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Abstract

Protein methylation is predominantly found on lysine and arginine residues, and carries many important biological
functions, including gene regulation and signal transduction. Given their important involvement in gene expression, protein
methylation and their regulatory enzymes are implicated in a variety of human disease states such as cancer, coronary heart
disease and neurodegenerative disorders. Thus, identification of methylation sites can be very helpful for the drug designs
of various related diseases. In this study, we developed a method called PMeS to improve the prediction of protein
methylation sites based on an enhanced feature encoding scheme and support vector machine. The enhanced feature
encoding scheme was composed of the sparse property coding, normalized van der Waals volume, position weight amino
acid composition and accessible surface area. The PMeS achieved a promising performance with a sensitivity of 92.45%, a
specificity of 93.18%, an accuracy of 92.82% and a Matthew’s correlation coefficient of 85.69% for arginine as well as a
sensitivity of 84.38%, a specificity of 93.94%, an accuracy of 89.16% and a Matthew’s correlation coefficient of 78.68% for
lysine in 10-fold cross validation. Compared with other existing methods, the PMeS provides better predictive performance
and greater robustness. It can be anticipated that the PMeS might be useful to guide future experiments needed to identify
potential methylation sites in proteins of interest. The online service is available at http://bioinfo.ncu.edu.cn/inquiries_PMeS.
aspx.
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Introduction

Protein methylation, which was discovered more than 40 years

ago [1], is an important and reversible protein post-translational

modification (PTM). This PTM includes N-methylation [2,3,4] of

either the backbone or side-chain of arginine, lysine, histidine,

proline, alanine and asparagine, O-methylation [5] of either internal

carboxyl groups of glutamate or isoaspartate residues and COOH-

terminal lipidated cysteine residues, and S-methylation [6] of either

cysteine or methionine residues. Among them, arginine and lysine

are the most frequently methylated residues. Arginine methylation is

catalyzed by a family of enzymes called protein arginine methyl-

transferases (PRMTs) [7]. PRMTs are classified into two groups,

type I PRMTs catalyze the formation of NG-monomethylarginine

(MMA) and asymmetric v-NG, NG-dimethylarginine (aDMA), type

II enzymes form MMA and symmetric v-NG, N9G-dimethylargi-

nine (sDMA) [8]. Similarly, lysine methylation involves the addition

of one to three methyl groups on the amino acid’s e-amine group, to

form mono-, di- or tri-methyllysine by lysine methyltransferases

(KMTs) [2]. Lysine specific demethylases (KDMs) work in

coordination with histone lysine methylases to maintain global

histone methylation patterns [9].

It has now been shown that protein arginine methylation has an

important role in gene regulation and signal transduction, and

lysine methylation is correlated with either gene activation or

repression depending on the site and degree of methylation [10].

Given their important involvement in gene regulation, arginine

methylation, lysine methylation and their regulatory enzymes are

implicated in a variety of human disease states such as cancer

[9,11], coronary heart disease [12], multiple sclerosis [13],

rheumatoid arthritis [14] and neurodegenerative disorders [15].

Thus, understanding the mechanisms governing these basic

epigenetic phenomena will surely represent a very attractive target

for drug discovery to prevent the onset of various related diseases.

Furthermore, identification of protein methylation sites is of

fundamental importance to understand the methylation dynamics

and molecular mechanism. Unfortunately, it is often laborious,

time intensive and expensive to determine protein methylation

sites using conventional experiments including methylation-

specific antibodies, Chip-Chip and mass spectrometry [16–18].

Therefore, a robust computational prediction tool is desirable to

reduce the number of experiments needed to identify potential

methylation sites in proteins of interest.

Actually, several computational methods have been developed

to handle these methylation sites prediction problems from

primary protein sequences. Plewczynski et al. [19] designed the

first methylation sites predictor within their AutoMotif Server

using regular expression technique. Subsequently, Daily et al. [20]

developed a method for arginine and lysine methylation predic-

tion, using support vector machine (SVM) based on the hypothesis

that PTMs preferentially occur in intrinsically disordered regions.
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Chen et al. [21] built a web server MeMo for identifying

methylation sites by utilizing orthogonal binary coding scheme

to represent protein sequence fragment. Further, Shao et al. [22]

combined Bi-profile Bayes feature extraction with SVM to predict

arginine and lysine methylation. MASA was constructed by Shien

et al. [23] for methylation sites prediction, where considered both

sequence information and structural characteristics such as

accessible surface area (ASA) and secondary structure of residues

surrounding methylation sites. Recently, Hu et al. [24] presented a

method for predicting protein methylarginine and methyllysine

based on multi-sequence features and nearest neighbor algorithm.

However, most existing prediction methods applied orthogonal

encoding scheme to characterize protein sequence information.

The orthogonal encoding uses a 20 dimensional vector of binary

values 0 or 1 to represent each residue. Each bit in this vector

means the occurrence of one kind of amino acid. Thus, there is

one 1 and nineteen 0 in each vector. It is obvious that orthogonal

representation doesn’t contain preferences on amino acids or

position information and physicochemical properties of residues.

