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Abstract

Progress in cardiac cell replacement therapies and tissue engineering critically depends on our ability to isolate functional
cardiomyocytes (CMs) from heterogeneous cell mixtures. Label-free enrichment of cardiomyocytes is desirable for future
clinical application of cell based products. Taking advantage of the physical properties of CMs, a microfluidic system was
designed to separate CMs from neonatal rat heart tissue digest based on size using the principles of deterministic lateral
displacement (DLD). For the first time, we demonstrate enrichment of functional CMs up to 9162.4% directly from the
digested heart tissue without any pre-treatment or labeling. Enriched cardiomyocytes remained viable after sorting and
formed contractile cardiac patches in 3-dimensional culture. The broad significance of this work lies in demonstrating
functional cell enrichment from the primary tissue digest leading directly to the creation of the engineered tissue.
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Introduction

There are nearly 16 million people in North America alone

suffering from coronary heart disease (CHD) with additional

770,000 new cases occurring annually contributing to $156 billion

in medical expenses and lost productivity per year [1]. The

majority of the cases involve at least one myocardial infarction

(MI) event. During MI, a regional blockage in the coronary

arteries constricts blood perfusion downstream which causes death

of cardiomyocytes (CMs) in the infarct zone. Depending on the

severity of infarction up to one billion CMs could be lost in the

infarct zone [2]. These cells cannot be readily replaced by the

heart since the adult mammalian CMs are considered to be

terminally differentiated, have extremely low proliferation rates [3]

and low turn-over rates in humans [4]. Instead, a non-contractile

scar forms that consists of fibroblasts and extracellular matrix.

Ultimately, a pathological remodeling process of the heart leads to

the thinning of the ventricular wall, dilatation of the ventricle and

diminishing ability of the heart to pump blood. Cell replacement

therapies offer the possibilities to develop new therapies for MI by

replacing CMs lost during an MI either through cell injection or

implantation of engineered cardiac patches.

Although non-myocyte cell types such as bone marrow cells

have been tested in clinical trials and demonstrated to exert

beneficial effects by improving vascularization and acting on the

myocardium through paracrine mechanisms and secretion of

growth factors [2,5–10] the replacement of contractile cells, CMs

is required for true regeneration. The first evidence that cell

injection may be a viable therapeutic approach for MI came from

rodent studies with injection of fetal or neonatal CMs. CM

injection improved left ventricular function and ventricle thick-

ness, thus attenuating pathological remodeling following MI [11–

14]. Injected CMs were demonstrated to integrate through gap

junctions and intercalated discs with the host CMs [15]. Our

group has worked extensively on growing patches of functional

cardiac tissue in vitro [16]. Cardiac tissue patches consisting of

scaffolds or hydrogels and primary rat CMs have been shown to

mediate cardiac function following myocardial infarction in rats

[17–18]. Recent advances in stem cell biology offer an unprec-

edented opportunity to generate millions of human CMs from

either embryonic stem cells (ESCs) [19] or induced pluripotent

stem cells (iPSCs) [20] to be used for cardiac cell therapy.

However, efficient cell separation methods are lacking. One of

the major challenges in growing functional tissues with defined cell

composition is the availability of purified cells [21]. It is generally

accepted that tri-culture of CMs, endothelial cells and fibroblasts

enhances engineered cardiac tissues in vitro [22,23] and enables

their survival in vivo [24,25]. However, providing defined tri-

culture requires first obtaining a homogenous cell population from

a heterogeneous cell source. Since all of the known CMs markers

are intracellular proteins, antibody staining (e.g. for cardiac

troponin I, [26]) or genetic labeling (e.g. neomycin resistance

under control of a myosin heavy chain promoter [27]) have so far

been used for identification of CMs and their separation. Antibody

staining of intracellular markers such as contractile proteins

requires cell permeabilization which unfortunately renders the

cells non-viable and unusable for cardiac therapy. On the other
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hand, genetic labeling of cells for clinical applications cannot be

performed in humans due to ethical concerns.

