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Abstract

The vast majority of animals mate more or less promiscuously. A few mammals, including humans, utilize more restrained
mating strategies that entail a longer term affiliation with a single mating partner. Such pair bonding mating strategies have
been resistant to genetic analysis because of a lack of suitable model organisms. Prairie voles are small mouse-like rodents
that form enduring pair bonds in the wild as well as in the laboratory, and consequently they have been used widely to
study social bonding behavior. The lack of targeted genetic approaches in this species however has restricted the study of
the molecular and neural circuit basis of pair bonds. As a first step in rendering the prairie vole amenable to reverse
genetics, we have generated induced pluripotent stem cell (IPSC) lines from prairie vole fibroblasts using retroviral
transduction of reprogramming factors. These IPSC lines display the cellular and molecular hallmarks of IPSC cells from other
organisms, including mice and humans. Moreover, the prairie vole IPSC lines have pluripotent differentiation potential since
they can give rise to all three germ layers in tissue culture and in vivo. These IPSC lines can now be used to develop
conditions that facilitate homologous recombination and eventually the generation of prairie voles bearing targeted
genetic modifications to study the molecular and neural basis of pair bond formation.
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Introduction

Most animals exhibit transient affiliative behaviors with other

members of their species. In a few mammalian species, such

interactions lead to the formation of enduring social attachments

that, in humans, include pair bonds between mating partners,

biparental care of young, and kinships based on family or shared

interests [1–3]. The traditional genetic model organisms, including

mice, zebrafish, fruitflies, and nematodes do not form social

attachments, thereby precluding molecular genetic approaches to

study these striking behaviors [4,5]. By contrast, prairie voles

(Microtus ochrogaster) exhibit many forms of social attachment that

resemble those observed in humans [6]. These rodents form

socially monogamous pair bonds between mating partners who

also exhibit biparental care of young, incest avoidance, and

frequent aggressive rejection of other mating partners. In addition,

experimental separation of pair bonded individuals elicits physi-

ological signs of stress and elevated anxiety-like behaviors [7].

The behavioral analogy between social attachments in prairie

voles and humans appears to extend to the underlying regulatory

mechanisms. The neuropeptide hormones oxytocin and vasopres-

sin mediate pair bonding behaviors in voles, and these hormones

have also been implicated in social attachment-type behaviors in

humans [6,8–15]. Thus, prairie voles provide a valuable model to

study the molecular and neural circuit basis of pair bonding and

other forms of social attachment. Reverse genetic approaches to

modify genetic loci in a targeted fashion would greatly facilitate the

study of the molecular and neural circuit basis of pair bonding and

its associated affiliative behaviors in prairie voles.

Targeted genetic modification in mammalian systems requires

the generation of germline competent pluripotent stem cells that

can be stably maintained in tissue culture and engineered via

homologous recombination [16]. Therefore, as an initial step

towards developing reverse genetic engineering in prairie voles, we

have employed a modified version of the four factor reprogram-

ming paradigm to generate eleven IPSC lines that bear the

cellular, molecular, and differentiation signature of germline

competent stem cells [17–22]. These prairie vole IPSC (PVi) lines

will greatly facilitate the development of targeted genetics in this

model organism.
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Results

Reprogramming prairie vole embryonic fibroblasts
We obtained prairie vole embryonic fibroblasts (PVEFs) from

gestation day 12–14 embryos using procedures previously used in

the mouse [23]. Reprogramming of PVEFs was initiated by viral

transduction of the four pluripotency-inducing transgenes (human

orthologs of Oct3/4, Sox2, Klf4, and c-Myc; Figure 1A) [20,22].

Although c-Myc enhances reprogramming in tissue culture, it also

increases the rate of tumorigenicity in chimeric animals generated

from IPSCs; in some experiments therefore, we also employed a

three factor (Oct3/4, Sox2, Klf4) reprogramming protocol to

determine if this would also yield IPSCs [21,24]. PVEFs did not

express the receptor (Slc7a1) required for infection with the

ecotropic retrovirus used to transduce cells with the reprogram-

ming factors. To enable transgene delivery in PVEFs, we therefore

infected these cells first with an amphotropic lentivirus encoding

Slc7a1 followed by infection with the ecotropic retroviruses

separately encoding each of the reprogramming transgenes [20].