Additionally, the highest prediction sensitivity was 82.1% for

methylarginine [23], only 79.73% for methyllysine among the

existing methods [24]. Hence it has become a crucial issue to

improve the quality of predicting protein methylation sites by

selecting more informative feature descriptors.

In view of this, a novel approach called PMeS was developed to

identify methylation sites based on an enhanced feature encoding

scheme for extracting the most informative amino acids features.

Here, the enhanced feature encoding scheme was composed of

sparse property coding (SPC), normalized van der Waals volume

(VDWV), position weight amino acid composition (PWAA) and

solvent accessible surface area (ASA). SPC and VDWV were

utilized to characterize protein sequence information and physi-

cochemical properties of amino acids surrounding methylation

sites. PWAA and ASA were applied to represent sequence-order

information and structural characteristic around methylation sites,

respectively. Our current work contained the following contents:

(1) four types of features and feature analysis were considered; (2)

SVM was employed to deal with the problem of binary

classification; (3) ten-fold cross-validation method was chosen to

evaluate the performance of SVM classifier; (4) the effect of

window length was discussed; (5) the ratio of positive to negative

samples was investigated; (6) the robustness of PMeS was

considered; and (7) the predictive performance of PMeS was

compared with that of the existing models.

Materials and Methods

Data Collection
All training data were extracted from UniProtKB/Swiss-Prot

database (version 2011_05, www.uniprot.org) and PhosphoSite-

Plus (2011_05, www.phosphosite.org). Firstly, we obtained 98

proteins covering 246 experimental methylarginine sites by

searching information containing ‘‘Omega-N-methylarginine’’,

‘‘symmetric dimethylarginine’’ and ‘‘asymmetric dimethylargi-

nine’’, and 137 proteins covering 367 experimental methyllysine

sites through the keywords ‘‘N6, N6, N6-trimethyllysine’’, ‘‘N6,

N6-dimethyllysine’’ and ‘‘N6-methyllysine’’ from UniProtKB/

Swiss-Prot database (see Tables S1 and S2). PhosphoSitePlus is an

online systems biology resource providing an extensive, manually

curated phosphorylation site database and other commonly

studied PTMs including acetylation, methylation, ubiquitination,

and O-glycosylation. We obtained 68 non-redundant proteins

covering 155 experimental methylarginine sites and 78 non-

redundant proteins covering 147 experimental methyllysine sites

from PhosphoSitePlus (see Tables S3 and S4). However, the

dataset may contain several high sequence identity proteins. To

avoid such overestimation of predictive performance, we clustered

the protein sequences with a threshold of 40% identity by CD-

HIT program [25] to remove the highly homologous sequences.

Secondly, the sliding window strategy was utilized to extract

positive and negative data from protein sequences as training data,

which were represented by peptide sequences with arginine and

lysine symmetrically surrounded by flanking residues. Experimen-

tally validated methylarginine and methyllysine were defined as

positive datasets, excluding those annotated by ‘‘potential’’,

‘‘probable’’ or ‘‘by similarity’’ in the description field. Negative

datasets included all arginines and lysines that were not marked by

any methylation information on the same proteins. Although not

all of these sites are necessarily true negatives, it is reasonable to

believe that a large majority of them are [26]. Moreover, the

redundancy reducing process was also carried out on training

data. For example, for two methylated arginine peptide sequences

with 100% identity, when the methylarginine sites in the two

proteins were in the same positions, only one was kept. After

strictly following the above procedures, we attained 355 high

quality positive sites and 3960 negative sites for methylarginine,

and 322 positive sites and 4126 negative sites for methyllysine.

Here, the feasible window size for both arginine and lysine was 15

after several trials of 9, 11, 13, 15, 17 and 19.

Finally, to ensure unbiased and objective results, five negative

training sets were obtained by randomly extracting from the

negative datasets. The average predictive performance obtained

using the five sets of training data was calculated by the following

cross-validation.

The Enhanced Feature Encoding Scheme
Sparse property coding. The specificity and diversity of

protein structure and function are largely attributed to the

composition of various properties of each of the 20 amino acids

[27]. Physicochemical encoding is particularly suited for peptides

since it exploits the fixed length of the sequence [28]. Peptide

sequences have been coded using physicochemical properties in

three ways: sparse property coding, continuous property coding

and property projection coding [29]. Methylation on lysine and

arginine residues does not alter their charge, but it does increase

their hydrophobicity [30,31]. Thus, we adopted a sparse property

coding based on the hydrophobicity and charged character of

amino acid residue. The sparse property coding (SPC) divided the

20 amino acid residues into four different groups according to

their hydrophobicity and charged character: the hydrophobic

group G1 = {A,F,G,I,L,M,P,V,W}, the polar group

G2 = {C,N,Q,S,T,Y}, the positively charged group G3 = {H,K,R}

and the negatively charged group G4 = {D,E} [32]. Then each

amino acid residuer[Giwas encoded as follows:

q(r)~(di,1,di,2,di,3,di,4) ð1Þ

where i,j[f1,2,3,4g and di,j is the Kronecker delta symbol.

