NICD) was detected by
specific antibody recognizing Val1744. b-actin was used as control. (B) Constitutive activation of Notch1 results in self-propagated pan-Notch
activation. Up-regulation of Notch receptors, ligands and target genes in FF2441-NICD1-GFP versus FF2441-GFP is observed by RT2 PCR Array. The
folds of increased gene expression in FF2441-NICD1-GFP compared to FF2441-GFP cells from two independently performed experiments were
shown.
doi:10.1371/journal.pone.0038811.g002

Notch Regulates Fibroblasts via WISP-1
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WISP-1/CCN4 Suppresses Fibroblast Proliferation
Since constitutive activation of Notch1 pathway resulted in a

cell growth inhibition in fibroblasts, we sought to investigate a

potential role of WISP-1/CCN4 in mediating Notch-induced

growth control of fibroblasts. To examine for a potential biological

function of WISP-1/CCN4 in regulating cell growth in fibroblasts,

we performed MTT assay to test the effect of recombinant human

WISP-1/CCN4 on cell proliferation in FF2441 cells since WISP-

1/CCN4 is a soluble factor secreted by cells. Addition of

recombinant human WISP-1/CCN4 into the cell culture medium

significantly inhibited the growth rate of FF2441 cells, but only in

the presence of 10% FBS in the culture medium. In serum-free

medium, no significant inhibition was achievable. Two dosages of

WISP-1/CCN4 were tested, and both 10 ng/mL and 200 ng/mL

achieved comparable inhibition efficacy (Figure 7A). Similarly,

supplementation with recombinant human WISP-1/CCN4 sig-

nificantly slowed cell growth rate of Cre/MEFs in the presence of

10% of FBS, but not in the absence of serum. Only the higher dose

(200 ng/mL) of WISP-1/CCN4 was able to suppress cell growth

in Cre/MEFs, (Figure 7B), suggesting variable sensitivity of

different types of fibroblasts in responding to WISP-1/CCN4.

The serum-dependent effect of WISP-1/CCN4 on fibroblast

proliferation suggested that WISP-1/CCN4 interferes with growth

factor(s) in FBS that induce proliferation. However, WISP-1 does

not appear to induce a direct growth inhibition signal. In support

of this concept, we determined that addition of recombinant

WISP-1/CCN4 (200 ng/mL) inhibited serum-induced phosphor-

ylation of Erk1/2 (the signaling cascade delivered from the MAPK

pathway ultimately regulates the cell cycle machinery) in human

fibroblasts (Figure 7C, 7D) which were starved overnight with

serum-free medium and re-stimulated with FBS (10% in the

Figure 3. Effects of Notch activation and inhibition on human dermal fibroblast growth. Notch activation slows down cell growth rate of
fibroblasts. Proliferation of transduced FF2441 cells was determined by MTT assays (A). Activated Notch1 inhibited cell growth of fibroblasts. (B)
Inhibition of Notch activation by ectopic expression of DN-MAML-1 (upper) in FF2441-NICD-GFP cells relieves cell growth inhibition as measured by
MTT assay (lower). Data are presented as mean 6 SD of three independently performed experiments in (A) and (B). (C) Notch activation does not
induce cell apoptosis in fibroblasts. Cell apoptosis was determined by TUNEL assay. No obvious apoptotic cells were detectable in FF2441-NICD1-GFP
cells. Serum starvation-induced cells were used as positive control (FBS-).
doi:10.1371/journal.pone.0038811.g003

Table 1. Differential expression of genes involved in cell cycle control between NICD1-GFP/FF2441 and GFP/FF2441 cells.

Genes Fold Changes of Gene Expression in NICD1-GFP/FF2441 vs GFP/FF2441 Cells (Mean ± SD)

Cyclin D2 22.8860.08

Cyclin C 23.3660.12

Cyclin E1 24.7460.10

CDK 4 22.1860.08

CDK 6 26.0060.15

CDK 7 23.8660.06

CDK 8 22.2460.08

CDK Inhibitor 3 +2.2860.07

doi:10.1371/journal.pone.0038811.t001

Notch Regulates Fibroblasts via WISP-1
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culture medium) in the presence of WISP-1/CCN4. These results

demonstrated a specific serum-dependent inhibitory effect of

WISP-1/CCN4 on the cell growth of fibroblasts that has not been

previously reported.

