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Abstract

Background: Multiple sources of influenza surveillance data are becoming more available; however integration of these
data streams for situational awareness of influenza activity is less explored.

Methods and Results: We applied multivariate time-series methods to sentinel outpatient and school absenteeism
surveillance data in Hong Kong during 2004–2009. School absenteeism data and outpatient surveillance data experienced
interruptions due to school holidays and changes in public health guidelines during the pandemic, including school
closures and the establishment of special designated flu clinics, which in turn provided ‘drop-in’ fever counts surveillance
data. A multivariate dynamic linear model was used to monitor influenza activity throughout epidemics based on all
available data. The inferred level followed influenza activity closely at different times, while the inferred trend was less
competent with low influenza activity. Correlations between inferred level and trend from the multivariate model and
reference influenza activity, measured by the product of weekly laboratory influenza detection rates and weekly general
practitioner influenza-like illness consultation rates, were calculated and compared with those from univariate models. Over
the whole study period, there was a significantly higher correlation (r= 0.82, p#0.02) for the inferred trend based on the
multivariate model compared to other univariate models, while the inferred trend from the multivariate model performed
as well as the best univariate model in the pre-pandemic and the pandemic period. The inferred trend and level from the
multivariate model was able to match, if not outperform, the best univariate model albeit with missing data plus drop-in
and drop-out of different surveillance data streams. An overall influenza index combining level and trend was constructed
to demonstrate another potential use of the method.

Conclusions: Our results demonstrate the potential use of multiple streams of influenza surveillance data to promote
situational awareness about the level and trend of seasonal and pandemic influenza activity.

Citation: Lau EHY, Cheng CKY, Ip DKM, Cowling BJ (2012) Situational Awareness of Influenza Activity Based on Multiple Streams of Surveillance Data Using
Multivariate Dynamic Linear Model. PLoS ONE 7(5): e38346. doi:10.1371/journal.pone.0038346

Editor: Cécile Viboud, National Institutes of Health, United States of America

Received December 30, 2011; Accepted May 3, 2012; Published May 31, 2012

Copyright: � 2012 Lau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was in part funded by the Research Fund for the Control of Infectious Diseases of the Food and Health Bureau of the Hong Kong Special
Administrative Region Government (grant no. 11101092), the Area of Excellence Scheme of the University Grants Committee (grant no. AoE/M–12/06), and the
Harvard Center for Communicable Disease Dynamics from the National Institute of General Medical Sciences (grant number U54 GM088558). The content is solely
the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National
Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ehylau@hku.hk

Introduction

Many public health agencies routinely monitor influenza virus

activity to facilitate situational awareness of the degree of disease

activity in the community [1,2,3]. The importance of situational

awareness has recently received more attention in biosurveillance

[4]. Whereas one of the traditional uses of surveillance data is to

identify peaks in disease incidence, the concept of situational

awareness broadens this perspective so that surveillance data can

be used to monitor disease trends in a range of situations. Much

research has been done on the development of novel systems to

complement traditional sources of surveillance data [5,6] such as

laboratory detections and sentinel influenza-like illness (ILI)

surveillance in outpatients and inpatients. Recent examples

include school absenteeism [7], online search counts [6] and

over-the-counter medication sales [8]. Many studies have explored

the choices of algorithms for sensitive, specific and timely detection

of the start of a peak period of influenza activity in different

settings [9,10,11], and shown that integration of multiple streams

of surveillance data can improve performance [12,13,14]. Also,

once entering the epidemic period, detection of the start of a peak

becomes irrelevant and situation awareness of influenza activity

will be more important for subsequent control measures. Few

studies have explored the use of surveillance data to quantify levels

and trends in disease activity through time thereby providing

empirical support to situational awareness, particularly when

multiple streams of data are available.

During the 2009 influenza pandemic, situational awareness was

hindered by the introduction of new ‘drop-in’ surveillance systems

and potential changes in behavior in pre-existing systems [15]. In
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this study we describe a multivariate statistical approach that

permits the integration of multiple streams of influenza surveil-

lance data to describe overall influenza activity in a single

measure. We illustrate the performance of the model on past

influenza seasons in Hong Kong, and show how a drop-in system

during the 2009 pandemic could easily be incorporated to

maintain good situational awareness of influenza activity.

Methods

Influenza surveillance data
The local Department of Health conducts influenza-like illness

surveillance among a network of 50 private-sector sentinel general

practitioners (GP) and 62 public-sector sentinel general outpatient

clinics (GOPC) who report weekly proportion of outpatients fitting

the surveillance definition of ILI (fever .38.5uC plus cough and/

or sore throat [10,12].) In February 2008 we established a school

absenteeism monitoring system, with daily automated reporting of

the proportion of students absent in 50 schools across the territory

[16]. A limitation of school absenteeism data is the interruptions

during regular school holidays, as well as school closures

implemented to control influenza in 2008 and 2009 [17,18].