Consequently, a peptide sequence p with sliding window size N can

be mapped to a 4N-dimension vector

X~(q(a1),q(a2), � � � ,q(aN ))~(x1,x2, � � � ,x4N ) ð2Þ

within the feature space by concatenating the encoded amino

acids, where ak is the kth position residue in peptide sequence p.

The SPC reflects the distribution of residues with the same

unique characteristic and portrays the essence of protein

Prediction of Methylation Sites

PLoS ONE | www.plosone.org 2 June 2012 | Volume 7 | Issue 6 | e38772



sequence. It can effectively overcome the defect of orthogonal

encoding which doesn’t contain physicochemical properties of

amino acids. On the other hand, the SPC reduces the

dimension of the input space, so the computational complexity

is largely decreased.

Van der Waals volume (VDWV). Van der Waals volume of

side groups is a determinant for binding sites [33]. Therefore, we

took into account the normalized van der Waals volume (VDWV)

of the amino acid side chain as a feature to code the peptides. The

normalized van der Waals volume of 20 kinds of amino acids is

presented in Supplementary Table S5 [34].

Position weight amino acid composition. To avoid losing

the sequence-order information, we presented position weight

amino acids composition (PWAA) to extract the sequence position

information of amino acid residues around the methylation sites

and non-methylation sites. Given an amino acid residue ai

(i = 1,2,…,20), we can express the position information of amino

acid ai in the protein sequence fragment p with 2L +1 amino acids

by following formula:

Ci~
1

L(Lz1)

XL

j~{L

xi,j(jz
DjD
L

) ð3Þ

where L denotes the number of upstream residues or downstream

residues from the central site in the protein sequence fragment p,

xi,j~1 if ai is the jth position residue in protein sequence fragment

p, otherwise xi,j~0. In general, the closer residue ai is to the

central site (0 position), the absolute value of Ci is smaller. Finally,

a protein sequence fragment p is defined as 20 dimension feature

vectors.

½C1,C2, � � � ,C20�T ð4Þ

Solvent accessible surface area. A side-chain of amino acid

that undergoes post-translational modification (PTM) prefers to be

accessible on the surface of a protein [35]. Pang et al. [35]

investigated the structural environment of 8378 incidences of 44

types of post-translational modifications (PTMs). It has been

observed that protein methylation prefers to occur in regions that

are intrinsically disorder and easily accessible. Therefore, the

solvent accessibility of amino acid residues surrounding the

methylation sites may be adapted to evaluate the classifying

performance when distinguishes between the methylation site and

non-methylation sites.

Figure 1. The distribution of physicochemical properties of residues around methylarginine and non-methylarginine. G1 is
hydrophobic residue, G2 is polar residue, G3 is positively charged residue, and G4 is negatively charged residue.
doi:10.1371/journal.pone.0038772.g001

Prediction of Methylation Sites

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e38772



Most of the experimental methylation proteins do not have

corresponding protein tertiary structures in the protein data bank

(PDB). Consequently, we used RVP-Net [36,37] to calculate the

solvent accessible surface area (ASA) for each residue of a protein

sequence. RVP-net applied a neural network to predict real value

of ASA of residues based on neighborhood information, with

18.0–19.5% mean absolute error, defined as per residue absolute

difference between the predicted and experimental values of

relative ASA [36]. The computed ASA value was the percentage

of the solvent-accessible area of each amino acid on the protein

sequence. The ASA values of amino acids surrounding the

methylation site were extracted and normalized.

Support Vector Machine
SVM is a supervised learning method for classification and

regression designed by Vapnik [38]. The principle of the SVM

method is to transform the samples into a high dimension Hilbert

space and seek an optimal separating hyperplane which maximizes

the margin in feature space. SVM has shown successful ability to

classify complex data sets without over-fitting issues, thus it’s

considered as a machine learning tool for methylation prediction.

For actual implementation we used the LIBSVM package (version

3.0) [39]. Here, a radial basis function was chosen as the kernel

function, the penalty parameter and the kernel width parameter

were tuned based on the training set using the grid search strategy

in LIBSVM.

Evaluation Methods
Ten-fold cross-validation was applied to evaluate the powers of

the prediction method proposed in this study. The training data

are divided into 10 groups by splitting each dataset into 10

approximately equal-sized subgroups. Then 9 subgroups are

merged into a training data set while the remnant subgroup is

taken as a testing data set. This process is repeated 10 times and

the average performance of 10-fold cross-validation is used to

estimate the performance. We adopted four major parameters for

performance assessment: sensitivity (Sn), specificity (Sp), accuracy

(Acc) and Matthews Correlation Coefficient (MCC). All of the

above measurements are defined as follows:

Sn~
TP

TPzFN
ð5Þ

Sp~
TN

TNzFP
ð6Þ

Figure 2. The distribution of physicochemical properties of residues around methyllysine and non-methyllysine. G1 is hydrophobic
residue, G2 is polar residue, G3 is positively charged residue, and G4 is negatively charged residue.
doi:10.1371/journal.pone.0038772.g002
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Acc~
TPzTN

TPzFPzTNzFN
ð7Þ

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)|(TPzFP)|(TNzFN)|(TNzFP)
p ð8Þ

where TP,TN,FP,FN denote the number of true positives, true

negatives, false positives and false negatives, respectively. Sensi-

tivity and specificity illustrate the correct prediction ratios of

positive (methylation) samples and negative (non-methylation)

samples respectively, while accuracy represents the correct ratio

among both positive and negative data sets. The MCC takes into

account true and false positives and negatives, and it is generally

regarded as a balanced measure which can be used even if the

classes are of very different sizes, for these reasons the MCC is

more reliable than the accuracy. The value of MCC ranges from

21 to 1, and a larger MCC stands for better prediction

performance.

Results and Discussion

Investigation of Different Features
As described in the Materials and Methods section, the

enhanced feature encoding scheme included four types of features:

sparse property coding (SPC), normalized van der Waals volume

(VDWV), position weight amino acids composition (PWAA) and

solvent accessible surface area (ASA). Here we constructed ten

prediction models composed by SPC, VDWV, PWAA and ASA to

investigate the influences of different features.

SPC Feature Analysis
As mentioned above, the SPC feature is mainly based on the

hydrophobicity and charged character of amino acid residue. To

determine whether methylation and non-methylation sites have

distinct physiochemical properties, we calculated statistically

significant differences in the distribution of physicochemical

properties of amino acid residues surrounding methylation and

non-methylation sites based on the paired Welch’s t-test. As shown

in Figure 1, from 27 to +7 positions, the ratios of hydrophobic

amino acids around methylarginine were 2.3% to 29.2% higher

than those of non-methylarginine with P-value #3.59e-02 (see

Table S6). Especially for the +1 position, hydrophobic residues

around methylarginine account for 77.3%, about 29.2% higher

than those of non-methylarginine (P = 3.84e-09). From 27 to +7

positions, polar and negatively charged residues surrounding non-

methylarginine were 1.15% to 7.12% higher than those of

methylarginine (P,0.05). This analysis reveals that methylarginine

and non-methylarginine have distinct physiochemical properties.

In fact, some studies suggested that the arginine residue becomes

more hydrophobic due to addition of methyl groups and may

engage in more van der Waal interactions [8].

While compared with non-methyllysine, the ratios of four

different attributive residues around methyllysine have not

changed much, as shown in Figure 2, which indicates that the

incorporation of methyl groups to the lysine side chain changes the

physicochemical properties of the affected residues only slightly. It

is worth noting that the ratios of polar residues surrounding

methyllysine were 2.81% to 6.03% higher than those of non-

methyllysine from 25 to 22 positions (P#8.46e-04). Most

enzymes bind the methyllysine in a polar environment, which

resembles the ‘carbonyl cage’ of SET domains rather than the

hydrophobic pockets of chromo domain-related motifs [40]. The

methyl groups are coordinated by a set of electrostatic interactions

between polar residues of the protein and the trimethylammo-

nium. CH…O-H bonds form between oxygen on the enzyme’s

sidechains and methyl groups of the methyllysine [41]. These

interactions cumulatively position one of the methyl groups in the

vicinity of the iron for hydroxylation to occur [24]. All these

Figure 3. The mean value of normalized van der Waals volume (VDWV) of residues around methylation sites and non-methylation
sites.
doi:10.1371/journal.pone.0038772.g003
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researches strengthen the role of surrounding sites in the enzymes’

reorganization.

VDWV feature analysis. Figure 3 gives the mean values of

normalized van der Waals volume (VDWV) of residues around

methylation sites and non-methylation sites based on training

data. From 27 to +7 positions, the mean values of VDWV of

residues surrounding methylarginine were lower than those of

non-methylarginine, especially for the -1 and +1 position. Most of

P-values were less than 0.05 (see Table S7), indicating that there

was significant difference between the VDWV surrounding

methylarginine and that surrounding non-methylarginine. From

27 to 21 positions, there was obvious difference between the

VDWV surrounding methyllysine and that surrounding non-

methyllysine (P#1.24e-05). This reveals that the upstream residues

may have a significant influence on methyllysine.

PWAA feature analysis. PWAA feature reflects the position

information of residues surrounding methylation sites and non-

methylation sites. In order to analyze position specific properties,

we adopted WebLogo [42] to generate the graphical sequence

logo for the relative frequency of the corresponding amino acid

at each position around methylation and non-methylation sites.

As we can see from Figure 4, the methylated arginines (R) are

enriched in arginine-glycine (R–G) regions which are much

different from non-methylated arginines. Indeed, motif analysis

reveals many arginine methylation are associated with RGG/

RXG/RGX [43] or GXXR [20] motifs. The conserved residues

at specific sequence sites are under strong selective pressure and

therefore are always functional relevant. The type I PRMTs is

known to methylate a number of proteins that contain an RGG-

motif [44]. The repeated RGG-motif is known as a RNA-

binding motif [45], and this also supports the role of arginine

methylation in the regulation of mRNA binding [46]. In

contrast, no amino acids surrounding methylated lysines (K)

are obviously conserved in the current available data (Fig. 4).