Inhibitory Effect of Notch Signaling on Human Fibroblast
Proliferation Is Partially Mediated by WISP-1/CCN4

Based on the findings detailed above, we hypothesized that the

inhibitory effect of Notch pathway activation on cell growth of

fibroblasts may be mediated through up-regulating the production

of WISP-1/CCN4 which, in turn, exerts its suppressive effect

through either autocrine or paracrine mechanism. To test this

hypothesis, we carried out siRNA-mediated gene silencing

experiments. Specific siRNA targeting human WISP-1/CCN4

and scrambled control siRNA were introduced into FF2441-

NICD1–GFP cells respectively by transient transfection. Knock-

down of WISP-1/CCN4 expression was confirmed by immuno-

blotting analyses 48 hours after transfection (Figure 8A). The

siRNAs-transfected FF2441-NICD1–GFP cells (wherin Notch is

constitutively activated) were subjected to MTT assay to examine

cell growth rate. We observed that specific interference with the

WISP-1/CCN4 expression partially, yet significantly relieves the

inhibitory effect of Notch activation on cell growth (Figure 8B).

The cell growth rate of FF2441-NICD1–GFP cells transfected

with specific WISP-1 siRNA, but not control siRNA, was partially

restored, suggesting that WISP-1/CCN4 is one of the critical

functional mediators of Notch signaling in regulating fibroblast

proliferation. These data demonstrated that inhibitory effects of

Notch signaling on human fibroblast proliferation are mediated in

part by WISP-1/CCN4. That is, WISP-1/CCN4 was demon-

strated to be one of functional down-stream targets of Notch

signaling in fibroblasts.

Notch Signaling-Induced WISP-1/CCN4 Expression Is
Wnt1-Independent, but Wnt11-Dependent in Fibroblasts

WISP-1/CCN4 was originally reported to be induced by Wnt1

[18]. However, our PCR array studies did not show that the levels

of Wnt1 gene in FF2441-NICD1–GFP are elevated compared to

that in FF2441-GFP cells. Immunoblotting analysis confirmed the

PCR array findings on Wnt1 expression (data not shown).

Alternatively, we observed that the expression of Wnt11 gene

was up-regulated .3-fold by Notch pathway activation

(Figure 9A). Immunoblotting analyses confirmed these findings

on the protein levels (Figure 9B). To explore whether Wnt11 is

responsible for the induction of WISP-1/CCN4 in human

fibroblasts, we blocked Wnt11 expression by siRNA approach

and investigated whether inhibition of Wnt-11 expression results in

the modulation of WISP-1/CCN4 expression in FF2441-NICD1–

GFP cells. As shown in Figure 9C, the upregulation of WISP-1/

CCN4 was reversed in FF2441-NICD1–GFP cells when Wnt11

was inhibited by siRNA. As a consequence, cell growth in FF2441-

NICD1–GFP cells was rescued (Figure 9D). These data strongly

suggest that Notch signaling-induced WISP-1/CCN4 expression

in human fibroblasts is mediated through Wnt11, but not Wnt1.

Thus, these data identified a novel Wnt1-independent, but Wnt11-

dependent mechanism for the induction of WISP-1/CCN

Figure 4. The Notch pathway is maintained in a less-activated
or inactivated status in proliferating human dermal fibro-
blasts. The increased expression of Hey-1 protein in quiescent
fibroblasts compared to proliferating fibroblasts was demonstrated by
immunoblotting analysis. b-actin was used as loading control.
doi:10.1371/journal.pone.0038811.g004

Table 2. Notch pathway is activated in quiescent fibroblasts.

