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Abstract

Supereruptions violently transfer huge amounts (100 s–1000 s km3) of magma to the surface in a matter of days and testify
to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and
societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the
Bishop Tuff giant magma body, which erupted ,760,000 years ago and created the Long Valley caldera (California), was
long-lived (.100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the
timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti
profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization
times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on
thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of ,10,000 years,
more typically within 500–3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are
ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than
recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time
necessary for maturation of the crust and establishment of these giant magma bodies.
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Introduction

Supereruptions [1] provide compelling evidence that giant

bodies of low-density, crystal-poor magma – larger than currently

known magma bodies (see [2]) – existed just a few kilometers

below the surface. The generation of such large pools of magma

and their eruption are fascinating phenomena from a scientific

standpoint, but also constitute a major threat to humanity [1,3].

Our knowledge of the processes and consequences related to these

events is limited, largely because the last known supereruption on

Earth occurred ca. 26,000 years ago [1]. The 1815 eruption of

Tambora – the largest known historic eruption – led to the ‘‘Year

without a summer’’ in North America and Europe in 1816 [4].

Yet, the Bishop supereruption, which took place ,760,000 years

ago and created the Long Valley caldera in California [5–7],

ejected at least an order of magnitude more magma, demonstrat-

ing that these giant eruptions can not only cause widespread

devastation at the local scale, but can also have a significant

worldwide impact, particularly on climate [1,3].

The longevity of giant magma bodies has generated continued

interest [8,9]; the Bishop Tuff, in particular, has been the focus of

numerous studies using age-dating (for a recent review, see [10]).

One of the continuing puzzles is that the timescales inferred are

not always consistent with each other [10,11]. While ion probe U-

Pb zircon ages suggest zircon crystallization over .100 ka [10],

whole-grain TIMS U-Pb zircon ages combined with Ar-Ar

sanidine eruption ages suggest millennial timescales [11]; however,

the latter results critically depend on the intercomparability of U-

Pb and Ar-Ar ages, a point of significant contention [12].

In discussion here is also the potential geological significance of

the various results. What are the timescales of assembly of a giant

magma body? What are the timescales of crystallization of such a

magma body? The challenge is that the timescales of interest are

largely inaccessible to geochronology for deposits as old as the

youngest supereruptions. These timescales are accessible, however,

using kinetic markers of magmatic processes (i.e. geospeedometers,

see [13]). We present here direct evidence of the timescales of

quartz crystallization in the Bishop Tuff magma body, and we

compare these timescales to those expected from simple thermo-

dynamic and heat flow calculations. Our results shed light onto the

questions above and have significant implications for the

timescales over which eruptible crystal-poor magma resides in

the upper crust.
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Materials and Methods

Samples
Our sample set includes 6 pumice clasts from the Chalfant

Quarry in the southeastern portion of the Bishop Tuff [14,15], and

5 pumice clasts from the Aeolian Buttes in the northern portion of

the deposit [16]. In the stratigraphic classification scheme of

Wilson & Hildreth [7], our samples derive from fall unit F7 (2

pumice clasts), fall unit F8 (1), ash-flow unit Ig2Ea (3), and ash-flow

unit Ig2NWb (5).

Studied samples encompass much of the spectrum of pumice

density, porosity, crystallinity and textural variations observed in

the Bishop Tuff as a whole [14]. Crystal size distributions for the

samples from Chalfant were previously determined by us [14,15],

and we discuss recent results on crystal size distributions for

samples of the Aeolian Buttes [16,17]. Quartz zoning data

presented here are exclusively for samples from Chalfant. Melt

inclusion shape information derives from observations partly

reported by Anderson et al. [18].

Analytical methods
Samples were studied using a combination of (for details, see

[19]):

(1) Documentation of sizes and shapes of whole quartz crystals

and their melt inclusions; we place whole crystals in refractive

index oil (so as to emphasize the inclusions), and we make

observations under a petrographic microscope; over the years,

we have inspected hundreds of crystals, each one containing

tens of inclusions, so we have made qualitative observations

on thousands of inclusions; we have only characterized in

detail a small number of inclusions;

(2) Cathodoluminescence (CL) imaging of individual quartz

crystals (,100 in total) by electron microprobe at The

University of Chicago, using methods similar to those of

Peppard et al. [20];

(3) Trace-element analysis at low spatial resolution (,25 mm) by

laser ablation mass spectrometry (LA-ICPMS);

(4) Trace-element analysis along traverses and 2D maps (4

crystals studied) at high spatial resolution (ca. 2–10 mm

spacing) using synchrotron x-ray microfluorescence (x-ray

microprobe; see [21]) at the GeoSoilEnviroCARS insertion

device beamline at the Advanced Photon Source (Argonne

National Lab); the x-ray microprobe uses a highly collimated,

synchrotron-based x-ray beam to generate characteristic x-ray

spectra with very low background, which yields 2s uncer-

tainty close to 2.5% for ca. 50 ppm Ti in quartz, using a 5 mm

spot [21];

(5) X-ray tomography of pumice chips at various resolutions (2.5

to 15 mm per voxel), performed at the GeoSoilEnviroCARS

bending magnet beamline, using methods described elsewhere

[15,16].