Therefore, sequence profiles of the flanking regions of methy-

larginine are more conservative with higher specificity than those

of methyllysine.

ASA feature analysis. Figure 5 summarizes the average

accessible surface area (ASA) formed from the 15-mer methyl-

ation sites and the 15-mer non-methylation sites in the

constructed data set. Most of the methylation or non-methylation

sites (0 position) were located in the highly ASA, which was

consistent with those data reported in the literature [35]. The

average ASA of neighborhood residues were 23.09% to 39.01%

and 25.54% to 49.90% for methylarginine and methyllysine,

respectively. The fluctuant range of ASA of residues surrounding

methylation sites was bigger than that of non-methylation sites.

This implies that the methylation processing might have occurred

where the structural surroundings are relatively large variation

range. The mean ASA that surrounds the methylarginine

exceeded that around non-methylarginine, especially in the 26,

23, 0, +1, +4, +5 and +6 positions (P#5.21e-03, see Table S8).

Interestingly, the mean ASA around the methyllysine was slightly

below that around non-methyllysine, especially in the 26, 23,

21, +2 and +3 positions (P#3.06e-02). Generally speaking, the

ASA of residues around the methylation sites and non-

methylation sites have a little difference.

There were two possible reasons for limiting the ASA analysis

in the methylation: first, the negative sites were obtained as not

being previously experimentally identified; second, the ASA

values were predicted by RVP-Net server. Table S9 gives the

predicted ASA and experimental ASA of methylation sites with

known tertiary structure of protein data bank. There are some

differences between the predicted ASA and experimental ASA of

methylation sites. The experimental ASA of most methyllysine

are more than 30%. In the RVP-Net, the residue is exposed

when its ASA is more than 16%. Thus, it seems that it may be

important that the methyllysine need be solvent exposed. While

the experimental ASA of several methylarginine (eg. P53674,

R230 and R231) are lower than 12%. If the experimental ASA

Figure 4. Sequence logo plots of methylation sites and non-methylation sites represent normalized amino acid frequencies for ±7
amino acids.
doi:10.1371/journal.pone.0038772.g004
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Figure 5. The average accessible surface area (ASA) of residues around methylation sites and non-methylation sites.
doi:10.1371/journal.pone.0038772.g005

Table 1. The performance of models trained with various
features for methylarginine.

Training features Sn (%) Sp (%) Acc (%) MCC (%)

SPC 68.9661.52 92.7161.09 86.7860.56 63.7861.66

PWAA 60.8560.57 95.5160.50 86.8560.41 62.7661.16

ASA 51.9460.15 99.8160.15 87.8460.12 66.3760.45

VDWV 56.3461.22 98.9160.34 88.2460.54 67.0861.81

SPC+PWAA 71.6662.14 91.8760.60 86.8260.75 64.4062.55

SPC+ASA 65.6961.22 95.4660.69 88.0160.68 66.4261.93

PWAA+ASA 66.4262.37 92.1360.90 85.7061.02 60.7262.78

SPC+PWAA+ASA 74.0961.44 93.3561.45 88.5460.64 68.9361.88

SPC+PWAA+VDWV 74.5463.56 94.3161.17 89.3760.83 71.6963.79

SPC+PWAA+ASA+VDWV 80.7361.58 92.2861.24 89.3961.35 72.4561.73

The corresponding measurement was represented as the average
value6standard deviation. The window size was 15 and the ratio between
positive and negative samples was 1:3.
doi:10.1371/journal.pone.0038772.t001

Table 2. The performance of models trained with various
features for methyllysine.

Training features Sn (%) Sp (%) Acc (%) MCC (%)

SPC 61.6961.00 99.7960.16 90.3160.21 73.4460.60

PWAA 58.8860.65 99.4660.20 89.3660.27 70.5360.86

ASA 53.3163.04 98.3460.33 87.1460.82 63.4062.62

VDWV 54.3862.49 99.4860.35 88.2660.42 67.2761.16

SPC+PWAA 65.8861.77 99.7960.16 91.3560.43 76.4061.23

SPC+ASA 64.4463.32 99.0160.44 90.4060.76 73.4162.23

PWAA+ASA 63.0063.29 99.3460.35 90.3060.76 73.2062.21

SPC+PWAA+ASA 69.9462.78 99.1160.40 91.8560.64 77.5961.84

SPC+PWAA+VDWV 68.8863.74 99.8360.15 92.1361.19 78.5962.54

SPC+PWAA+ASA+VDWV 73.5662.08 99.1160.39 92.7560.25 80.1560.64

The corresponding measurement was represented as the average
value6standard deviation. The window size was 15 and the ratio between
positive and negative samples was 1:3.
doi:10.1371/journal.pone.0038772.t002

Prediction of Methylation Sites
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of most methylation sites were obtained, we could get a more

reliable conclusion.

