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Abstract

Comprehensive protein interaction maps can complement genetic and biochemical experiments and allow the formulation
of new hypotheses to be tested in the system of interest. The computational analysis of the maps may help to focus on
interesting cases and thereby to appropriately prioritize the validation experiments. We show here that, by automatically
comparing and analyzing structurally similar regions of proteins of known structure interacting with a common partner, it is
possible to identify mutually exclusive interactions present in the maps with a sensitivity of 70% and a specificity higher
than 85% and that, in about three fourth of the correctly identified complexes, we also correctly recognize at least one
residue (five on average) belonging to the interaction interface. Given the present and continuously increasing number of
proteins of known structure, the requirement of the knowledge of the structure of the interacting proteins does not
substantially impact on the coverage of our strategy that can be estimated to be around 25%. We also introduce here the
Estrella server that embodies this strategy, is designed for users interested in validating specific hypotheses about the
functional role of a protein-protein interaction and it also allows access to pre-computed data for seven organisms.
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Introduction

The possibility of retrieving information about protein-protein

interactions by high throughput experiments has led to the

development of a number of methods for their analysis [1,2].

Complementing the information provided by a protein-protein

interaction (PPI) map with knowledge about the properties of the

interacting proteins [3–5] is an effective route to exploit the power

of high throughput data, add value to them and prioritize the

subsequent validation experiments.

Here we address the problem of distinguishing whether, when

more proteins interact with the same partner, they can do so

simultaneously, i.e. whether their interaction is mutually exclusive,

and show that this is possible by taking advantage of the

continuously increasing information available on the three-

dimensional structure of proteins. Most protein-protein interaction

map studies have not considered the structural and chemical

aspects of interactions; only a few authors have proposed to enrich

protein networks with structural information of proteins [6,7] for

example by taking advantage of the structural similarity between

the architecture of binding motifs in different proteins [8].

Here, we follow a rather different general strategy based on the

hypothesis that, if two proteins interact with the same region of a

common protein and therefore their interactions cannot be

simultaneous, they might share a common surface region

mediating the interaction.

To reliably identify these cases, we extract from a PPI all

instances (hereafter called sub-networks) where at least three

proteins of known structure interact with a common protein

partner (the hub), compare their surface residues to identify

structurally similar substructures comprising at least three residues

using the FunClust public server [9] and list the results together

with the level of structural and sequence similarity of the matching

residues.

We applied this strategy to the interactomes of seven organisms.

Using as a test set several (152) complexes of known structure

included in the sub-networks, we show that Estrella allows the

identification of mutually exclusive interactions with accuracy

higher than 77%. The procedure also allows us to predict which

residues are likely to be in the binding interface of the nodes, and

in a significant number of cases (between 63% and 75%) we

correctly identify at least one of them (5 on average) and this has

obvious implications for helping to reduce the search space in

docking procedures.

The percentage of sub-networks containing a sufficient number

of proteins of known structure in the PPI maps, and therefore the

coverage of the method, varies substantially for different organ-

isms, as it could be expected, however it does reach 42% for

human and more than 36% for yeast averaging at about 25%.

(Table 1). These figures are bound to increase with time both

thanks to the progress in experimental methods and, possibly, to

the increasing reliability of modeling techniques [10]. For this

reason, we also provide the method as an on-line tool (named

Estrella) that can automatically perform the analysis on user

provided datasets and permits access to the pre-computed results

described here.
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Results

Method description
Given a PPI, the Estrella procedure consists in several steps.

First the map is analyzed to retrieve sub-networks in which at least

three proteins of known structure interact with a central protein.

The structures of the proteins (identical sequences) are retrieved

from the PDB database [11]. When more than one structure exists

for a protein in the PDB, we selected the one with the best

resolution and best coverage The surface residues of the entire

proteins, including all their domains if any, are compared (all

against all) using FunClust [9] to retrieve sets of structurally similar

residues. The resulting sets are subsequently scored according to

the level of conservation of the superimposed amino acids.

We analyzed the publicly available PPI maps for seven

organisms [12] listed in Table 1 where we also show the

percentage of sub-networks that include more than three proteins

of known structure and can therefore be analyzed with our

strategy. Both the pre-computed data for these organisms and the

automatic pipeline for the analysis are publicly available at http://

bl210.caspur.it/ESTRELLA/home.php.