Besides genetic manipulation, other characteristics of CMs have

also been explored as a basis for separation. Compared to other

cell types, CMs tend to contain more mitochondria in order to

sustain the energy requirement for contraction. Utilizing this

difference, Hattori et al. recently enriched CMs up to 99% purity

by labeling the mitochondria with a fluorescent marker, tetra-

methylrhodamine methyl ester perchlorate [28]. In addition, they

have shown that teratoma formation was prevented when

transplanting purified CMs into testes [28]. Furthermore, they

have also demonstrated that this method can be applied to cells

from various species including neonatal rats, mouse, and human

[28]. However, the long term effect of mitochondria labeling has

not been studied and cells whose intracellular components are

labeled with fluorescent probes are cannot be used in clinical

applications due to the unknown long-term effects of these organic

probe molecules in humans.

A new report identified SRP1a as a surface marker of CMs

derived from human pluripotent stem cells [29], but the wide

applicability of the SRP1a antibody across the species and the high

yield of CMs upon SRP1a labeling is yet to be determined.

Furthermore, use of mouse-raised antibodies for cell separation in

clinical applications can induce sensitization in patients and

generation of anti-mouse IgGs [30]. Therefore, bearing in mind

the complex health implication in future clinical studies, there is a

strong incentive for label-fee cell separation with minimal cell

treatment.

The most widely used label-free enrichment technique for CMs

derived from primary sources such as rat hearts is pre-plating [31].

This method makes use of the different cell attachment rate

between fibroblasts and CMs, where fibroblasts attach faster to the

tissue culture surface compared to the CMs. This non-specific

technique requires sequential plating steps each at ,1 hr/step that

are both time consuming and often lack consistency. For instance,

two rounds of pre-plating are required to enrich CMs to only 80%

[31]; further enrichment is not possible without significantly

undermining cell viability. Thus, presently, the high-purity, label-

free, separation of living CMs is virtually impossible. Therefore,

alternative properties of CMs must be explored.

It is well known that CMs, which specialize to generate

contractile force, occupy 80–90% of the heart volume due to their

large size compared to the other cells found in the heart [32].

Utilizing microfluidic technology, a diffusive filtering method

including one center channel and two side channels separated by

micro-sieves to block any large cells was introduced [33]. This

method was focused on the isolation of smaller non-myocytes and

cardiomyocytes were not be effectively enriched. In addition, this

device was prone to clogging by the larger cells and could not be

operated for longer periods of time. In 2004, Huang et al.

demonstrated a microfluidic post array system capable of

separating submicron particles in a continuous fashion without

clogging [34]. In laminar flow, such displacement can be predicted

and controlled which makes this method exceptionally sensitive

and consistent. This concept, termed deterministic lateral

displacement (DLD), was recently used for the separation of white

blood cells from red blood cells [35]. In addition, we previously

demonstrated this method for the separation of large mammalian

cells, such as H1975 epithelial cells from 3T3 fibroblasts [36]. In

this work, for the first time we custom-designed a separation array

based on the principle of DLD for the isolation of functional CMs

directly from primary cardiac tissue isolated from neonatal rats.

The sorted cells remained viable and were used for tissue

engineering of cardiac patches.

Results

Design of the sorting device
The layout of the device is shown in Figure 1(A). The

microfluidic device includes two sheath fluid inlets where

biological buffer, 3% (w/v) bovine serum albumin (BSA) in PBS

(phosphate buffered saline), was used to focus the cells into a

narrow stream. The cells focused by the sheath fluid flow through

the sorting chamber (5 cm in length and 1.3 cm in width) and are

collected in outlets 2–7 where outlet 2 is located in the middle of

the sorting chamber. As cells move through the sorting chamber,

large cells are expected to be displaced to the right side and

collected in Outlets 3–7 while smaller cells are expected to stay in

the middle of the chamber and collected in Outlet 2. The sorting

chamber is composed of an array of posts with diameter of 30 mm.

Each row of posts is slightly offset laterally from the previous row.

The extent of this offset determines the critical separation

diameter. Based on the cell size measurements discussed below,

we determined the critical separation diameter to be 7mm. The

exact device parameters to yield a critical separation diameter of

7.0 mm were determined based on the experimental correlation

published by Inglis [37]. The specific post arrangement param-

eters are shown in Table 1.