Expression of these reprogramming factors confers pluripotency

on every cell type obtained from lab mice under conditions that

are used for ES cell culture [25–27]. Although we observed colony

formation from PVEFs under these conditions, further character-

ization (see below) revealed that none of these colonies contained

pluripotent stem cells. We reasoned that such failure could result

from poor expression of Slc7a1 in PVEFs, which would reduce the

probability of transducing single cells with each of the reprogram-

ming factor-encoding retroviruses required to induce pluripotency.

We therefore used high titer amphotropic retroviruses to transduce

PVEFs with the reprogramming transgenes [28]. Although we

observed .10-fold more colonies with this viral transduction

protocol, these colonies also did not contain any pluripotent stem

cells. Of 1500 colonies analyzed in standard ES culture media,

none yielded IPSCs (Table 1). These results indicate that

pluripotency-inducing genes elicit only partial reprogramming of

PVEFs grown in mouse ES cell culture media.

Many tissue culture media supplements have been reported to

enhance reprogramming induced by Oct3/4, Sox2, and Klf4 [29–

37]. Because none of the colonies obtained from PVEFs grown in

standard media yielded IPSCs following transduction with these

reprogramming factors, we also tested such tissue culture

supplements in an attempt to induce IPSCs (Figure 1A). None of

these supplements to standard ES cell culture media yielded IPSCs

(Table 1). In fact, many of these supplements were cell-lethal and

did not even elicit colony formation from PVEFs. Standard ES

media contains fetal bovine serum (FBS) and a recent commer-

cially available serum replacement (knockout serum replacement,

KSR) has been shown to enhance reprogramming when

substituted for FBS in culture media [31]. We therefore cultured

virally transduced PVEFs in KSR containing culture media in the

presence or absence of various non-toxic supplements. Most of

these conditions yielded colonies that contained pluripotent stem

cells (Table 1). The media supplements 3iM and 3iR (see Methods

for ingredients of 3iM and 3iR) enhance reprogramming in mice

and rats, respectively. However, neither supplement increased the

number of colonies obtained from PVEFs bearing the reprogram-

ming transgenes (Table S1). Nevertheless, culture medium

supplemented with 3iM or 3iR did yield bona fide IPSCs, with

3iR leading to a slight increase in the number of lines compared to

medium containing 3iM (p,0.03, Chi-squared test; Table 1). In

summary, of 1300 colonies analyzed in KSR-containing media, 11

yielded IPSC lines that fulfilled the standard cellular and

molecular criteria for pluripotency. Importantly, these 11 IPSC

lines (PVi1-11) were generated from three independent prepara-

tions of PVEF cells that were obtained from distinct prairie vole

breeding pairs, with individual PVEF preparations yielding 2, 4,

and 5 IPSC lines. Moreover a majority (3 of 4) of such PVEF

preparations yielded IPSC lines, indicating that PVEFs represent a

reliable source of reprogrammable cells in prairie voles.

Figure 1. Induction and characterization of PVi lines. (A) Protocol
for reprogramming PVEFs. All brightfield and immunolabeling images
(B, C, E–J) depict colonies of a single representative PVi line (line 6). (B–
C) Colony morphology of a PVi line. Colonies display morphology
similar to that of mouse ES cells, including distinct raised colonies (B),
with tightly-packed cells and well-defined, phase-bright margins (C). (D)
RT-PCR for endogenous reprogramming factors in PVi lines. RT-PCR for
pv-Nat1 was performed as a positive control for an endogenous,
ubiquitously expressed gene that should be expressed in all cells
irrespective of their reprogramming state. Lanes 1–11 show PCR
products from PVi lines 1–11, respectively. Lane 12 (‘‘F’’) shows PCR
products from PVEFs. (E) PVi colony exhibiting alkaline phosphatase
(Alk. phosphatase) activity. (F) Live immunofluorescent labeling of a PVi
colony for SSEA-1. (G–J) Immunofluorescent labeling of PVi colonies for
Nanog, Oct3/4, Klf4, and Sox2. Scale bars equal 500 mm (B), 100 mm (C,
E), and 50 mm (F–J).
doi:10.1371/journal.pone.0038119.g001

IPSCs from the Prairie Vole
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Characterization of colonies obtained from
reprogrammed PVEFs