Genes Fold Increase of Gene Expression (Quiescent/Proliferating Cells) (Mean ± SD) P-Value

Notch1 1.36±0.05 ,0.01

Notch2 0.3860.04 .0.05

Notch3 1.82±0.21 ,0.01

Notch4 2.12±0.46 ,0.01

Jagged-1 0.7860.08 .0.05

Jagged-2 3.46±0.55 ,0.01

Dll-1 2.02±0.40 ,0.01

Hes-1 0.7860.06 .0.05

Hey-1 1.56±0.15 ,0.01

HeyL 0.2460.03 .0.05

Presenilin-1 0.5660.05 .0.05

TACE 2.34±0.32 ,0.01

doi:10.1371/journal.pone.0038811.t002

Notch Regulates Fibroblasts via WISP-1
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expression in fibroblasts and thereby, for the first time, established

a linkage between Notch, Wnt11 and WISP-1/CCN4.

Discussion

Cell cycle and cell growth of fibroblasts are tightly controlled. In

normal uninjured tissues, resident fibroblasts are maintained in a

relatively quiescent state. When tissue is injured or undergoing

tumorigenesis, quiescent resident fibroblasts are stimulated by

inflammatory factors or tumor cell-derived stimulatory factors,

and activated. The involvement of Notch signaling in regulating

cell growth of fibroblasts was previously mostly unexplored. A few

prior studies provide inconsistent results with respect to Notch’s

role in regulating the fibroblast cell cycle. For example, a study

showed that Notch1 activation promotes the G1-S transition of the

cell cycle by inducing the expression of Skp2 and the consequent

degradation of the CDK inhibitor p27 in 3T3 mouse fibroblasts

[19]. In contrast, activation of Notch signaling via either

overexpression of NICD or stabilization of NICD by ablation of

SEL-10 (Fbxw7), a negative regulator of Notch signaling, resulted

in cell cycle arrest and apoptosis in mouse embryonic fibroblasts

(MEFs) [20]. The results of the latter study are consistent with our

findings. In other prior work also consistent with our findings, it

was reported that inhibition of Notch signaling by soluble forms of

the Dll1 and Jagged1 ligands was able to induce fibroblast growth

factor receptor (FGFR)-dependent transformation of NIH 3T3

fibroblasts in vitro [21]. These studies and ours point to Notch

signaling as a negative regulator or ‘break’ on fibroblast cell

growth.

An overall assessment of the prior literature and our novel

findings appears to indicate that the status of Notch signaling is

tightly correlated with the growth characteristics of fibroblasts.

Deletion or inhibition of Notch1 signaling exempts fibroblasts

from at least one growth control mechanism and cells proliferate

faster as occurred in Notch1-deficient (Notch12/2) MEFs, whereas

enforced activation of the Notch pathway inhibits cell growth of

human dermal fibroblasts. It is, therefore, postulated that

deregulation of Notch signaling may be involved in the

pathophysiology of some disorders in which fibroblasts are

involved. Our study employing Notch-engineered fibroblasts as

stromal cells for modulating tumor cell growth/invasion provides

an example to demonstrate the biological relevance of Notch

activation in fibroblasts. It also suggests a paracrine effect of

‘‘Notch-activated’’ fibroblasts on other types of cells. In this

regard, we have recently demonstrated that Notch-induced WISP-

1 expression in fibroblasts is responsible for the inhibition of

Figure 5. Inhibitory effects of ‘‘Notch-activated’’ fibroblasts as stromal cells on melanoma cell growth and invasion in 3D model. (A)
Representative images of H&E staining of sections of 3D skin melanoma model. (B) Melanoma cell growth in 3D skin model. Significantly decreased
melanoma cells were observed in 3D reconstructs in which FF2441-NICD1-GFP cells were embedded in collagen. (C) Decreased invasion into ‘dermis’
by melanoma cells in 3D skin reconstructs in which FF2441-NICD1-GFP cells were embedded. All data are calculated based on that from 5 randomly
selected LPF/section and totally 10 sections per group.
doi:10.1371/journal.pone.0038811.g005
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melanoma growth [22]. Our work implies that Notch pathway is

likely inactivated in CAFs of tumors, such as melanoma, since

‘‘Notch-activated’’ fibroblasts suppress melanoma cell growth/

invasion. This new concept has not been previously tested. Future

studies will be required to determine the potential correlation

between the status of the Notch activation and biological function

of CAFs in tumors.