In total, we could analyze 8817 sub-networks and in 7310 of

them we could identify the presence of structurally similar regions

in proteins interacting with the hub, which are candidates for

being mutually exclusive interactions. For each sub-network we

obtain several cluster, i.e. putative groups of three or more proteins

sharing a structurally similar exposed region comprising at least

three amino acids, and rank them according to the number of

similar residues and the number of aligned pairs of structures.

Validation
To test the effectiveness of the method, we extracted all sub-

networks (152) where the experimentally determined structures of

the complexes between the hub protein and more than one of the

bona fide mutually exclusive interactors exists and used them to

evaluate the effectiveness of the method.

Let us assume that there is a sub-network where a central

protein interacts with M + N proteins where M are experimentally

known to interact with overlapping regions of the central protein

and N are not and that, for the same sub-network, Estrella

produces a cluster of m proteins predicted to establish mutually

exclusive interactions while n are not predicted to do so.

The True Positives (TP) are M \ m; the False Positives are m

\ N; the True Negatives are N \ n and the False Negatives are n

\ M. In other words, for each cluster, we count how many times

we detect the correct mutually exclusive interactions (True

Positives), how many times we include in the set of mutually

exclusive proteins some that are not (False Positives), how many

times we miss a mutually exclusive interaction (False Negatives)

and, finally how many times we correctly predict that a protein of

the sub-network does not bind to the same surface of the hub as

the others in the sub-network.

Figure 1 schematizes the definition of these parameters in a

more complex case.

As it can be appreciated from Table 2 and Table S1, the

method has an average accuracy of about 77%, with a higher

specificity (85%) than sensitivity (about 70%) when the results are

averaged over all detected clusters. The sensitivity increases when

only the first ranking cluster is considered at the expense of a 20%

decrease in specificity. The overall accuracy is very similar in the

two cases.

Clearly, while the similarities that we detect indicate that the

interactions can be mutually exclusive, we cannot exclude that

other proteins binding to the same hub protein also cannot do so

simultaneously since they could impair each other binding by

steric hindrance.

It should also be mentioned (Table 3) that rarely we fail to

identify more than one partner (less than 0.1% of the cases), while

more often our prediction includes one protein that in reality does

not establish a mutually exclusive interaction.

The identification of the common substructures often provides a

correct prediction of the node binding sites as well. As shown in

Table 3, we correctly identify 26% of the residues that are indeed

buried in the complex interface on average. The figure raises to

31% if only the first ranking cluster is considered. Furthermore, we

are able to correctly predict at least one interface residue in 63% of

the cases (75% for the first ranking clusters) (Table 4). This is

relevant, in our opinion, since the knowledge of which residues are

likely to mediate an interaction can be used as a guide for docking

algorithms to reduce the space that needs to be explored to identify

the optimal interacting surfaces.

Database and server
As mentioned above, the results for the seven analysed

interactomes obtained from iRefIndex [12] are stored in the

Estrella database available at http://bl210.caspur.it/

ESTRELLA/home.php.

The database can be searched both with an organism and a

protein name (using a number of database identifiers, see

Methods) thus allowing the user to select a sub-network of interest,

Table 1. Data used in the analysis and stored in the Estrella database.

Number of sub-networks containing: HS SC DM MM CE RN EC Total

All proteins 12294 6023 9570 3052 4934 838 695 37406

At least three node proteins of known structure. 5176 3971 156 13 65 78 171 9630

At least three non-redundant node proteins of
known structure.

4598 3796 137 46 12 165 63 8817

Complexes of known structure involving the hub
protein and least three node proteins.

81 62 0 1 0 1 7 152

Mutually exclusive interactions in complexes of
known structure involving the hub protein and
their node proteins.

64 59 0 1 0 1 3 128

HS: Homo sapiens, SC: Saccharomices cerevisiae, DM: Drosophila melanogaster, MM: Mus musculus, CE: Caenorhabditis elegans, RN: Rattus norvegicus, EC: Escherichia
Coli.
The last two rows show the data used for validation.
doi:10.1371/journal.pone.0038765.t001
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in which case she or he is directed to a page containing general

information about the proteins in the sub-network and links to

several other databases (CATH [13], PDB [14], UniProt [15],

iRefIndex [12], SCOP [16], Genbank [17] and Gene Ontology

[18]).

The sub-network is visualized in an interactive window [19]

where nodes are proteins (those with a known structure are

represented with a picture of their selected PDB chain) and edges

are interactions. The display (and subsequent list of results) can be

restricted to non-redundant proteins (defined as proteins sharing

less than 30% sequence identity). The local structure similarity

results are shown together with several information such as the

RMSD between the residues identified in the putative common

interface, the score obtained by the FunClust tool [9] (see

Methods), the conservation of the interacting residues, the number

of proteins and the GDT_TS value [20]. The FunClust score is

used to rank the results, a Jmol applet [21] shows the best local

structure superposition for the selected cluster and the results can

be downloaded in tab-delimited format (Figure 2).