We first observed cellular aggregates 2–3 weeks subsequent to

viral transduction of pluripotency-inducing transgenes into

PVEFS. Many of these aggregates resulted in large phase bright

colonies by 4–5 weeks, and we picked these for further expansion

(Figure 1A–C). In general, colonies obtained in FBS-containing

media usually had a phase-bright cobblestone appearance and

their boundaries were often not sharply demarcated from the

feeder cells. By contrast, KSR-containing media promoted the

growth of colonies that resembled mouse ES colonies such that

they had a smooth phase-bright appearance and a sharp border

that clearly distinguished them from the underlying feeder cells

(Figure 1B, C). We expanded all colonies such that they could

eventually populate individual wells (9.5 cm2 surface area) of a 6-

well plate. At this point, a subset of the cells within each well was

frozen and the remainder was subjected to molecular character-

ization of the reprogrammed state. We tested each cell line for

molecular hallmarks of pluripotency in a predetermined sequence

such that colonies that did not meet a criterion were not analyzed

further [17,30]. We first tested colonies for expression of Nanog,

an essential signature of the pluripotent state, by RT-PCR

(Figure 1D) [38]. Persistent expression of the virally transduced

reprogramming factors precludes subsequent differentiation and

contribution to chimeric animals [18,39]. We therefore utilized

RT-PCR to identify the Nanog+ colonies that had switched off

expression of these transgenes (Figure S1). Pluripotent colonies

that silence expression of reprogramming transgenes maintain

their pluripotent state by switching on expression of endogenous

Oct3/4, Sox2, Klf4, c-Myc, and other molecular markers [17,18].

Given that the prairie vole genome has not been sequenced yet, we

verified endogenous expression of these genes using prairie vole-

specific PCR primers (Figure 1D). These results have subsequently

been validated using RT-quantitative PCR experiments, which

show that each of these genes is expressed at levels significantly

exceeding those observed in the parental PVEFs (Figure S2).

Colonies were subsequently screened for alkaline phosphatase

activity with a fluorescent substrate and for expression of SSEA-1

by immunolabeling (Figure 1E, F) [19]. Although expression of

alkaline phosphatase or SSEA-1 is not exclusive to the pluripotent

state, the cellular assays used to detect these markers afford a

sensitive means to detect any heterogeneity within reprogrammed

colonies. All IPSC lines were also screened for homogeneous

expression of Nanog, Oct3/4, Klf4, and Sox2 using immunolabel-

ing (Figure 1G–J). Our final criteria were formulated by practical

considerations. Any IPSC line that will be used for gene targeting

must have the capacity for expansion for several generations in

tissue culture and the ability to be thawed from frozen stocks for

additional manipulations. Each of our validated IPSC lines

displays these traits and has been expanded for .8 generations

in tissue culture. Cell populations from pluripotent stem cell lines

eventually consist of many cells that are aneuploid as a

consequence of repeated passage in tissue culture [40–42], and

we have therefore maintained a frozen stock of our validated IPSC

lines at low passage numbers (passage numbers 6–8). Extensive

aneuploidy in ES or IPSC lines precludes efficient contribution to

the chimera and germline [41,43–45]. We therefore karyotyped

our vole IPSC lines and determined that $70% of cells within

each line were euploid (Table S2; 1n = 27 in prairie voles), a

degree of euploidy that exceeds the minimum required for

chimera generation and germline transmission with mouse ES

cells [41,46]. In summary, these cellular and molecular criteria are

indicative of the pluripotent nature of the 11 IPSC lines we have

obtained by reprogramming fibroblasts from the prairie vole.

Vole IPSC lines have pluripotent differentiation capacity
in tissue culture and in vivo

We next wished to determine whether these reprogrammed

prairie vole cells exhibit the potential to differentiate into cell types

of all germ layers. Accordingly, we first tested the capacity of our

vole cell lines to form embryoid bodies in tissue culture. We

therefore performed suspension cultures of colonies from each

reprogrammed prairie vole cell line that displayed the cellular and

molecular characteristics of pluripotency. These colonies were

grown in differentiation conditions until we observed the

formation of spherical, often largely phase-dark, lobulated cysts

(Figure 2A, B) that resembled mouse embryoid bodies. These cysts

were tested for the expression of markers of all germ layers using

RT-PCR. These studies revealed the expression of markers of the

endoderm (Hnf4, Tie2, or Sox17), ectoderm (Sox1, Ker18, Pax6,

or GFAP), and mesoderm (T, Gata4, AFP, or Flk-1) in each of 11

reprogrammed cell lines (Table 2). We also observed expression of

Vasa, a marker of germ cell lineages [47], indicating that many of

these lines form embryoid bodies with germ cell differentiation

even in tissue culture.