MELTS calculations
Our ongoing effort to use MELTS to model the evolution of

silicic systems has shown that the current calibration of MELTS

[22] fails to correctly predict the quartz+feldspar saturation surface

as a function of pressure. We recently developed a new calibration

of MELTS, rhyolite-MELTS, optimized for fluid-bearing rhyolitic

magmas [23]. Our calibration takes advantage of the overwhelm-

ing evidence for simultaneous saturation of quartz, sanidine, and

plagioclase in early-erupted Bishop pumice, and the well-

constrained pressure and fluid phase composition and abundance

from melt inclusions [24,25]. Our tests indicate that the

corrections lead to much improved results not only for Bishop

magma, but also for other silicic systems [23].

We use rhyolite-MELTS to constrain the crystallization paths,

and, in particular, the heat of cooling and crystallization for

compositions relevant for the Bishop Tuff. We use early- and late-

erupted bulk pumice (from [6]) and melt inclusion (from [18])

compositions. Calculations using the H2O-CO2 solubility model of

Papale et al. [26] show that both early- and late-erupted melt

inclusion compositions yield fluid-saturation under the conditions

inferred [24,25]. Unfortunately, we are currently unable to model

a H2O-CO2 fluid phase; however, the solubility of CO2 in melts is

so low [27] that the phase relations are virtually unchanged

[28,29]. Accordingly, in our simulations, we add H2O to the initial

compositions until rhyolite-MELTS calculates fluid saturation; the

effect is that the activity of water in the melt is buffered throughout

crystallization, as would be the case in the presence of a H2O-CO2

fluid (for a more extended discussion, see [23]).

Crystallization pressure is determined using rhyolite-MELTS as

the pressure at which melt inclusion compositions show simulta-

neous crystallization of quartz+sanidine+plagioclase under fluid-

saturated conditions (see [23]).

Results

Timescales of quartz crystallization
To assess the timescales of quartz crystallization and their

implications for the longevity of giant rhyolitic magma bodies, we

analyze three lines of evidence: (1) quartz residence times based on

the diffusional relaxation of Ti zoning profiles; (2) melt inclusion

faceting timescales, over which initially round melt inclusions

attain partly faceted shapes; (3) quartz+feldspar crystallization

times as recorded in crystal size distributions. We discuss the

theory behind residence time and melt inclusion faceting timescale

calculation in some detail, and highlight the connection of these

results with those obtained using crystal size distributions, which

are detailed elsewhere [16,17].

Diffusional relaxation times. Quartz crystals are charac-

terized by a volumetrically predominant low-Ti (,40 ppm Ti)

interior portion (Fig. 1). A small fraction (,10%) of crystals also

include a relatively high-Ti (,50 ppm Ti) central core (50–

100 mm in diameter); in the absence of such a core, the interior

portion extends to the center of the observed crystal section.

Finally, a variable proportion of crystals show a 50–100 mm thick

rim with high Ti (,50 ppm Ti), which corresponds to the bright

cathodoluminescence (CL) rims first recognized by Peppard et al.

[20]. Similar rims are observed on sanidine crystals. The origin of

such features is contentious, and to what extent they record

replenishment of the magma body [30,31], sinking of phenocrysts

[18], or decompression of the system [19,32] is yet to be

established. Nonetheless, quartz crystallization timescales can be

inferred using diffusional relaxation times of Ti zoning in quartz

from early-erupted Bishop pumice (Fig. 1).

Residence time calculation. The sharpness of contacts between

chemically distinct zones in crystals can constrain the residence

times of these internal contacts, and the durations and rates of

crystal growth. The rationale is that once established, concentra-

tion gradients tend to relax by diffusion (e.g. [33]); diffusivities are

such that relaxation is significant while at magmatic conditions,

but becomes negligible after eruption, such that timescales and

rates relevant to magmatic processes can be retrieved. In the

present case, the problem is particularly simple because quartz has

uniform major element composition, and there is no need to

Longevity of the Bishop Giant Magma Body
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consider potential effects of composition on the partition or

diffusion coefficients.