The critical separation diameter (Dc) depends on the offset of

the posts and the gap size between the posts. In addition, the

parabolic flow profile between adjacent posts also affects the

separation diameter. The governing equation is shown as eqn (1).

Dc~2gge ð1Þ

The shift factor is determined by the extent of offset by each row

of posts over the center-to-center distance between two adjacent

posts. The post gap is the distance between the edges of two

adjacent posts. Finally, the parabolic flow profile constant is a

correction factor that takes into account the parabolic velocity

profile between two adjacent posts. To further illustrate the

principle of the deterministic lateral displacement a FLUENT

hydrodynamic simulation of the fluid streamlines around the post

array was generated to demonstrate the splitting of the fluid

streams by the placement of the posts (Figure 1(A)). Intuitively, as

the offset (e) between each row of posts increases, the amount of

fluid getting diverted to the opposite side of the posts will be larger.

Therefore, the fluid streams will be able to carry and divert even

larger cells. This leads to an increase in critical separation

diameter as predicted in eqn (1). The gap size was chosen so that

the largest cells in the cell mixture can go through the post array

without clogging. This theory was explained with more details in

previous works [36].

Multiple external components were used to ensure proper

operation of the sorting device. First, to prevent cell settling inside

the syringe, a steel ball coated with PDMS and BSA was placed

inside the syringe and controlled by an external magnet to provide

agitation [38]. Without such agitation, cells would inevitably settle

inside the syringe resulting in decreased cell output over time.

Furthermore, due to their larger size and higher cell density, CMs

tend to settle faster in the syringe compared to non-myocytes

resulting in the reduced CMs purity from the syringe output in the

absence of agitation (Figure S1). Second, to prevent cells from

clumping inside the sorting chamber, a microfluidic filter

composed of a short array of posts with 20 mm gap was placed

upstream from the sorting device to filter out any cell clumps from

the tissue digestion allowing only single cells to move through the

system (Figure 1B). Lastly, a syringe pump was used to drive the
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flow. The syringe pump was tilted at 45 degree with the syringes

pointing downward to prevent bubbles from the syringe entering

the device overtime.

To test the stability of the flow driven by the syringe pump at

the operating flow rate, red and blue color dyes were used to label

the cell solution and the sheath solution respectively. The flow rate

from the sheath inlet (500 mL/min) is nearly 6 times larger than

that from the cell inlet (80 mL/min), so that the cells can be

focused into a narrow stream that will only be collected by outlet 2.

Stable focusing is critical in ensuring high separation purity by

avoiding cross contamination. Figure 1(B) demonstrates the

stable hydrodynamic focusing at the center of the sorting chamber.

As expected red dye exited from the Outlet 2 only, demonstrating

that the focusing was stable throughout the sorting chamber. The

overall flow rate was chosen so that the Reynolds (Re) number at

the operating condition is below 1 (Re, 0.77), which is well within

the laminar flow regime where the principle of deterministic lateral

displacement can be applied.

Size distribution of primary cardiac cell mixture
To enrich CMs from digested heart tissue of neonatal rats based

on their size, the hydrodynamic diameter distribution of isolated

Figure 1. Device schematic and system setup. (A) The microfluidic sorting device is shown with the location of the inlets and outlets. Inset
represents a zoom-in section of the post array with FLUENT simulation of the fluid streamlines. An illustration of expected CMs purity from each
outlet is shown at the bottom. (B) An image of the system setup with color dyes illustrating stable hydrodynamic focusing. The blue dye is focused by
the red dyes into the center of the chamber and exits only from outlet #2. A 20 mm filter unit is placed upstream from the sorting chamber to
eliminate cell clumps.
doi:10.1371/journal.pone.0037619.g001

Table 1. Design Parameters of the Post Array.