In order to determine whether reprogrammed vole cells could

differentiate into all three germ layers in vivo, we determined their

ability to form teratomas. We therefore injected 105–106 cells from

individual lines subcutaneously into immunocompromised mice

(NOD/SCID). Each of the 11 lines that generated embryoid

bodies in vitro produced large, visible subcutaneous tumors within

3 weeks of implantation (Figure 2C). These tumors were dissected

and analyzed for differentiation into various cell types using

standard histological criteria. Tumors from all 11 lines contained a

diverse array of differentiated cell types of all germ layers

(Figure 2D–I), including mesoderm (skeletal muscle, smooth

muscle, fat cells), ectoderm (keratin and neural rosettes), and

endoderm (branched tubular formations resembling gut and other

lumenal epithelial structures). Taken together, our findings

demonstrate that we have reprogrammed prairie vole fibroblasts

Table 1. Identification of culture conditions that promote
generation of PVi lines.

Culture conditions Colonies
Colonies
picked PVi lines

FBS+LIF Yes 1025 0

FBS+LIF+5-aza-cytidine* No

FBS+LIF+MAPK/ERK inhibitor PD98059* No

FBS+LIF+ROCK inhibitor Y27632* No

FBS+LIF+bFGF+Activin A No

FBS+LIF+3iM Yes 275 0

FBS+LIF+3iR Yes 200 0

KSR+LIF Yes 500 3

KSR+LIF+bFGF+Activin A No

KSR+LIF+3iM Yes 400 1

KSR+LIF+3iR Yes 400 7

Total 2800 11

Successful reprogramming of PVEFs into PVi lines was observed when FBS was
replaced with KSR. For constituents of the 3iM and 3iR cocktails, which
modulate distinct signal transduction pathways, please see Materials and
Methods.
*, these supplements were either cell lethal or prevented colony formation.
doi:10.1371/journal.pone.0038119.t001
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into cells that exhibit the cellular and molecular hallmarks of

pluripotency and that have the capacity to differentiate into all

major cell types in tissue culture and in vivo.

Discussion

We report the generation of prairie vole pluripotent stem cell

lines that exhibit the morphological and molecular hallmarks of

pluripotent IPSCs from other species. These PVi lines are also

functionally pluripotent since they can differentiate into all germ

layers in tissue culture and in vivo. Some of the requirements for

IPSC generation and propagation appear to be shared across

different animals, including prairie voles. Thus, the standard

reprogramming transgenes that have previously been shown to

induce pluripotency in diverse cell types in various species were

also effective in reprogramming prairie vole fibroblasts. In

addition, the presence of LIF was also essential for the generation

and maintenance of PVi lines. A surprising finding from our

studies is that many of the previously described small molecule

enhancers of reprogramming in other rodents either do not

stimulate pluripotency in prairie vole fibroblasts or they are cell

lethal. Moreover, we find that the presence of fetal bovine serum

in culture medium inhibits the generation of pluripotent cells,

which were observed only in media in which serum had been

substituted with knockout serum replacement. Thus, prairie vole

cells require a distinct set of culture conditions to enable

reprogramming even in the presence of LIF and pluripotency-

inducing transgenes.

Prairie voles exhibit social attachment such that mating partners

are socially monogamous, prefer each other to strangers, and

exhibit distress upon separation. Such pair bonded voles also

exhibit biparental care of young, including alloparental care, and

incest avoidance [6,48]. These striking behaviors are observed not

only in the laboratory setting, but they are also exhibited in the

wild. It has been difficult to study the molecular and neural circuit

mechanisms underlying these behaviors because of the absence of

gene targeting in prairie voles. Moreover, such social attachment

behaviors are not observed in mice or other traditional genetic

model organisms. The PVi lines we have generated will greatly

facilitate the development of gene modification by homologous

recombination and the eventual generation of transgenic voles

bearing targeted genetic manipulations. Previous work has

Figure 2. PVi lines are pluripotent in vitro and in vivo. (A–B) Differentiation of PVi lines in tissue culture yields embryoid bodies. (C) Teratoma
obtained following subcutaneous implantation of PVi cells (PVi3) into a NOD/SCID mouse. (D–I) Hematoxylin and eosin stained tissue from teratomas
obtained from PVi3 (D, F, H) and PVi6 (E, G, I) shows cellular differentiation into mesodermal, endodermal, and ectodermal lineages. Scale bars equal
100 mm (A, B, D–I).
doi:10.1371/journal.pone.0038119.g002
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established a large repertoire of genetic tools that permit a

sophisticated understanding of the function of genes and cells in

vivo in mice, and it should be possible to use these tools to

characterize the basis for displays of social attachment.