Our work also revealed a previously unexplored concept.

Constitutive activation of Notch1 pathway induces activation of

pan-Notch pathways. It indicates existence of a mechanism for

Notch signaling undergoing ‘‘self propagation’’. It is, however,

unclear whether this is a unique phenomenon in fibroblasts, or it is

a fairly universal mechanism for Notch signaling in other cell

types. Although more studies are required, the latter appears to be

the case, since we have found that overexpression of NICD1 in

other cells, for example, human melanocytes, can induce the

expression of several Notch ligands and receptors (ZL unpublished

data). Ross et al. also observed that activation of Notch signaling

induces Jagged-1 expression in C2C12 and NIH3T3 cells [23].

However, unlike the concept of self-propagation of initial signal, as

suggested by our data, it was speculated that the induced Jagged-1

has no apparent authorizing effects on Notch signaling but can

promote signaling in naı̈ve cells. That is, it was previously

attributed to a mechanism through which Notch signaling can be

relayed from cell to cell.

A previously unknown signaling mechanism discovered by this

work is the identification of WISP-1/CCN4 as one of functional

mediators in delivery of the inhibitory effect of Notch signaling on

fibroblast proliferation. The data not only locate WISP-1/CCN4

as a down- stream target gene of Notch signaling, but also unveil a

new target for potential therapeutic manipulation. The molecular

mechanism regarding how WISP-1/CCN4 exerts its serum-

dependent inhibitory effect on cell growth of fibroblasts remains

an open question for future study. WISP-1 has been reported to

function as a pro-mitogenic factor in mediating TNF-a-induced

cardiac fibroblast proliferation [24]. The reason as to why WISP-1

exerts paradoxical biological effects remains unknown. Presum-

ably, it is determined by other cooperative signaling(s) induced by

up-stream signal, because TNF-a stimulates cell growth of cardiac

fibroblasts whereas Notch signaling suppresses fibroblast prolifer-

ation. Alternatively, it is simply cell type-dependent. It has been

reported that WISP-1 binding to human skin fibroblasts is

mediated through interaction with cell surface decorin and

biglycan [25]. It may prove worthwhile to investigate whether

decorin and biglycan are responsible for mediating WISP-1’s

action on fibroblast growth inhibition.

Figure 6. Notch pathway activation induces expression of WISP-1/CCN4 in fibroblasts. (A) Levels of mRNA of WISP-1/CCN4 were up-
regulated in FF2441-NICD1-GFP compared to FF2441-GFP cells. Data are from RT2 PCR Array and presented as fold changed in gene expression by
setting levels of genes in FF2441-GFP as ‘‘1’’. Data are presented as mean 6 SD of three independently performed experiments. (B) Expression of
WISP-1/CCN4 protein was up-regulated by Notch pathway activation in fibroblasts. Expression of WISP-1/CCN4 in FF2441-NICD1-GFP versus FF2441-
GFP and untreated F2441 (2) cells was analyzed by Western blotting assay. b-actin was used as loading control. (C) Expression of WISP-1/CCN4
protein was down-regulated in Notch12/2 MEFs. Expression of WISP-1/CCN4 in Notch12/2 versus Notch1Flox/Flox MEFs (both untreated (2) and GFP/
lenti-transduced) was analyzed by Western blotting assay. b-actin was used as loading control. (D) Increased WISP-1 promotor-driven luciferase
activity in FF2441-NICD1-GFP compared to FF2441-GFP cells. Data are presented as mean 6 SD of three independently performed experiments.
doi:10.1371/journal.pone.0038811.g006
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WISP-1 was initially identified as a Wnt1 responsive target [18],