Optimal feature set. When the window size was 15 and the

ratio between positive and negative samples was 1:3, the predictive

performance of models trained with various features for methy-

larginine and methyllysine are shown in Tables 1 and 2,

respectively. According to statistical comparison of sensitivity (see

Table S10), the model trained with SPC outperformed that

trained with PWAA, VDWV or ASA (P#2.21e-03), which was in

agreement with the results of above feature analysis. But in

general, the models trained with individual features could not

effectively distinguish methylation sites from non-methylation sites.

However, the predictive performance of the methyllysine model

trained with the combination of SPC and PWAA (SPC+PWAA) or

SPC, PWAA and ASA (SPC+PWAA+ASA) had some improve-

ments (P#2.48e-02). The predictive performance of the methy-

larginine model trained with the combination of SPC, PWAA and

ASA (SPC+PWAA+ASA) also had some improvements (P#6.92e-

04). Furthermore, both methylarginine and methyllysine, the

performance of the model trained with SPC+PWAA+A-

SA+VDWV had been remarkably enhanced (P,0.05). This

demonstrated that all four types of features contributed to

distinguishing between methylation sites and non-methylation

sites. There was a strong complementary effect among these

features. Henceforth, the combination of SPC, PWAA, ASA and

VDWV was selected as an optimal feature set to learn the

predictive model.

Moreover, we noticed that the performance of the predictive

models on arginine was much better than on lysine in Table 1 and

2. This observation agrees with the above feature analysis, which

the difference of the physiochemical properties between methy-

larginine and non-methylarginine is more obvious than that of

methyllysine and non-methyllysine, and the sequence pattern of

methylarginine is more conservative with higher specificity than

that of methyllysine.

Investigation of Window Sizes
For each methylation or non-methylation sites, its profile feature

and ASA feature were taken from a sequence fragment containing

the n nearest residues (spatially); thus, it is crucial to confirm the

appropriate window size and to realize its effects on the prediction

performance. The predictive performance of models trained with

different window sizes (9 to 19) are illustrated in Tables S11 and

S12, where training feature was SPC+PWAA+ASA+VDWV and

the ratio between positive and negative samples was 1:3. The

results showed that the window size had much more impact on the

Sn and MCC than on the Sp and Acc, especially for methylarginine.

Based on statistical comparison of sensitivity (see Table S13), there

were significant differences between the methylarginine model

with window size of 15 and those of 9, 13, 17, 19 (P#3.29e-03).

The methyllysine model with window size of 15 outperformed that

with window sizes of 9, 11, and 19 (P#1.25e-02). There was no

statistical difference among the methyllysine model with window

sizes of 13, 15 and 17 (P.1.44e-01). Based on the computational

efficiency and overall performance of the models trained with

different window length, 15-mer was adopted as the feasible

window size for the two methylation residues in this study.

Investigation of the Ratios between Positive Samples and
Negative Samples

As we can see from the Table 1 and 2, the Sp and Acc were

relatively stable on different features, whereas the Sn and MCC

fluctuated wildly, and it was relatively hard to get a higher

sensitivity when the ratio of positive samples to negative samples

was 1:3. This is because the positive examples are extremely few

and one incorrect prediction leads to a large decrease on

sensitivity, and a larger negative set would cause the trained

model preferentially to predict negative data correctly, driven by

the requirement to maximize accuracy. Thus, it is very important

to use a suitable ratio between positive samples and negative

samples to construct the prediction model. As shown in Tables S14

and S15, after the ratio between positive and negative samples

arrived at 1:5, the MCC of the predictive models using different

Table 3. Independent test results of PMeS.

Residue type
Number of positive
test data

Number of negative
test data Sn (%) Sp (%) Acc (%) MCC (%)

Arginine 27 27 85.1963.64 96.3063.25 90.7462.18 81.9963.95

Lysine 46 46 76.0961.90 95.6563.03 85.8762.49 73.1563.41

The corresponding measurement was represented as the average value6standard deviation.
doi:10.1371/journal.pone.0038772.t003

Table 4. Comparison of PMeS with MASA on the dataset adopted in MASA method.

Prediction
methods Residue type Training features Sn (%) Sp (%) Acc (%) MCC (%)

MASA Arginine AA+ASA 82.1 87.4 84.8 69.6(a)

Lysine AA+ASA 75.1 74.0 74.6 49.2(b)

PMeS(c) Arginine SPC+PWAA+ASA+VDWV 86.1862.43 90.2462.33 88.2161.29 76.6164.02

Lysine SPC+PWAA+ASA+VDWV 83.0963.14 99.2360.84 91.1661.69 83.4463.07

(a)The MCC for methylarginine in MASA [23] was 79.6%, which was the author’s mistake in calculation. We corrected it for 69.6% by the calculating formula of MCC.
(b)The MCC for methyllysine in MASA was 56.1%, which was the author’s mistake in calculation. We corrected it for 49.2% by the calculating formula of MCC. (c) The
corresponding measurement was represented as the average value6standard deviation. Abbreviation: AA, amino acid.
doi:10.1371/journal.pone.0038772.t004
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ratios of positive and negative samples decreased with increasing

the size of the negative set (P#2.38e-02, see Table S16). The best

performance of methylarginine models was obtained when the

ratio between positive and negative samples was 1:1 (P#1.42e-02).