Humans exhibit attachment behaviors at every level of social

interaction and there appears to be a striking similarity in the

molecular control of these behaviors between humans and prairie

voles [6,48,13]. Oxytocin and vasopressin have been shown to

influence social attachment in both species and future studies in

transgenic voles should enable the mapping of neural circuits that

respond to these neuropeptides. Disruption of social bonds is a

common feature of many mental illnesses, and an understanding

of the underlying neural circuits may permit novel therapeutic

interventions [9,10,49,50]. Few mammalian species exhibit social

attachment behaviors between adults, which likely represent

adaptive responses to unique ecological niches [51,52]. In fact,

many vole species such as montane and meadow voles do not

exhibit pair bonding [6]. Using comparative genomics [53,54],

transgenesis [55], and targeted genetic manipulations with the

prairie vole stem cells we report here, it will be possible to

understand not only the mechanisms whereby social attachment is

encoded in the brain, but also how evolution has shaped the

underlying neural circuits to enable different behavioral outcomes

in closely related species.

Materials and Methods

Isolation of embryonic fibroblasts
PVEFs were obtained from gestation day 12–14 embryos using

procedures identical to those described for obtaining mouse

embryonic fibroblasts (MEFs) [23]. Triturated tissue fragments

from 3–4 embryos were plated in a T150 flask (Corning) in MEF

medium: DMEM (4.5 g/L glucose) containing 15% FBS (Hy-

clone), 2 mM L-glutamine, 16 non-essential amino acids, 16
nucleosides, 16 2-mercaptoethanol and 16 penicillin/streptomy-

cin. This initial plating of cells and tissue fragments was cultured

until confluent (3–4 days) and then dissociated into a single cell

suspension with Trypsin/EDTA. These cells were frozen (16

freezing medium) and subsequently used for IPSC induction or

they were expanded further by 1–2 passages, treated with

Mitomycin C (Sigma; or irradiated) to induce cell cycle arrest,

and frozen for later use as feeder cells. We also prepared feeder

cells from MEFs using this protocol. All media and supplements

were from Millipore except when otherwise noted. Animals were

handled and maintained in accordance with IACUC protocols at

UC San Francisco and UC Davis.

IPSC induction with reprogramming transgenes
delivered by ecotropic retroviruses

Lentivirus encoding mouse Slc7a1 receptor was generated by

using Fugene (Roche) to transfect HEK293T cells (ATCC) with

pMD.G, p8.91, and pLenti6/UbC-Slc7a1 as described previously

[20]. In brief, the cells were cultured in DMEM containing 10%

FBS and 16 penicillin/streptomycin and the medium was

changed every day. Supernatant was collected from the cells 48

and 72 hours following transfection, pooled, passed through a

0.45 mm filter (Corning), and used to transduce PVEFs. Ecotropic

retroviruses encoding Egfp, and the human orthologs of c-Myc,

Klf4, Oct3/4, and Sox2 were generated in PLAT-E packaging cells

(gift from Dr. Shinya Yamanaka lab) as described previously [22].

PLAT-E cells were plated at 86106 cells/10 cm dish in the same

medium as HEK293T cells, and they were transfected the next

day with plasmids bearing Egfp or the individual reprogramming

transgenes (pMXs vectors, Addgene) using Fugene. Supernatant

was collected as described above. To initiate reprogramming,

PVEFs were plated at 86105 cells/10 cm dish in MEF medium

and infected the next day with Slc7a1-encoding lentivirus

supernatant supplemented with 4 mg/mL polybrene (Sigma).