Diffusion of Ti in quartz is particularly useful for the problem of

interest here, as (1) diffusion rates have been determined

experimentally (i.e. DTi
Qtz = 8.05610222 m2 s21 at 750uC; see

[34]), and are adequate to constrain timescales in question; and (2)

Ti contents in quartz, in concentrations of 10 s of ppm, while not

trivial to measure, can be measured with sufficient precision at the

micrometer scale using the x-ray microprobe. Because large

variations in Ti concentration in quartz correlate well with large

changes in CL intensity [19,35], CL images and profiles can, in

favorable instances, be used as a proxy for Ti variations. We use

both Ti profiles obtained using the x-ray microprobe and CL

intensity profiles derived from CL images, which allows us to study

a larger number of crystals than would be possible with Ti profiles

alone. Profiles were selected so as to be approximately orthogonal

to the contact between different zones; departures from orthog-

onality are small and their effect on calculated times can be

effectively neglected.

We use a 1D diffusion model to determine the time interval

during which two zones of distinct compositions within a crystal

were in contact with each other. We call this the contact residence

time. We assume constant but different initial compositions in the

two zones of the crystal at time t = 0. The predicted composition

c(x) as a function of position x along the profile is described by

[36]:

c xð Þ~ 1

2
erfc

x{xc

2
ffiffiffiffiffiffi
Dt
p

� �
� c {?ð Þ{c z?ð Þ½ �zc z?ð Þ ð1Þ

where erfc is the complementary error function, xc is the position

of the initial contact between the two zones (e.g. the position of the

initial jump in composition), D is the diffusion coefficient, t is time,

and L~2
ffiffiffiffiffiffi
Dt
p

is the characteristic diffusion length scale. The

predicted composition described by Equation 1 is fit to the

observations by iteratively adjusting xc, c(2‘), c(+‘), and L so as

to minimize the sum of the squares of the differences (SSD)

between observed and predicted composition. Using the known

diffusivity D, we infer the diffusion time from the best-fit value of

L. This fitting procedure makes it possible to recover estimates of L

that are smaller than the spacing of the profile. We test whether L

is appropriately resolved by varying its value about the best-fit

value; when the sum of the square of the differences between

observed and fitted curves increases with both larger and smaller

values of L, we conclude that the diffusion time is resolved, even if

L is smaller than the sampling interval; alternatively, this test may

Figure 1. Diffusional relaxation of Ti in quartz. (a–b) X-ray profiles and cathodoluminescence (CL) images of select quartz crystals with bright-
CL, high-Ti cores; residence times and growth rates derived from Ti traverses (white lines) are presented. Analytical points shown by open symbols,
including analytical uncertainties (bars). Best fit curve (Equation 1) is shown in gray, calculated so as to minimize the sum of the squares of the
difference between calculated and observed values. Calculated residence times are also shown. (c) CL image detailing core-rim zoning of a large
quartz crystal; image of whole crystal shown in inset. White line corresponds to the location of CL traverse displayed in the bottom, with contacts
between different zones indicated in black. Residence times in years and derived growth rates indicated by numbers on top of arrows. Notice that
innermost contact has residence time close to 3,000 years. Calculated growth rates for two interior zones are close to 10214 m/s, while growth rate
for rim is ,10213 m/s.
doi:10.1371/journal.pone.0037492.g001

Longevity of the Bishop Giant Magma Body
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show that reduction of the diffusion distance leads to no change in

the SSD, and the obtained value is simply a maximum estimate.

Error propagation. It is of great interest to assess the errors

associated with the calculated residence times. In order to derive

an expression for the uncertainties associated with the residence

time t, we re-write the equation L~2
ffiffiffiffiffiffi
Dt
p

as an explicit function

of temperature (T) by using the Arrhenius relation D = Do exp

[2E/RT]):

t~
L2

4Do exp {E=RTð Þ ð2Þ

where Do is the pre-exponential factor and E is the activation

energy for diffusion, both of which have been determined

experimentally [34]. Error propagation shows that:

st

t

� �2

~
E

RT

� �2
sE

E

� �2

z
sT

T

� �2
� �

z 2
sL

L

� �2

z sln½D0�

� �2

ð3Þ

Uncertainties on E and ln(D0) come directly from experiments (i.e.

E = 273612 kJ mol21, sE/E = 4.4%, log[D0] = 27.15460.525,

sln[D0] = 1.2; see [34]), while the other parameters have to be

estimated. Best estimates for the crystallization temperature of the

Bishop magma are in the range 720–780uC [6,37]. We choose a

temperature of 750uC, and an uncertainty of 15uC (1s), such that

the resulting 95% confidence interval matches the estimated T

range. This calculation yields sT/T = 1.5%, much smaller than

the other contributions. Uncertainties on L derive from the fitting

procedure. For Ti profiles, a Monte Carlo procedure was used to

estimate the effect of the uncertainty at each point on L, which

results in estimated errors in L of ca. 10–50%. Because the focus is

not on the individual dates, but rather on the best estimate for the

age of a single event recorded by several profiles, the standard

deviation of the mean is a more appropriate measure of

uncertainty; the standard error is typically between 1 and 4%.