The corresponding Sn, Sp, Acc and MCC were 92.45%, 93.18%,

92.82% and 85.69%, respectively. For methyllysine, when the

ratio between positive and negative samples were 1:1 and 1:3,

there was no statistical difference based on MCC comparison

(P = 5.43e-02). Except for 1:3, when the ratio between positive and

negative samples was 1:1 the best performance of methyllysine

models was obtained (P#1.85e-02), the Sn, Sp, Acc and MCC were

84.38%, 93.94%, 89.16% and 78.68%, respectively. Given the

narrowing of the gap between the sensitivity and the specificity, 1:1

was as the suitable ratio between positive samples and negative

samples to construct the optimal predictive model PMeS.

Investigation of the Robustness of PMeS
To test the robustness of our predictive model PMeS, the self-

consistency validation, leave-one-out validation and K-fold cross-

validation were calculated. Table S17 presents the three test

performances of methylarginine model. Based on MCC compar-

ison (see Table S18), there was no statistical difference among

different cross-validation (P$6.29e-01). Importantly, it is proposed

that the leave-one-out test might overfit in small samples, whereas

the K-fold cross-validation should do better [47]. However, we

observed that the leave-one-out test results were quite similar with

4-, 6-, 8-, 10-fold cross-validations, which demonstrated the

robustness and stability of the PMeS. One vital factor that could

result in misleadingly high prediction performance and possibly

influence prediction stability is sequence homology in training

dataset [48]. As described in the Data collection section, we

carried out homology reducing process on training dataset. This

data preprocessing might be helpful to enhance the robustness of

the PMeS.

Independent Test
Moreover, to validate our algorithm against other sources of

methylation data from experimental papers, we collected 46

experimental methyllysine sites and 27 experimental methylargi-

nine sites from scientific literatures to construct the independent

test sets (see Tables S19 and S20). None of independent test

proteins was included in the training dataset. As shown in Table 3,

besides the Sn, the other three measurements of independent test

for methylarginine were quite similar with those of training test

(P$1.12e-01, see Table S21). For methyllysine, the Sp of the

independent test was slightly higher than that of training test (P

= 2.40e-03), the other three measurements of independent test

were 3.29% to 8.29% lower than those of training test (P#5.50e-

03). If the performance of the independent test is much worse than

that of training test, then the trained model may be over-fitting for

the training data. Generally, the performance of the independent

test was just a little lower than those of training test, which was also

acceptable. Moreover, the negative sites were obtained as not

being previously experimentally identified, which might be a

possible reason for influencing the predictive results.

Comparisons with Existing Methods
In order to further evaluate the prediction performance of the

PMeS method objectively, we made comparisons with other

methylation predictor. Here the performance of the PMeS on the

dataset adopted in MASA [23] and Hu’s method [24] were

evaluated as shown in Tables 4 and 5, respectively. For

methyllysine, the four measurements in PMeS were 7.99% to

34.24% higher than those in MASA (P#4.18e-04, see Table S22).

For methylarginine, besides the Sp (P = 2.21e-01), the other three

measurements in PMeS were 3.41% to 7.01% higher than those in

MASA (P#3.52e-02). Compared with the training features

(AA+ASA) in MASA, our significant improvements can be

attributed to the adoption of the physicochemical properties of

residues, as elucidated in the above feature analysis, the

physicochemical properties are effective in identifying methylation

status. Similarly, for methyllysine, except the Sn (P = 4.70e-01, see

Table S23), the other three measurements in PMeS were 6.76% to

14.26% higher than those in Hu’s method (P,4.67e-02). For

methylarginine, the four measurements in PMeS were so much

better than those in Hu’s method (P,0.05). Compared with Hu’s

method, our improvements may come from SPC feature. In some

problems (e.g. HIV protease), where the training set could be not

completely representative of the test set, the sparse orthonormal

representation works very well [49]. In summary, the PMeS

outperformed MASA and Hu’s method, which justified the

effectiveness of SPC+PWAA+ASA+VDWV as feature for meth-

ylation sites prediction.

Conclusion
Methylation prediction methods in previous studies, such as

MeMo [21], BPB-PPMS [22] and MASA [23], have focused only

on orthogonal encoding scheme to represent protein sequence

information, where do not contain preferences on amino acids or

position information and physicochemical properties of residues.

However, the enhanced feature encoding scheme PMeS in this

study incorporated the amino acid sequence, position information,

physicochemical properties of residues with structural character-

istic to improve the prediction of protein methylation sites. Feature

analysis showed that methylation and non-methylation sites had

distinct physiochemical properties, and the SPC, VDWV, PWAA

and ASA features all contributed to the methylation prediction.