and belongs to the CCN family, which includes connective tissue

growth factor (CTGF), cysteine-rich-61 (CYR61), and nephro-

blastoma overexpressed (NOV) [26]. NOV (CCN3) has been

shown to associate with Notch1 extracellular domain and exert a

positive effect on Notch signaling in inhibiting myoblasts

differentiation [27], while our findings reveal that WISP-1/

CCN4 functions as a down-stream target of Notch signaling in

fibroblasts. These studies provide representative examples to

demonstrate the interaction between Notch and CCN family.

Until now, Wnt1 is the only member in the Wnt family known to

induce WISP-1. Wnt4 is unable to up-regulate WISP-1 expression

in the same experimental setting as Wnt1 does [18]. The promoter

of WISP-1 has been shown to be activated by both Wnt 1 and b-

catenin expression. TCF/LEF sites played a minor role, whereas

the CREB site played an important role in the transcriptional

activation [28]. Our observation that WISP-1 responds to Wnt11,

but not Wnt1, mediates the observed effects, expands the scope of

the Wnt family members involved in regulating WISP-1 and

suggests that the Wnt/WISP axis may be cell type-specific.

However, unlike Wnt1, which is known to activate the canonical

Wnt/b-catenin pathway, Wnt11 is classified as a non-canonical

signaling. Wnt11 is essential for the development of the heart and

kidney [29–32], and is also implicated in cancer [33–36]. Wnt11

signaling is thought to function in part by inhibiting the activity of

the b-catenin-dependent Wnt pathway [37]. We have not

evaluated the activity of b-catenin in response to Wnt11 signaling

in this study. Future work will be required to elucidate the Wnt11

down-stream pathway responsible for regulating WISP-1 expres-

sion in fibroblasts.

In summary, we herein report an inhibitory role of Notch

signaling in regulating cell growth of fibroblasts, which is partially

mediated by the induction of WISP-1/CCN4 through a Wnt11-

dependent, but Wnt1-independent mechanism. Our study estab-

lishes a functional linkage between Notch, Wnt11 and WISP-1/

CCN4, and suggests a central role for Notch in coordination

between these. The new findings lead us to postulate that Notch

signaling in fibroblasts could potentially be implicated in some

pathologic states featuring fibroblast growth deregulation.

Methods

Reagents
Recombinant human WISP-1/CCN4 was purchased from R &

D Systems (Minneapolis, MN). SDS-polyacrylamide gels were

obtained from Invitrogen (Carlsbad, CA). X-ray films were

purchased from Kodak (Rochester, NY). All other chemicals and

solutions were from Sigma–Aldrich (St. Louis, MO) unless

otherwise indicated.

Mice and Cells
Notch1Flox/Flox mice were established as described previously

[38]. Animal experiments were approved by the Institute Animal

Care and Use Committee of the University of Miami (IACUC

#10-228). Primary human dermal fibroblasts (FF2441) were

initiated as explant cultures from trypsin-treated and epidermis-

Figure 7. Effect of WISP-1/CCN4 on cell growth of fibroblasts. Supplementation of exogenous recombinant human WISP-1/CCN4 slowed
down cell growth of FF2441 cells (A) and Cre/MEFs (B). Proliferation of cells was determined by MTT assays. 5,000 FF2441 cells/well and 2,000 Cre/
MEFs/well were plated respectively. Data are presented as mean 6 SD of three independently performed experiments. (C) Addition of 200 ng/mL of
recombinant human WISP-1/CCN4 inhibited serum-induced phosphorylation of Erk1/2 in FF2441 cells. Total amount of Erk1/2 was used as control.
Time course of phosphorylation of Erk1/2. Serum starved cells were stimulated with 10% serum in the presence of WISP-1/CCN4 for varying times.
Autophotographs of Western blots were quantified by computerized densitometry. pERK1/2 signals were normalized to total ERK levels and
unstimulated (time ‘‘0’’) samples were set as ‘‘1’’. Relative index of pErk1/2 compared to unstimulated samples from three independent Western blots
was plotted. (D) A representative Western blot was shown.
doi:10.1371/journal.pone.0038811.g007
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stripped neonatal foreskin [14] and cultured in Dulbecco’s