The GOPC surveillance data were interrupted between mid-June

2009 and May 2010 when 8 designated flu clinics (DFCs) based

within the GOPC sites were activated in place of regular GOPC

services to manage the anticipated surge in patients during the

pandemic. Sentinel outpatient clinics as well as other public and

private outpatient clinics and hospitals routinely submit respiratory

specimens from outpatients and inpatients to the Hong Kong

Public Health Laboratory for surveillance and diagnostic purposes.

Weekly data from the Public Health Laboratory on the proportion

of submitted specimens with influenza virus detections reported by

the Centre for Health Protection were available since January

1998. The product of the laboratory influenza detection rate and

the GP ILI consultation rate was used as the reference standard

indicator of influenza virus activity, rather than the laboratory

data alone which suffer from denominator dilution during periods

of non-influenza epidemics, and the GP ILI data alone which

suffer from numerator dilution because not all ILI episodes are

associated with influenza. Using the product of laboratory

detection rates and ILI consultation rates can account for these

issues and provide a more reliable measure of underlying influenza

activity.

Multivariate dynamic linear model
We fitted a multivariate dynamic linear time series model [19]

to the three routine surveillance data streams, plus the drop-in

DFC data available during the pandemic. Influenza isolation data

was not available before 2004, but historical ILI data was available

since 1998 and was used to parameterize the dynamic linear

model. This is particularly important for obtaining reliable

estimates in the initial period of 2004. For situational awareness,

it is important to capture both the level and trend of the influenza

activity to inform health planning and management. Hence we

adopted a local linear specification which allows estimation of both

aspects. We assumed that all data streams followed one underlying

latent process with linear trend representing the (unobservable)

true influenza activity. Thus each of the four streams contributed

to estimation of the underlying level of influenza activity, and the

underlying trend in activity. The influenza isolation rate was not

included in the model as its availability is usually too late for the

purpose of situational awareness. In this setting, the model was

constructed under an unsupervised learning approach. The

multivariate dynamic linear model is specified by the equations:

yt~Fhtzvt vt*N 0,V tð Þ,

ht~ht{1zgt{1zv1t v1t*N 0,s2
h

� �
,

gt~gt{1zv2t v2t*N 0,s2
g

� �
,

where yt are the observed surveillance data, F is the design matrix,

ht and gt are the level and trend of the latent process at time t, nt is

the observation error and w1t and w2t are the evolution error.

Observation errors are assumed to be independent across data

streams. Further details of the model are described in Text S1 and

S2.

To demonstrate potential use of estimated level and trend, each

were scaled to the range [0, 1] and averaged to create an overall

influenza activity index reflecting influenza activity (details in Text

S1). The index therefore takes higher values when activity is

currently high or is increasing, and lower values when activity is

low or decreasing. The index reflects two aspects of influenza

activity in terms of level and trend which related to prevalence and

transmissibility. However, optimization of the index is not pursued

here. Missing data in the GOPC and school absenteeism data can

be handled easily under the framework of the dynamic linear

model [19]. All statistical analyses were performed in R version

2.12.0 (R Development Core Team, Vienna, Austria).

Assessment of model performance
To assess the performance of the model in the context of

situational awareness of influenza activity, we compared the

estimated inferred influenza level and trend with the laboratory

surveillance data in the same week, which is different from

assessment of peak detection performance. More specifically, we

assessed the correlation between inferred influenza level derived

from the multivariate model and reference influenza activity as a

measure of the ability to monitor influenza activity in real time.

The correlations between inferred trends from the multivariate

model and the trend in the reference influenza activity, estimated

by the change between the subsequent and the preceding weeks,

were also calculated. To compare the performance between the

multivariate and univariate models, these measures were also

calculated for each individual surveillance data stream and were

statistically tested against those from the multivariate model.

Distribution of the inferred influenza trend and level will also be

plotted under different combinations of the level (low/medium/

high) and trend (decreasing/stable/increasing) of the underlying

influenza activity representing different phases of influenza

epidemics.