Critical Separation Diameter
(Dc, mm) Shift Factor (e) Post Gap (g, mm) Parabolic Flow Profile Constant (g)

7.0 0.057 25 2.50

doi:10.1371/journal.pone.0037619.t001
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primary cardiac cells in suspension was first measured. Simple

techniques such as measuring the size of suspended cells with

image analysis by outlining the perimeter of a cell from an image

may be inaccurate and lacks consideration of the volumetric shape

of the cells in 3-D. Here, a Coulter Counter was used to determine

the volume of the cell by measuring the electrical impedance

created by the cell passing through an aperture. The hydrody-

namic diameter of the cells was subsequently derived from the

volumetric measurement. The hydrodynamic diameter distribu-

tion of primary cardiac cell mixture in suspension is shown in

Figure 2(A). It is well known that this heterogeneous cell mixture

includes two major cell populations (fibroblasts 49% and CMs

47%) and other smaller populations (smooth muscle cells 3%,

endothelial cells 2%, and red blood cells) [39]. As Figure 2(A)
shows, there are indeed two major peaks: one around 5–6 mm and

another around 11–14 mm. The strong signals below 3 mm are

mostly due to system noise at the lower detection limit. The area

underneath the two major peaks was integrated to show that the

proportion of each peak (4–7 mm, 4565%, 7–20 mm, 5565%)

which corresponded with the reported proportion of CMs and

non-myocytes [39]. The percentages were further confirmed by

flow cytometry for cardiac Troponin T as described below. Since

there is no method available to isolate each type of cell without

permeating the cells, we were unable to determine the exact

diameter of each individual live cell type. The functionality of

Coulter Counter relies on non-permeated cell membranes given

that cell permeation would allow electrical current to pass through

the cell body and result in false measurement.

However, we hypothesized that the two peaks identified in

Figure 2(A) represent the two major cell populations, CMs and

non-myocytes (mostly fibroblasts) where the larger CMs were

located around the 11–14 mm peak while the smaller fibroblasts

were located around the 5–6 mm peak. Based on this hypothesis

the critical separation diameter was set at 7 mm. To confirm this

hypothesis, the cell mixture was first sorted based on the critical

separation diameter and subsequently identified with known

intracellular cardiac markers.

Cell population analysis
After examining the fraction of total cell input collected in each

outlet, it was clear that almost all the cells exited in Outlets 2–4

(Figure 2(B)). This indicates that the cells were displaced as far as

to Outlet 4 which corresponds to approximately 3 mm in lateral

displacement. Furthermore, since there were very few cells

collected from Outlet 1, this indicates that there was negligible

cell leakage into Outlet 1 which was designed to only collect the

sheath fluid. Additionally, the total number of cells collected in all

outlets of the device corresponded well to the total cell input (1

Million cells), indicating that the cell loss in the device was not

significant (Figure 2(B, inset)). Thus, our further analysis

focused on Outlets 2–4.

To confirm that separation was indeed based on size, the size

distribution of the cells collected from Outlets 2–4 was analyzed

with a Coulter Counter as shown in Figure 2(C). The fractions of

large cells (7–20 mm range) and small cells (4–7 mm) over the total

cell number from each Outlet were determined by integrating the

size distribution curve. Here, clear evidence of size dependent

separation between Outlets 2 and 3 was observed and the

separation diameter was ,7 mm as expected. Furthermore, the

size distribution appears to shift further to the larger end in Outlet

4 compared to Outlet 3. This demonstrates that the larger cells

tend to get displaced even further laterally, as expected. In Outlet

4, 9361% of the cells were large cells (7–20 mm) which indicates

significant enrichment of large cells compared to the control with

only 5565% large cells.

To analyze the CM purity in the outputs, an intracellular

marker, Troponin T, was used to identify the CMs by flow

cytometry after microfluidic separation. Propidium Iodide (PI)

staining was used to distinguish red blood cells from other non-

myocytes. As Figure 2(D, E) shows, before sorting the

heterogeneous cell population consisted of both Troponin T

positive CMs (60612%) and Troponin T negative non-myocytes

(40612%). After sorting, there was a clear trend of CMs

enrichment from Outlet 2 to Outlet 4, with Outlet 4 producing

the most enriched CMs population of 9162%. This value was

significantly higher compared to the control (cell mixture before

sorting) with p = 0.01. The highest purity reached in the

experiments was 94%. The flow cytometry data were also

compared with the Coulter Counter data to show that the fraction

of cardiomyocytes determined from the flow cytometry data

closely resemble the fraction of large cells (7–20 mm) determined

from the Coulter Counter data (Figure 2D). The yield of this

separation process is 55% of the initial cardiomyocytes input. This

yield was determined by taking the ratio of the total number of

cardiomyocytes collected in outlet 4 to the total cardiomyocytes

input.