Modified Eagle’s Medium (DMEM) supplemented with 20 mM

L-glutamine (Invitrogen), 8 mM HEPES and 10% FBS (Hyclone,

Logan, UT). The MEFs were isolated from Notch1Flox/Flox mice

using the method described previously [39] and cultured in

DMEM with glutamine, HEPES and 10% FBS. All experiments

were performed with MEFs at passage 3–10. Human metastatic

melanoma cell line, 1205Lu (ATCC, #CRL-2812), was cultured

in 2% FBS-W489 medium as described [14]. All cells were

incubated at 37uC in 98% humidified air containing 5% CO2.

Recombinant Lentiviruses and Retroviruses
Methods for generation of GFP/lenti and NICD1–GFP/lenti

were described previously [15]. Cre/lenti was constructed by

inserting Cre gene into pHX’ lentiviral vector [15]. Production of

pseudotyped lentivirus was achieved by co-transfecting 293 T cells

(ATCC # CRL-11268TM) with three plasmids as described [15].

The lentiviruses collected 48 hours post-transfection displayed

titers of around 107 transducing units/ml in NIH/3T3 cells

(ATCC, #CRL-1658TM). Retroviral vector MAML305/pBabe

(DN-MAML1 (Myc-tagged)) and empty pBabe vector (Mock) were

described previously [40]. To infect target cells by lentiviruses and

retroviruses, cells were exposed six hours to virus with MOI

(multiplicity of infection) 5 in the presence of 4 mg/ml polybrene.

Cells were then washed, cultured with regular complete medium

for two additional days, and analyzed for protein expression by

Western blot or pooled for subsequent analysis as indicated in

individual experiments.

Figure 8. WISP-1/CCN4 is partially responsible for mediating the inhibitory effect of Notch signaling on fibroblast proliferation. (A)
siRNA-mediated knocking-down WISP-1/CCN4 expression in human fibroblasts. Expression of WISP-1/CCN4 in siRNA-transfected versus non-targeting
control siRNA-transfected or untransduced FF2441-NICD1-GFP cells was analyzed by Western blotting assay. b-actin was used as loading control. (B)
Blockage of WISP-1/CCN4 expression relieved Notch’s inhibitory effect on cell growth of fibroblasts. Proliferation of siRNA-transfected versus non-
targeting control siRNA-transfected FF2441-NICD1-GFP cells was determined by MTT assays. 2,000 cells/well were plated. Data are presented as mean
6 SD of three independently performed experiments.
doi:10.1371/journal.pone.0038811.g008
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PCR Array
The Human Notch Signaling Pathway RTu ProfilerTM PCR

Array (# PAHS-059, SABiosciences, Frederick, MD) and Human

Cell Cycle RTu ProfilerTM PCR Array (#PAHS-020) quantita-

tively profiles the expression of 84 genes involved in Notch

signaling and 84 genes involved in cell cycle control, respectively.

Total RNA was extracted from cells using TrizolH (Invitrogen) and

cDNA was synthesized using RTu First Strand Kits (SABios-

ciences). PCR array was carried out according to the manufac-

turer’s protocol. The threshold cycle (Ct) values were used to plot a

standard curve. All samples were normalized to the relative levels

of b-actin, and results are expressed as fluorescence intensity in

relative levels.