Results

For each week since 2004, we estimated the latent level and

trend, and calculated the overall influenza activity index based on

all available GOPC, GP ILI, school absenteeism and DFC fever

counts surveillance based on data available up to that week. The

data along with the scaled inferred influenza level and trend from

the dynamic linear model, and the reference influenza activity are

shown in Figure 1. Superimposed strips represent the overall

influenza activity index, with darker colors representing higher

Situational Awareness of Influenza Activity
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Figure 1. Surveillance data on influenza-like illness consultation rates in public General Outpatient Clinics (GOPC) and private general
practitioners (GP), school absenteeism rates, and number of consultations with patients with febrile illness in Designated Flu Clinics which
operated during the pandemic period; the inferred influenza level under the dynamic linear model based on the surveillance data streams
and scaled to the range of the influenza activity proxy measure (product of laboratory influenza isolation rate and GP ILI rate); the inferred
trend of influenza activity under the same model, scaled to the range [21, 1]; the laboratory influenza detection rates from January 2004
through December 2009. The inferred influenza activity index was superimposed and color-coded from white (low) to red (high) in each panel. The
vertical dashed line indicates the start of the pandemic period.
doi:10.1371/journal.pone.0038346.g001
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values of the index suggesting greater activity at that point or in

the short-term future. The median of the index was 0.21 (range:

0.01–0.94) in the whole study period and 0.60 (range: 0.17–0.94)

when influenza activity is greater than 2%. In general the index

reflected activity and was able to capture most of the peaks in the

laboratory data, while generating some false signals (e.g. 2005

autumn).

We fitted dynamic linear models to the individual surveillance

data streams, and estimated the correlation of these individual

models versus influenza activity. We compared this with the

correlation between the multivariate models using all available

data versus influenza activity (Table 1). While the multivariate

model captured the general pattern of influenza activity (Figure 1),

it could not replicate the sharp peak in the influenza activity as

shown by the moderate correlations (Table 1). However it

significantly outperformed univariate models in capturing the

underlying level of influenza activity over the study period (Table

S1). The inferred influenza trend from the multivariate models

correlated moderately with the change in influenza activity for the

whole period (Table 2). It also reflected the change in influenza

activity as good as the best of the other surveillance data streams in

each period (Table 2 & Table S2). Figure 2 and 3 show the

distributions of the inferred influenza level and trend under

different patterns of influenza activity. While the inferred influenza

trend partially captured the underlying trend, especially when

influenza activity is low, the inferred influenza level followed the

underlying influenza activity level closely.

Discussion

We have demonstrated the use of a multivariate method to

integrate information from multiple streams of influenza surveil-

lance data to improve situational awareness of the current level of

influenza activity, and how a combined use of both the inferred

influenza level and trend or an integrated index that can be

potentially used to indicate overall influenza activity currently.

Our study showed the advantage of a multivariate model-based

approach especially if some surveillance data streams are

Table 1. Correlations of GOPC, GP ILI rate, school absenteeism, DFC fever counts and inferred influenza level from the dynamic
linear model with the influenza activity* in pre-pandemic, pandemic and the whole period, January 2004–December 2009.

correlation{ with influenza activity

surveillance data
pre-pandemic period (Jan
2004–May 2009)

pandemic period (mid-Jun–
Dec 2009)

whole period (Jan 2004–Dec
2009)

1. GOPC ILI{ 0.70 - 0.70

2. GP ILI 0.67 0.93 0.77

3. School absenteeism1 0.32 0.67 0.61

4. DFC fever counts" - 0.51 -

Inferred influenza level from model based on 1+2+3 0.75 0.93 0.82

Inferred influenza level from 1+2+3+4 - 0.94 0.82

DFC designated fever clinic; GOPC general outpatient clinic; GP general practitioner; ILI influenza-like-illness.
*Influenza activity measured by GP ILI consultation rate6laboratory influenza isolation rate.
{Correlations between surveillance data and laboratory isolation rate were calculated by fitting a univariate dynamic linear model to each data stream, and an overall
multivariate model to all data streams.
{GOPC data were interrupted during the pandemic period due to the opening of designated flu clinics.
1School absenteeism data were occasionally interrupted by school holidays or school closures. Correlations were calculated excluding data during the summer holidays.
"8 designated fever clinics were activated in place of GOPCs to treat outpatients with influenza-like illness from mid-June 2009 to May 2010.
doi:10.1371/journal.pone.0038346.t001

Table 2. Comparison of inferred trend from individual surveillance data and from model based on GOPC ILI rate, GP ILI rate and
school absenteeism rate with changes in influenza activity*.

correlation{ with % change in influenza activity between the subsequent and preceding week

surveillance data
pre-pandemic period
(Jan 2004–May 2009)

pandemic period
(mid-Jun–Dec 2009)

whole period
(Jan 2004–Dec 2009)