These cells were trypsinized 48 hours later and replated at the

original density on a 10 cm dish containing growth arrested

feeders (PVEFs or MEFs). Equal volumes of supernatants

containing each of the 5 retroviruses were mixed, supplemented

with 4 mg/ml polybrene, and transferred to the dishes containing

PVEFs. Following an overnight incubation in these supernatants,

the medium was replaced with ES medium (MEF medium

supplemented with 5% FBS and 1000 U/mL LIF) and changed

Table 2. PVi lines are pluripotent in tissue culture.

EBs derived from Lineage markers

Ectoderm Endoderm Mesoderm Germ-line

Gfap Ker18 Pax6 Sox1 Hnf4 Sox17 Tie2 Afp Flk1 Gata4 T Vasa

PVi1 + + + + + + +

PVi2 + + + + + + + +

PVi3 + + + + + + + + + +

PVi4 + + + + + + + + +

PVi5 + + + + + + +

PVi6 + + + + + + + +

PVi7 + + + + + + + + +

PVi8 + + + + + +

PVi9 + + + + + + +

PVi10 + + + + + + +

PVi11 + + + + + +

PVi lines generate embryoid bodies (EBs) that contain cell types representing all 3 somatic germ layers as revealed by RT-PCR for molecular markers of ectoderm,
endoderm, and mesoderm. This analysis also shows that embryoid bodies from many PVi lines contain Vasa-expressing cells, thereby suggesting the presence of germ
cells.
doi:10.1371/journal.pone.0038119.t002
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daily until colonies were picked. In some experiments, FBS was

replaced by 15% KSR (Invitrogen) in the ES medium.

IPSC induction with reprogramming transgenes
delivered by amphotropic retroviruses

PVEFs were plated in MEF medium at 36104 cells/well of a 6-

well plate on 0.2% gelatin 1 day prior to transduction. PVEFs

were infected with amphotropic retroviruses encoding Venus Egfp

(66108 IU/mL) and the human orthologs of Oct3/4 (46108 IU/

mL), Sox2 (16108 IU/mL), Klf4 (46108 IU/mL), c-Myc

(26108 IU/mL) (packaged by Harvard Gene Therapy Initiative)

such that the culture medium contained 1 mL/mL of each

retrovirus and 4 mg/mL polybrene [28]. The transduced cells

were fed fresh MEF medium each day for 2 days after viral

transduction, following which the medium was replaced with ES

medium. The cells were also provided with fresh ES medium every

24–48 hours.

Media supplements
The cocktail 3iM [37] contained inhibitors to GSK3ß (3 mM;

CHIR99021, Stemgent) and MEK (0.8 mM; PD184352, Santa

Cruz), and an FGF receptor antagonist (100 nM; PD173074,

Stemgent). The cocktail 3iR [35] contained inhibitors to GSK3ß

(3 mM; CHIR99021, Stemgent) and ERK (1 mM; PD0325901

Stemgent), and a TGFß type I receptor antagonist (0.5 mM; A-83-

01, Stemgent). Basic FGF (Invitrogen) and activin-A (Invitrogen)

were used at 20 ng/mL each [56].

RNA isolation and PCR
Total RNA was isolated with the RNeasy Mini Kit (Qiagen)

according to the manufacturer’s protocol. All RNA samples were

treated with DNase I (Amplification grade, Invitrogen) and reverse

transcribed into cDNA using Superscript III (Invitrogen) and

oligo-dT primers according to the manufacturer’s protocol. qPCR

reactions was performed either on an ABI Prism 7100 or an ABI

7900HT (Applied Biosystems). All primers used are listed in Table

S3.

Immunolabeling and staining for alkaline phosphatase
Cells for immunolabeling were grown on glass coverslips, rinsed

with D-PBS, fixed at room temperature for 10 min in ice-cold 4%

paraformaldehyde (PFA), and rinsed again with D-PBS. For

immunolabeling, the cells were incubated in block buffer (D-PBS,

5% donkey serum, 0.1% Triton X-100) for 1 hour at room

temperature. The cells were exposed to primary antibody in

labeling buffer (D-PBS, 0.5% donkey serum, 0.1% Triton X-100)

overnight at 4uC, rinsed 3 times in labeling buffer at room

temperature, and incubated in labeling buffer containing the

fluorophore-conjugated secondary antibody for 1 hour at room

temperature. The cells were rinsed several times and the coverslips

mounted on glass slides using Vectashield (Vector). The primary

antibodies used were polyclonal rabbit anti-Oct3/4 (Santa Cruz,

1:50), anti-Klf4 (Santa Cruz, 1:100), anti-Sox2 (Millipore, 1:1000),

anti-Nanog (Abcam, 1:60), and mouse anti-SSEA1 (DSHB, 1:100).