The cross-validation results demonstrated that PMeS achieved a

promising performance and outperformed other methylation

prediction tools. In addition, the PMeS had a greater robustness.

Table 5. Comparison of PMeS with Hu’s method on the dataset adopted in Hu’s method.

Prediction methods Residue typeTraining features Sn (%) Sp (%) Acc (%) MCC (%)

Hu’s method Arginine AAF+PSSM+SD 74.3962.21 74.1163.27 74.2561.46 48.5262.85

Lysine AAF+PSSM+SD 79.7361.66 74.5463.61 77.0261.95 54.2863.74

PMeS Arginine SPC+PWAA+ASA+VDWV 82.0362.53 84.4163.82 83.2263.06 66.5764.53

Lysine SPC+PWAA+ASA+VDWV 79.1162.98 88.4462.52 83.7861.48 68.5464.79

The corresponding measurement was represented as the average value6standard deviation. Abbreviation: AAF, amino acid factors; PSSM, position specific scoring
matrix; SD, structural disorder.
doi:10.1371/journal.pone.0038772.t005
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It can be anticipated that the PMeS might be useful to guide future

experiments needed to identify potential methylation sites in

proteins of interest. Datasets and Matlab code can be downloaded

from our website (http://bioinfo.ncu.edu.cn/inquiries_PMeS.

aspx).
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29. Rögnvaldsson T, You L, Garwicz D (2007) Bioinformatic approaches for

modeling the substrate specificity of HIV-1 protease: an overview. Expert Rev

Mol Diagn 7: 435–451.

30. Stallcup MR (2001) Role of protein methylation in chromatin remodeling and

transcriptional regulation. Oncogene 20: 3014–3020.

31. Teyssier C, Le Romancer M, Sentis S, Jalaguier S, Corbo L, et al. (2010) Protein

arginine methylation in estrogen signaling and estrogen-related cancers. Trends

Endocrin Met 21: 181–189.

32. Zhang ZH, Wang ZH, Zhang ZR, Wang YX (2006) A novel method for

apoptosis protein subcellular localization prediction combining encoding based

on grouped weight and support vector machine. Febs Letters 580: 6169–6174.

33. Rudbeck ME, Nilsson Lill SO, Barth A (2012) Influence of the molecular

environment on phosphorylated amino acid models: a density functional theory

study. J Phys Chem B 116: 2751–2757.

34. Fauchere JL, Charton M, Kier LB, Verloop A, Pliska V (1988) Amino acid side

chain parameters for correlation studies in biology and pharmacology.

Int J Peptide Protein Res 32: 269–278.

35. Pang CNI, Hayen A, Wilkins MR (2007) Surface accessibility of protein post-

translational modifications. J Proteome Res 6: 1833–1845.

36. Ahmad S, Gromiha MM, Sarai A (2003) Real value prediction of solvent

accessibility from amino acid sequence. Proteins 50: 629–635.

37. Ahmad S, Gromiha MM, Sarai A (2004) Analysis and prediction of DNA-

binding proteins and their binding residues based on composition, sequence and

structural information. Bioinformatics 20: 477–486.

38. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20: 273–297.

39. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines.

Software available at http://www.csie.ntu.edu.tw/̃cjlin/libsvm.

40. Xiao B, Wilson JR, Gamblin SJ (2003) SET domains and histone methylation.

Curr Opin Struct Biol 13: 699–705.

41. Couture JF, Collazo E, Ortiz-Tello PA, Brunzelle JS, Trievel RC (2007)

Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone

demethylase. Nat Struct Mol Biol 14: 689–695.

42. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: A sequence

logo generator. Genome Res 14: 1188–1190.

43. Wooderchak WL, Zang TZ, Zhou ZS, Acuna M, Tahara SM, et al. (2008)

Substrate profiling of PRMT1 reveals amino acid sequences that extend beyond

the "RGG" paradigm. Biochemistry 47: 9456–9466.

44. Pang C, Gasteiger E, Wilkins MR (2010) Identification of arginine- and lysine-

methylation in the proteome of Saccharomyces cerevisiae and its functional

implications. BMC Genomics 11: 92.

45. Kiledjian M, Dreyfuss G (1992) Primary structure and binding activity of the

hnRNPU protein: binding RNA through RGG box. EMBO J 11: 2655–2664.

46. Dolzhanskaya N, Merz G, Aletta JM, Denman RB (2006) Methylation regulates

the intracellular protein-protein and protein-RNA interactions of FMRP. J Cell

Sci 119: 1933–1946.

47. Dong LH, Yuan Y, Cai YD (2006) Using bagging classifier to predict protein

domain structural class. J Biomol Struct Dyn 24: 239–242.

48. Xu JL, He Y, Qiang BQ, Yuan JG, Peng XZ, et al. (2008) A novel method for

high accuracy sumoylation site prediction from protein sequences. BMC

Bioinformatics 9: 8.
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