1. GOPC ILI{ 0.42 - 0.42

2. GP ILI 0.30 0.11 0.24

3. School absenteeism1 0.45 20.13 0.24

Inferred influenza trend from model based on 1+2+3 0.42 0.28 0.38

Inferred influenza trend from 1+2+3+DFC fever counts - 0.29 0.38

DFC, designated fever clinic; GOPC, general outpatient clinic; GP, general practitioner; ILI, influenza-like-illness.
*Influenza activity measured by GP ILI consultation rate6laboratory influenza isolation rate.
{Correlations between surveillance data and the log ratios were calculated by fitting a univariate dynamic linear model to each data stream, and an overall multivariate
model to all data streams. DFC was excluded from the analysis due to insufficient data for estimation of the inferred trend.
{GOPC data were interrupted during the pandemic period due to the opening of designated flu clinics.
1School absenteeism data were occasionally interrupted by school holidays or school closures. Data during the summer holidays were excluded.
doi:10.1371/journal.pone.0038346.t002
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Figure 3. Box-plot of inferred influenza level and trend based on multivariate dynamic linear model utilizing four surveillance data
streams including influenza-like illness consultation rates in public General Outpatient Clinics (GOPC) and private general
practitioners (GP), school absenteeism rates, and number of consultations with patients with febrile illness in Designated Flu
Clinics, under different patterns of influenza activity. Influenza activity was defined as low, medium or high if it is lower than 0.4%, between
0.4–2.5%, or higher than 2.5% respectively, defined as decreasing, stable or increasing if the percentage change between the following and
preceding week is lower than 240%, between 240–40% or higher than 40% respectively. The inferred influenza level was scaled to the range of the
influenza activity proxy measure (product of laboratory influenza isolation rate and GP ILI rate), while the inferred trend of influenza activity under the
same model was scaled to the range [21, 1].
doi:10.1371/journal.pone.0038346.g003

Figure 2. Box-plot of inferred influenza level and trend based on multivariate dynamic linear model utilizing four surveillance data
streams including influenza-like illness consultation rates in public General Outpatient Clinics (GOPC) and private general
practitioners (GP), school absenteeism rates, and number of consultations with patients with febrile illness in Designated Flu
Clinics, under different patterns of influenza activity. Influenza activity was defined as low, medium or high if it is lower than 0.5%, between
0.5–2%, or higher than 2% respectively, defined as decreasing, stable or increasing if the percentage change between the following and preceding
week is lower than 230%, between 230–30% or higher than 30% respectively. The inferred influenza level was scaled to the range of the influenza
activity proxy measure (product of laboratory influenza isolation rate and GP ILI rate), while the inferred trend of influenza activity under the same
model was scaled to the range [21, 1].
doi:10.1371/journal.pone.0038346.g002
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interrupted or supplemented by additional systems during certain

critical periods such as the 2009 influenza pandemic. During the

whole study period, the estimated influenza level from the

multivariate model showed higher correlation with influenza

activity and the estimated influenza trend stably reflected the

change in influenza activity as good as the best individual

surveillance data streams from which it was derived (Table 1 &

2). In both the pre-pandemic and pandemic period, the inferred

trend and level from the multivariate model was able to match, if

not outperform, the best individual surveillance data albeit with

missing plus drop-in and drop-out of different surveillance data

streams. The multivariate time series approach can flexibly

incorporate data from drop-in surveillance systems to improve

performance and maintain situational awareness. Moreover, the

dynamic linear model can handle missing data in a straightforward

manner while allowing for serial autocorrelation and short-term or

longer-term trends (details in Text S1). If particular surveillance

systems were thought to provide information with higher quality,

the relative importance of individual data streams could also be

adjusted in the dynamic linear model by re-weighting different

data streams.

A potential caveat of the method is that historical data are

needed to parameterize the model prior to estimation of the

overall influenza activity. The statistical time series model may not

be able to fully describe the evolution of an infectious disease such

as influenza. In this study we did not try to optimize the

parameters for combining the level and trend into the overall

influenza index nor validate the index with respect to an objective

function. The level or trend may have different importance in

various contexts which can be easily adjusted according to specific

purpose, and compared to the simple average there may be

superior combinations of these two parameters to provide a single

prospective estimate of the degree of influenza activity currently

and in the short-term future. We used the product of laboratory

influenza isolation rate and GP ILI rate as a proxy measure for the

reference influenza activity, which may partly explain the high

correlation between GP ILI and influenza activity during the

pandemic with particularly high proportion of medical consulta-

tions due to influenza. While we have taken into account the

elevated ILI consultations during the pandemic which may have

affected the laboratory isolation rate, change in healthcare

consultation behavior was not accounted for due to limited data.
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