Functionality of enriched CMs
The effects of the sorting process on the viability and

functionality of the sorted cells were then characterized. First,

the cells collected from each outlet were stained with trypan blue

to characterize cell membrane integrity after sorting (Figure 3(A)).
There were no significant differences in viability between the

sorted cells and the control which were the unsorted cells

(Figure 3A). Furthermore there were no significant differences

between cells collected from each outlet (Figure 3(A)). Therefore,

cell viability and membrane integrity were not undermined by the

sorting process. Additional cell functionality tests were also

performed on enriched cardiomyocytes through 2D and 3D

culture.

The sorted cells were cultured on abraded surface to

demonstrate cell functionality in 2-D culture [40]. As shown in

Figure 3(C, D), sorted cells were able to exhibit normal

phenotypic responses such as elongation and cell alignment in

the direction of the abraded grooves. In addition, cross-striations

were visible in CMs upon Troponin T staining (Figure 3(C,
inset)). The sorted cells were also cultured in 3-D on scaffolds to

demonstrate their functionality in 3D and to characterize their

synchronized contraction after 3 days of cultivation; the sorted

cells connected and formed a synchronously beating cardiac patch.

The excitation threshold (ET) of the cardiac patch was

6.460.5 V/cm with a maximum capture rate of 5.361.5 pulses

per second consistent with previous work [41] (Figure 3(B)).
Engineered 2D and 3D tissue from enriched CMs were also

compared to those from pre-plate enriched cardiac cell mixture

(Figure 3 (C–F)). Qualitatively there was significant enrichment in

Troponin T positive CMs in the sorted CMs group compared to

the pre-plated control. However, as expected there were still few

non-myocytes mixed in with the CMs even in the sorted CMs

group. This could be contributed to the initial impurity from the

sorting process as well as further proliferation of non-myocytes

during culture period. CMs are a terminally differentiated cell type

and lack the ability to proliferate, therefore, overtime non-myocyte

proliferation will gradually undermine the initially high purity of

Label-Free Enrichment of Functional Cardiomyocytes
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Figure 2. Cell separation analysis. (A) Size distribution of primary cardiac cell mixture from digested heart tissue of neonatal rat (1–2 days old)
determined with Coulter Counter. Cell counts were normalized to the total number of cells counted. n = 3 (B) Fraction of total cell input collected by each
outlet of the device. n = 3. (B, inset) Comparison between the total number of cells collected and the total number of input cells. (C) Cell size distribution
from each outlet of the device. Cell counts were normalized to the total number of cells counted. n = 3 (D) CMs purity before and after sorting analysed by
Flow Cytometry. There is a significant difference between sorted cell population from Outlet 4 and cell population before sorting, p = 0.01. n = 3 (E)
Representative flow cytometry plots. Blue dots represent Troponin T (+) cells. Red dots represent Troponin T (2) cells. PI staining is used to identify nuclei.
n = 3.
doi:10.1371/journal.pone.0037619.g002
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CMs in the tissue composition. Lastly, immunostaining for cardiac

Troponin T and connexin-43 indicated that the patches contained

elongated CMs (Figure 3(E), green) connected by punctuated

gap junctions (Figure 3(F), red).