Immunoblotting
Western blotting was performed as described [15]. Membranes

were probed with Abs to Notch1 (a rabbit polyclonal antiserum

directly against residues 1759–2095) [15], cleaved/activated

Notch1 (an antibody recognizing Val1744 (ab52301, Abcam,

Cambridge, MA)), phospho-MAPK (#9106, Cell Signaling

Technologies, Danvers, MA), p44/42 MAPK (#9102, Cell

Signaling Technologies), WISP-1/CCN3 (H-57, sc-25441, Santa

Cruz Biotechnologies, Santa Cruz, CA), Wnt-11 (sc-50360, Santa

Cruz Biotechnologies), Hey-1 (GTX42614, GeneTex, Irvine, CA)

or b-actin (AC-15, Abcam). Myc-tagged DN-MAML1 was

detected on Western blot by 9-B11 Ab (Santa Cruz). This was

followed by probing with HRP-conjugated second Ab (Jackson

Immunoresearch, PA) and subjected to ECL (Amersham Biosci-

ences, Piscataway, NJ). Membranes were stripped and re-blotted

Figure 9. Notch-induced WISP-1/CCN expression is Wnt11-dependent in the fibroblasts. (A) Levels of mRNA of Wnt11 were up-regulated
in FF2441-NICD1-GFP cells compared to FF2441-GFP cells. Data are from RT2 PCR Array and presented as fold changed in gene expression by setting
levels of genes in FF2441-GFP as ‘‘1’’. (B) Expression of Wnt11 protein was up-regulated by Notch pathway activation in fibroblasts. Expression of
Wnt11 in FF2441-NICD1-GFP versus FF2441-GFP and untreated FF2441 (2) cells was analyzed by Western blotting assay. b-actin was used as loading
control. (C) Blockage of Wnt11 expression resulted in decreased expression of WISP-1/CCN expression. siRNA-mediated knocking-down Wnt11
expression in human fibroblasts. Expression of WISP-1/CCN4 in wnt11siRNA-transfected versus non-targeting control siRNA-transfected FF2441-
NICD1-GFP cells was analyzed by Western blotting assay. b-actin was used as loading control. (D) Blockage of Wnt11 expression relieved Notch’s
inhibitory effect on cell growth of fibroblasts. Cell proliferation of wnt11 siRNA-transfected-, non-targeting control siRNA-transfected- and their
‘‘parental’’ FF2441-NICD1-GFP was determined by MTT assays. 2,000 cells/well were plated. Data are presented as mean 6 SD of three independently
performed experiments.
doi:10.1371/journal.pone.0038811.g009
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as required in the individual experiment. To quantify the bands in

the blots, autophotographs of Western blots were scanned by

computerized densitometry (Molecular Dynamics).

Construction of WISP1 Promoter-Luc2/Lentiviral Vector
and Luciferase Assay

Plasmids containing WISP1 promoter-Luc2 fragment (WISP1

PROM_01, ID: S113793) and two control fragments

(RPL10PROM_01, ID: S108908, and R01_PROM, ID:

S190001) were purchased from SwitchGear Genomics (Menlo

Park, CA). WISP1 PROM_01 was digested by SacI and SalI, and

both RPL10PROM_01 and R01_PROM were digested by MulI

and SalI, respectively. ,2.1 kb WISP1 promoter-Luc2 and two

control fragments were isolated, blunted and inserted into SmaI

cut pHX’ vector. Cells were transduced with WISP1 promoter-Luc2/

Lentivirus, control RPL10PROM/Lentivirus and R01_PROM/

Lentivirus, respectively. 48 hours post-transduction, 26104 cells/

well in 96 well plates (triplicates) were measured for luciferase

activity. Luciferase assays were performed using Steady-GloH
Luciferase Assay kit (Promega, Madison, WI) according to the

manufacturer’s protocol. Luciferase activity measurement was

corrected by subtraction of readings of controls.

MTT Assay
Cell growth was measured by MTT assay. MTT cell

proliferation kits were purchased from BioVision Technologies

(Exton, PA). Cell proliferation was measured according to the

manufacturer’s protocol. 2,000–5,000 cells/well were cultured in

96-well plate and cultured in DMEM with or without FBS as

indicated in individual experiment. Samples were assayed in

triplicate and experiments were repeated three times.