Figure 1. Exemplification of the way we compute the statistical parameters. In the left upper part of the figure we show the experimentally
known situation where A1, A2 and A3 interact with the same region of the hub, the interaction of B1, B2 and B3 with the hub is also mutually
exclusive, although they bind to a region different from that of the As. C1 binds to a region different from both the A and B binding sites. The
example represents a possible set of sub-networks predicted as mutually exclusive by Estrella and the corresponding values for FP, TP, TN, FN,
specificity (Sp) and sensitivity (Sn). The overall values for the specificity and sensitivity are computed as the average of the values for each identified
cluster. In Cluster 1, the TP are A1, A2 and A3, the TN are B2 and B3, the FP are B1 and C1 and there are no FN. In Cluster 2, the TP are B2 and B3, the
TN are A2, A3 and C1, the FP is A1 and the FN is B1. In Cluster 3, the TP are A1 and A3, the TN are B1, B2 and B3, the FP is C1 and the FN is A2. The
overall values for the specificity and sensitivity are computed as the average of the values for each identified cluster.
doi:10.1371/journal.pone.0038765.g001

Table 2. Statistical parameters for the Estrella method applied to the sub-networks where the experimental structures of
complexes between the hub protein and at least two partners are available.

All clusters First cluster

Correctly identified mutually exclusive node proteins (TP) 4428 260

Incorrectly identified mutually exclusive node proteins (FP) 878 95

Correctly identified non mutually exclusive node proteins (TN) 5162 57

Incorrectly identified non mutually exclusive node proteins (FN) 1898 36

Specificity = 100*TN/(TN+FP) 85.5 63

Sensitivity = 100*TP/(TP+FN) 70.0 88

Positive Predictive value = 100*TP/(TP+FP) 83.4 82

Negative Predictive Value = 100*TN/(TN+FN) 73.1 72

Accuracy = 100* (TP+TN)/(TP+FP+FN+TN) 77.6 79

Data are computed as the average of all clusters for each sub-network (first column) and only considering the first ranking clusters (second column).
doi:10.1371/journal.pone.0038765.t002
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The complete automatic pipeline for generating the data can be

accessed through Estrella. This permits to add a new interaction to

an existing sub-network in the database, or to submit a completely

new interaction sub-network. In these cases, the same analysis used

to obtain the database is performed taking into account the new

user-provided information (the results are not stored in the

publicly available database). It is also possible to replace the

coordinates for a protein included in the database, if a new

structure becomes available.

Discussion

The combination of the results of high throughput experiments

and of their computational analysis is undoubtedly a powerful

strategy for transforming the ever-growing amount of information

that we are accumulating into knowledge.

Protein-protein interaction maps can be effectively used to

transfer functional annotation from one protein to its interacting

partners. The challenge consists in understanding at which level of

granularity can the annotation be transferred, which also depends

upon the mode in which the proteins interact. To this end, it is

relevant to understand which interactions are mutually exclusive

and which are the specific regions involved in the recognition

process. To help solving these issues we developed and made

available a system that we believe can effectively speed up the

process of understanding the role of the gene products in a

biological system.

In this paper we describe the implementation and the results of

the strategy for identifying mutually exclusive interactions in a

protein-protein interaction map based on the hypothesis that, if

two or more proteins interact with the same region of a common

partner protein, they might share similarity in their binding region.

We tested the idea using seven different interactomes from

different organisms. The data are stored in a publicly available

database, which we hope will be useful to life scientists. The

method provides very satisfactorily results, especially since it has a

rather high specificity (above 85%), thereby ensuring that scientists

interested in a given biological process can retrieve essentially all of

the bona fide mutually exclusive interactions in order to further

validate the prediction. Equally important is, in our view, that only

in a tiny fraction of the cases (less than 0.1%) the method

incorrectly identifies more than one protein as part of a mutually

exclusive interaction in a sub-network, and this implies that the

number of necessary experiments to validate the results is greatly

reduced.

When the simultaneous interaction of more than one protein

with a common partner is correctly detected, the residues

identified to be structurally similar among the nodes are very

often the correct interface residues, and this implies that they can

serve as constraints in docking experiments to reduce the search

space.