Discussion

This work demonstrates the first enrichment of primary CMs

directly from a primary cell source, specifically heart tissue of

neonatal rats, to high purity levels without any labeling or pre-

treatment of the cells. In addition, a functional cardiac patch was

Figure 3. Viability and function of sorted cardiomyocytes. (A) Cell viability was measured by staining with trypan blue to confirm cell
membrane integrity after sorting. The number of trypan blue negative cells was counted against the total number of cells to get the fraction of live
cells. The control represents cell viability before sorting. (B) Excitation threshold and maximum capture rate measurement for cardiac patches
engineered from enriched CMs. (C) Sorted CMs and (D) CMs collected after pre-plating were cultured on abraded surfaces to demonstrate cell
alignment. Fluorescence image of Troponin T staining shows cell alignment and elongation in the direction of the grooves. Vimentin Staining labels
the nonmyocyte population (DAPI(blue), Troponin T(green), and Vimentin (red)). Cross striations indicated by arrow heads can also be observed. Black
arrow indicate the direction of the grooves. (E) Sorted CMs and (F) CMs collected after pre-plating were cultured on 3-D scaffold. Confocal images
shows the CMs population (Troponin T, green) and non-myocyte population (vimentin, red)(E, F) Confocal images of sorted CMs in 3-D scaffold to
show cell junction. (DAPI(blue), Troponin T(green), Connexin 43(red)).
doi:10.1371/journal.pone.0037619.g003
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engineered to demonstrate functionality and contractile properties

of the enriched CMs after sorting and cultivation. This is a critical

step in engineering the next generation of complex cardiac tissues

with precise control over cell composition. The yield of current

device was determined to be around 55%. This low was caused

mostly by the lost of smaller cardiomyocytes in outlet 3. The yield

could potentially be improved with multiple runs by connecting

multiple sorting devices in series. However, the high throughput of

this system makes it possible to collect large amount of cells even at

lower yield as long as the input cell number is not limited. The

advantage of this microfluidic system is its ability to be scaled up

with parallel processing. Therefore, the total throughput and

processing time of this system is only limited by the extent of

multiplexing.

Currently, with this method a single device can consistently

enrich one million cells up to 9162% within 20 min. This

throughput is sufficient for cell culture studies, or for isolating

cardiomyocytes from cardiac biopsies for diagnostic applications.

Since this system requires only an external pump, it can be scaled-

up easily to 100 devices to process up to 100 million cells within

20 min to meet large demand without significantly increasing the

overall cost. Therefore this method is superior compared to

conventional enrichment methods. Conventional label-free en-

richment methods like pre-plating depend on sequential plating to

improve purity. For instance, it takes up to two rounds of pre-

plating to enrich CMs up to 80% [31]. Each round of pre-plating

can last up to 75 min. Therefore, the entire process can take more

than two hours. During this time viability of the CMs (the non-

adherent cells) will be undermined. In fact, pre-plating is rarely

performed more than two times sequentially due to the long

incubation time that leads to a severe decline in viability.

Therefore, CM purity up to 90% cannot be achieved via pre-

plating.

Furthermore, our system requires no pre-treatment or pre-

labeling to the cells which makes it ideal for clinical applications or

potential integration with other microfluidic units. The described

microfluidic device can be made portable and implemented in the

operating room without the need for extensive cell manipulation

or transport to off-site laboratories for diagnostics. Currently at the

research stage, the sorting devices require few hours to fabricate

and the flow system requires less than one hour to setup. If

commercialized, the flow system and the sorting device can be

integrated into a single system and would require minimal

experience to operate and few minutes to setup. The sorting

device can be reusable if it is made of glass material. The device

may also be useful in label-free separation of skeletal myoblasts

from primary tissues. Using engineering principles to achieve high

throughput label-free separation of CMs will have a significant

impact even when the CMs surface markers are fully established as

expensive antibodies and the auxiliary equipment such as FACS

will not be required. The broad implication of this work is the

demonstration of high purity separation of functional cardiomy-

ocytes from digested tissue through label-free method leading

directly to engineered tissue.

Methods

Cardiac cell size distribution measurement
The hydrodynamic diameters of the cells were measured with a

Beckman Z2 Coulter Counter. The 100 mm aperture was used to

resolve particle size from 2 to 40 mm. The Coulter Counter

scanned each cell as it passed through the aperture and recorded

the electrical impedance created by the cells. This electrical signal

was then converted into actual hydrodynamic diameter and

plotted as a histogram. Prior to the experimental measurement,

the machine was calibrated with 15 mm beads.