The secondary antibodies used were Cy3-conjugated donkey anti-

rabbit (Jackson, 1:800) and Alexa 488-conjugated donkey anti-

mouse (Molecular Probes, 1:300). Alkaline phosphatase staining

was performed on fixed cells using the Vector Red Alkaline

Phosphatase Substrate Kit I (Vector Labs) according to manufac-

turer’s protocol.

Karyotyping
Cells were grown to 70% confluence, trypsinized, and incubated

in 0.56% KCl at 37uC for 10 min. Cells were rinsed in 3:1 ice-cold

methanol:glacial acetic acid 3 times, and dropped on to glass slides

to generate chromosome spreads. These spreads were stained with

Leishmann’s stain for 8 min, rinsed with water, cleared twice in

xylene, and mounted in Depex (EMS). Chromosomes were

enumerated from $15 cells with well-delineated spreads for each

cell line.

Embryoid body generation
IPSC lines grown to 80% confluence were trypsinized until the

colonies detached. The tissue culture dish was flooded with MEF

medium and the colonies were transferred to an ultra-low

adherence dish (Corning) to promote differentiation into embryoid

bodies. MEF medium was changed every 3–5 days until embryoid

bodies were observed at 3–5 weeks.

Teratoma generation
Vole IPSCs were injected subcutaneously into the flanks of

NOD/SCID mice. Tumor nodules were removed after 4–6 weeks,

fixed overnight in 4% PFA at 4uC, and embedded in paraffin. The

samples were sectioned at 20 mm thickness and stained with

hematoxylin and eosin.

This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee of the University of California, San Francisco

(Approval Number: AN081802-03B). All animals were sacrificed

under carbon dioxide followed by decapitation, and all efforts

were made to minimize suffering. All prairie vole cell lines (PVEFs

and PVi) generated and used in this manuscript were generated

from harvested tissue according to the protocol approved by the

Institutional Animal Care and Use Committee of the University of

California, San Francisco (Approval Number: AN081802-03B).

Supporting Information

Figure S1 PVi lines silence exogenous reprogramming
factors. RT-qPCR shows silencing of transduced reprogramming

factors relative to that of an unsilenced line. All PVi lines show

lower expression of exogenous Oct3/4, Klf4, and c-Myc that is

statistically significant relative to the unsilenced line (p,0.05, Chi-

squared test).

(DOC)

Figure S2 PVi lines express endogenous markers of
pluripotency. (A–E) RT-qPCR shows expression of endogenous

prairie vole (pv) Nanog, Oct3/4, Sox2, Klf4, and c-Myc in all PVi lines

and minimal expression of these genes in the PVEF cells. Shown

are fold changes in expression of each gene in the indicated cell

line relative to the mean expression of the gene in all PVi lines.

The mean expression of each gene in PVi lines vastly exceeded the

expression level in PVEFs (pv-Nanog, 1.96104 fold; pv-Oct3/4,

2.16104 fold; pv-Sox2, 4.66103 fold; pv-Klf4, 1.86103 fold; pv-c-

Myc, 1.26103 fold). Note that the expression of each gene was

normalized to that of GAPDH and the data represent results from

two technical replicates of RT-qPCR for each cell line.

(DOC)

Table S1 Media supplements do not enhance colony
formation from PVEFs. The media supplements 3iM, 3iR, or

FA (bFGF+Activin) do not increase the number of colonies formed

from PVEFs compared to basal culture conditions in 15% FBS or
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15% KSR. Numbers in parentheses indicate the number of PVi

lines generated. All media contained LIF. Fold induction = (#
colonies in media supplement)/(# colonies in basal conditions);

n = 3 for each condition. OSK: viral transduction of Oct3/4,

Sox2, and Klf4. OSKM: viral transduction of Oct3/4, Sox2, Klf4,

and c-Myc.

(DOC)

Table S2 Karyotype analysis of PVi lines. Metaphase

chromosome spreads from each PVi line were enumerated to

quantitate the degree of euploidy (1n = 27).

(DOC)

Table S3 Sequence of primers used for PCR.
(DOC)
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