Another observation that can be made from the results

presented here is that the coverage of experimentally determined

structures starts to be sufficient to allow their use in combination

with different types of high throughput experiments.

We believe that the ever growing number of experimentally

determined structures and of protein-protein interaction experi-

ments, combined with the strategy presented here, that only

requires the structure of the interaction partners and not of their

complexes, also implemented in a completely automatic fashion

and publicly accessible, is likely to add significant value to data

produced in high-throughput experiments.

Materials and Methods

Protein-protein interaction data were retrieved from iRefIndex

release 7.0 (May 18th 2010) [12], a non-redundant and updated

database, that provides an index of protein interactions available

in several primary interaction databases, i.e. BIND [22], BioGRID

[23], CORUM [24], DIP [25], HPRD [26], IntAct [27], MINT

[28], MPact [29], MPPI [30] and OPHID [31]. Among the

available interactomes, we selected those of the Homo sapiens, Mus

musculus, Rattus norvegicus, Drosophila melanogaster, Caenorabditis elegans,

Escherichia coli and Saccharomyces cerevisiae.

From these, we selected binary interactions with both partners

annotated in the UniProt database [32] and those of known

structure contained in the PDB database [14].

We define a sub-network as an interaction where a central

protein is directly connected to at least three partners. To allow the

user to select non-redundant interactions, we run PISCES [33] on

our dataset and define as redundant those pairs of proteins sharing

more than 30% sequence identity.

Solvent exposed residues were defined as those with more than

50% exposed surface with respect to the computed accessibility of

the same residue type in an extended ALA-x-ALA tripeptide.

Solvent accessibility was calculated using NACCESS using the

isolated protein chains.

Table 3. Number of correctly identified interface residues in the correctly identified complexes.

All clusters First ranking cluster

Number of correctly predicted common interfaces complexes 1739 89

Total number of residues at the interface 34306 976

Number of correctly identified interface residues 9192 300

Number of common interfaces where at least one interface residue is correctly identified 1101 67

doi:10.1371/journal.pone.0038765.t003

Table 4. Results of the Estrella procedure applied to sub-
networks for which the experimental structure of the
complexes is known.

Clusters %

With more than one missing partner 8.72

With one missing partner 40.4

Perfectly defined 50.5

With one extra partner 0.23

With more than one extra partner 0.06

Data are shown for all clusters.
doi:10.1371/journal.pone.0038765.t004
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Structural similarity among solvent exposed residues of proteins

interacting with the same hub was computed using FunClust [9] a

publicly available tool that, given a set of protein structures,

identifies structurally similar sets of residues within a predeter-

mined threshold.

FunClust consists of a two-step procedure. In the first step, the

Query3D algorithm (Ausiello, et al., 2005) identifies all the

pairwise similarities among the chains within the sub-network.

Query3D is a structure comparison method that searches for the

largest subset of matching amino acids between two protein

chains, regardless of whether hey are continuous in the chain, and

only requiring them to be neighbors in space. It also takes into

account their structural and biochemical similarity (according the

PAM250 similarity matrix [34].

Residues are considered structurally similar when the RMSD of

their C-alpha atom and of the geometric average of the side-chain

atom coordinates is below 2.1 Å. The threshold for sequence

similarity similarity according to the PAM250 matrix is 1.2. In the

second step a clustering algorithm represents all the pairwise

similarities as nodes of a graph, connecting them when the

corresponding chains also share a group similarity, therefore

identifying clusters of chains with a local structural similarity as

connected paths in the graph. The clusters are sorted by an

approximate significance score, called FunClust score, calculated

by multiplying the number of residues in the group similarity by

the number of chains belonging to the cluster [9]. In Estrella, the

obtained sets are re-sorted after superposition using LGA [26] and

the conservation score according to the BLOSUM 30 matrix [35].

Figure 2. The output page of Estrella.
doi:10.1371/journal.pone.0038765.g002
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The comparison between the predicted and experimental the

results was performed using the PIA tool, included in PSAIA [36].

An interface is considered correctly predicted if Estrella identifies

at least three residues that are part of the interface as defined by

PIA.

The Estrella server is implemented using PHP and MySQL.

Supporting Information

Table S1 Results of the analysis of the seven inter-
actomes listed in Table 1. The table lists the SwissProt code of

the hub protein, the PDB codes of the proteins forming the known

complex and those identified by the Estrella procedure, the

number of correctly identified and incorrectly identified residues.

Data can be further analyzed by accessing the Estrella web server.

(XLS)
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