Microfluidic device fabrication
Microfluidic device masters were fabricated via standard soft

lithography techniques as described previously [42]. A silicon

wafer was coated with SU-8 photoresist with a spin coater. The

mask was drawn using AutoCAD software and printed with high

resolution onto a transparency. With the mask in place, the SU-8

photoresist was exposed to 365 nm, 11 mW/cm2 UV light using a

mask aligner (Q2001, Quintel Co., San Jose, CA). The unexposed

photoresist was removed with SU-8 developer. Silicone elastomer

[poly(dimethylsiloxane), PDMS] and curing agent (10:1 ratio) were

molded with the SU-8 masters at 75uC for 3 hr. Inlet and outlet

holes were punched with 22-gauge needles. The replicas were

plasma treated and bonded to a glass slide. Tygon tubing was press

fitted into the holes.

Experimental system setup
To prevent unspecific cell attachment during the experiment,

the device was incubated with 3% BSA in PBS at room

temperature for one hour prior to experiment. To prevent

intercellular binding, the primary cells were also suspended in

PBS with 3% BSA at a concentration of 0.33 million cells/mL. 3%

BSA in PBS was also used as the sheath fluid to match the viscosity

of the cells suspension. The flow rates of the sheath fluid and the

cell suspension were 500 mL/min and 80 mL/min respectively.

With this operating condition, the cell suspension stream was

focused into a narrow stream. The flow of both sheath fluid and

cell suspension was driven by an external syringe pump (Harvard

Apparatus). To prevent bubbles from entering the device, the

syringe pump was titled at 45 degree angle with the syringes

pointing downward. The experiment took 20 to 30 min. To

prevent cell settling inside the syringe during this period, a steel

ball coated with PDMS and BSA was incorporated inside the

syringe to generate agitation with an external magnet [38]. The

solution was agitated every 2 min for 5 s. To prevent cell clumps

from entering the sorting device, an on-chip filter was used. This

on-chip filter was composed of three rows of posts with diameter of

30 mm, height of 40 mm and gap size of 20 mm which is larger

than all the single cells but smaller than cell clumps, thus only

allowing suspended single cells to go through.

Fluid dynamic simulation
Fluid dynamic simulation of the fluid velocity profile was

generated with FLUENT 6.3.26. Briefly, a repeating section of the

post array was created in Gambit 2.4.6 in 3-D based on the device

geometric parameters. Then, the inlet and outlet boundary

conditions were estimated based on the experimental flow rates.

Other boundaries were set as no-slip walls. A mesh was then

generated with finer meshes near the walls and more coarse mesh

away from the wall. The file was then transferred to FLUENT for

simulation. The fluid density and viscosity were estimated based

on the properties of water at 25uC. The simulation was solved with

the built-in algorithm for continuous incompressible fluids. The

mesh was refined to include approximately 2 million tetrahedral

cells and convergence was reached at 1027. The fluid streamlines

were then plotted against the device geometrical outline.

Heart cell isolation from neonatal rats
Neonatal rat heart tissue was digested as described using a

standard isolation protocol [43]. Briefly, neonatal (1–2 day old)

Sprague-Dawley rats were first euthanized. The hearts were
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removed and quartered. Quartered hearts were digested in 0.06%

(w/v) solution of trypsin (Sigma, Canada) in Ca2+ and Mg2+ free

Hank’s balanced salt solution (HBSS) (Gibco, Canada) overnight

at 4uC. Then, collagenase II (Worthington, USA 220 units/mL) in

HBSS was used to further digest the heart at 37uC in series of five

4–8 min digestions. Right after the collagenase digestion and

without pre-plating, the cells were filtered with 40 mm cell strainers

and then re-suspended in 3% BSA in PBS ready for experiments.

As a control cell population in 2D and 3D cell culture, the native

heart cell isolate was pre-plated for 1 hr in T75 flasks. The non-

adherent cells, enriched for CMs, were collected and cultivated as

described below.

Cardiomyocyte culture medium
The CMs were cultured in Dulbecco’s Modified Eagle Medium

(DMEM, Gibco, Canada) containing 4.5 g/L glucose, with 10%

(v/v) fetal bovine serum (FBS, Gibco, Canada), 1% HEPES

(100 units/mL, Gibco Canada) and penicillin-streptomycin

(100 mg/mL, Gibco, Canada).