Apoptosis Assay
Cell apoptosis was detected by TUNEL based ApopTagH kit

(S7100) from Chemicon (Billerica, MA) according to the

manufacturer’s protocol. Briefly, cells fixed with 4% formaldehyde

were pre-treated with 3% H2O2 for 5 minutes at room temper-

ature followed by washing with PBS. After incubation with

equilibration buffer for 15 minutes at room temperature and TdT

enzyme at 37uC for 60 minutes, cells were treated with stop/wash

buffer for 10 minutes after being agitated for 15 seconds at room

temperature, followed by washing with PBS. Cells were then

incubated with anti-digoxigenin conjugate for 30 minutes at room

temperature followed by washing with PBS. Apoptotic cells were

stained with colorimetric substrates diaminobenzidine (DAB).

Serum-starved cells (72 hours) were used as positive control.

In vitro Cell Motility Assay and Time-Lapse Photography
To measure cell motility in vitro, MEF/Cre and MEF/GFP cells

were cultured overnight to sub-confluence in 24-well plate. A gap

was created by scratching cells with a standard tip. Velocity of

fibroblast migration (mM per minute) was recorded using time-

lapse photography at 10-minute intervals, for 20 hours. Fifteen

randomly selected individual cells per well were tracked, and data

were analyzed by ImagePro 5.0 software (MediaCybernetics,

Silver Spring, MD).

In vitro Three-Dimensional (3D) Skin Melanoma Model
3D skin melanoma model was prepared as described [16,17]. A

total of 3 mL of fibroblasts (FF2441-NICD1–GFP versus FF2441-

GFP, 7.56104cells/mL) in a 4:1 mixture of bovine type I collagen

(Organogenesis, Canton, MA): MatrigelH (BD Bioscience) was

added to each insert of tissue culture trays (Organogenesis) and

were allowed to constrict in DMEM with 10% FBS for 7 days at

37uC. For epidermal reconstruction, human keratinocytes, isolated

from human epidermis of neonatal foreskins and cultured as

described, [17,41] were mixed with human metastatic melanoma

cells (1205Lu) at a ratio of 5:1 in epidermal growth medium

composed of three parts DMEM and 1 part Ham’s F-12

supplemented with 2.4 M CaCl2, 0.18 mM adenine, 4 mM

glutamine, 10 mg/ml selenium, 10 mM ethanolamine, 0.1 mM

O-phosphoryl ethanolamine, 10 mg/mL insulin, 10 mg/mL trans-

ferrin, 20 pM tri-iodothyronine, 0.5 mg/mL hydrocortisone and

4 pM progesterone. A total of 56106 cells were seeded on each

contracted collagen gel. Cultures were kept submerged in medium

containing 1 ng/mL EGF and 0.1% dialysed newborn calf serum

for 2 days, then in 0.2 ng/mL EGF and 0.1% dialysed newborn

calf serum for another 2 days, and then were raised to the air–

liquid interface via feeding from below with medium containing

2% dialysed newborn calf serum. After 14 days, skin reconstructs

were fixed with 4% paraformaldehyde and were embedded in

paraffin. Cell growth of melanoma cells was measured by counting

melanoma cell number per low power field (LPF, X10). The

invasive capacity of melanoma cells was determined by measuring

the % of area of melanoma cells occupied in a given LPF based on

morphological evaluation using H&E staining. Data are calculated

based on that from 5 randomly selected fields/section and totally

10 sections per group.

siRNA Gene Silencing
Short interfering RNA (siRNA) targeting the human form of

WISP-1/CCN4 (sc-39335), Wnt-11 (sc-41120) and control,

nontargeting siRNA (sc-37007), along with Transfection Reagent

(sc-29528), siRNA Transfection Medium (sc-36868) and siRNA

Dilution Buffer (sc-29527) were purchased from Santa Cruz

Biotechnology. The experiments were performed according to the

manufacturer’s protocol.

Statistical Analysis
All data is expressed as mean 6 SD. Statistical analysis was

carried out using paired Student’s t-test. Values considered

statistically significant were P,0.05.
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