Cell population analysis
Cell concentrations were measured with a hemacytometer. Cell

collected from each outlet were first resuspended in PBS. Then the

cell concentrations were measured with a hemacytometer. The

total number of cell collected by each outlet was then determined

by multiplying the cell concentration with the suspension volume

(1 mL). The fraction of total input cells collected by each outlet

were then determined and compared with the total input cell

number (1 million cells) to examine the cell number loss within the

sorting device. To determine the percentage of CMs before and

after sorting, flow cytometry was used. For flow cytometry analysis,

the cells were fixed in 4% (w/v) solution of paraformaldehyde in

PBS for 15 min at room temperature and then permeated on ice

with cold methanol for 2 min.

Next, the cells were labeled with Troponin T (Mouse, clone 13–

11, Fisher Scientific) antibody for CM identification at dilution

ratio of 1:250 for 30 min on ice. Alexa 488 conjugated anti-mouse

IgG (Sigma), was then applied at dilution ratio of 1:200 for 30 min

on ice. Propidium Iodide (VWR) staining was performed at

concentration of 75 mg/mL. Stained cell suspensions were then

transported on ice to Princess Margaret Hospital for flow

cytometry analysis using BD FACS Calibur Flow Cytometer.

Immunostaining was performed to assess the phenotype of

cultured cells. The cells were first fixed in 4% (w/v) paraformal-

dehyde in PBS for 15 min at room temperature. Then, the cells

were permeated and blocked in 5% FBS and 0.25% Triton 6100

in PBS for 1 hour. Next, the sample was incubated in primary

antibody Troponin T (Mouse, clone 13–11, 1:200 dilution, Fisher

Scientific), anti-vimentin (Mouse, 1:200 dilution, sigma), and/or

Connexin 43 (Rabbit, 1:200 dilution, sigma) overnight at 4uC.

Followed by three washes, the samples were then incubated with

secondary antibodies, Alexa 488 conjugated anti-mouse IgG

(1:200 dilutions, Sigma) and/or TRITC conjugated anti-rabbit

IgG (1:200 dilution, Sigma) for 1 hour. The sample was then

imaged with a fluorescence microscope (Olympus IX2-UCB,

Canada) or a confocal microscope (Olympus FV5-PSU confocal

with IX70 microscope, Canada).

2D cell culture
To determine if the cells retain functionality following the

sorting, the sorted cells were seeded on polyvinyl surfaces with

isotropic abraded grooves [43,44]. Pre-plated cells served as

controls. The fabrication procedure of the abraded surface was

reported previously [44]. Briefly, the grooved surface was created

by repeatedly abrading a plastic slide uni-directionally with 400

grit super fine sand paper (Norton Premium). The abraded surface

was then cleaned with air gun and sonicated to eliminate residue

debris. Prior to cell seeding, the surface was sterilized with ethanol

and UV exposed overnight followed by coating with 0.2% Gelatin

(Type A from porcine skin, Sigma).

3D cell culture
To assess the ability of the sorted cells to form functional 3-

dimensional tissues, the sorted cells were seeded onto porous

collagen scaffold (3 mm diameter 6300 mm thick, Ultrafoam) at a

density of 108cells/cm3 and cultured in cardiomyocyte medium.

Pre-plated cells served as controls. The culture medium was

replaced daily. On day 3, contractile properties were measured by

field stimulation in an electrical stimulation chamber consisting of

two parallel carbon electrodes spaced 1 cm apart as described

[45]. Stimulation was provided by an external electric stimulator

(Grass s88x). Using monophasic pulses of 2 ms duration and

frequency of 1 pulse per second, the excitation threshold

(minimum voltage at which synchronous contractions of 75% of

the tissue in the field of view can be observed) was first determined.

Then the maximum capture rate (maximum beating frequency)

was determined at 200% of the determined excitation threshold

voltage.

Statistical analysis
Error bars in figures represent standard deviation. Statistical

significance was determined using one-way ANOVA in conjunc-

tion with Tukey’s test. Normality and equality of variance were

tested. p,0.05 were considered significant. A minimum of 3

samples were used per data point.
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