For the conditions of interest, the factor (E/RT)2 is ca. 1000,

such that even though the uncertainty on L is much larger than

those on E, T, and ln[D0], all terms are potentially important.

Even if sT is chosen to be 2 or 3 times larger than our choice, its

effect on the final uncertainty is relatively minor, and the

contributions of uncertainties on E, ln[D0] and L dominate. For

(sE/E) = 4.4%, (sT/T) = 1.5%, (sL/L) = 50%, and sln[D0] = 1.2,

the uncertainty on t becomes (st/t) = 215%; for (sL/L) = 5%, (st/

t) = 190%. Even if (sL/L) could be improved, (sE/E) and sln[D0]

are such that the total uncertainty would not be better than

,190%, showing that our estimates are of appropriate precision

for evaluating the parameters of interest. Furthermore, even

though these uncertainties are large, our knowledge of the

timescales being investigated is minimal, and the estimates remain

meaningful. Importantly, none of the conclusions drawn are

affected by the particular choice of parameters used.

Relaxation times and growth rates. We focus here on core-interior

contact residence times, while results for interior-rim contacts,

which have been previously studied [31,38], will be detailed

elsewhere. These core-interior contact residence times mark – to a

good approximation – the onset of crystallization of individual

quartz crystals; this is true regardless of how complex the

crystallization history may have been (e.g. affected by resorption

events), as long as magmatic temperatures were sustained; our

calculations are robust provided the boundary conditions used are

valid.

Core-interior contact residence times were estimated primarily

using Ti profiles of a selected number of crystals, but also using CL

images of other crystals. The most important results are shown in

Fig. 1 and Table 1. Typical values for the core-interior residence

times are 500–1,000 years, for crystals ca. 1 mm wide (Fig. 1a–b).

The largest calculated time is that shown in Fig. 1c, i.e. ,2,700

years, for a crystal ca. 2 mm wide. Our analysis suggests that

uncertainties are close to 200%, leading to a 95% confidence

interval with upper bound close to 13,000 years for the maximum

time we estimate, and more typically ,5,000 years.

Our core-interior contact residence times are 1–2 orders of

magnitude larger than – and thus consistent with – the quartz rim-

interior residence times of Wark et al. [31]. They are, however,

inconsistent with the results of Morgan & Blake [38], who

calculate sanidine rim-interior residence times of ,200 ka; more

recent data on quartz and sanidine zoning [19,31] shows zoning

profiles that are much sharper than those of Anderson et al. [18]

used by Morgan & Blake [38], putting into question their

calculated timescales.

Importantly, because the growth distance is known for the

interior regions, the contact residence times can be used to

constrain average growth rates, an important parameter for which

estimates are entirely lacking for quartz in large-volume silicic

systems like the Bishop Tuff. The agreement between the interior

growth rates is remarkable, with all estimates close to 10214 m/s

(Fig. 1; Table 1). These values fall within the constraints placed by

the analysis of Anderson et al. [18], and are also in good

agreement with growth rates for plagioclase phenocrysts in much

smaller dacitic systems [39]. The agreement between these growth

rates suggests that the crystallization process was rather mono-

tonic, with no sharp discontinuities due to recharging and

resorption events – which is consistent with the evidence for

phenocryst homogeneity within individual pumice clasts of the

Bishop Tuff [6].

Melt inclusion faceting times. Quartz crystals from the

Bishop Tuff are rich in melt inclusions (now glass), which have

been extensively studied by Anderson and co-workers (e.g.

[18,24,25]), among others (e.g. [30]). One striking observation is

that melt inclusions show a variety of shapes, from round to

faceted, sometimes within the same crystal (Fig. 2). For instance,

Anderson et al. [18] observed that ‘‘Several late-erupted quartz

phenocrysts have clear, faceted inclusions located far from crystal rims and

round, brown inclusions near the rims of the same crystals’’. Their

observations are suggestive of shape maturation (Fig. 3), during

which initially round melt inclusions gradually become faceted (i.e.

assume negative crystal shapes) by dissolution and reprecipitation

[40–42].

Importantly, many of the larger central melt inclusions are

round [18], indicating that only smaller melt inclusions became

faceted. This coexistence of round and faceted melt inclusions

reveals that the timescale of melt inclusion faceting is similar to the

residence time of quartz hosts. Faceting depends on diffusion [42],

particularly of Si atoms in the case of quartz, such that significant

faceting occurs only at relatively high (i.e. magmatic) temperatures.

Hence, determination of melt inclusion faceting times ultimately

provides an independent assessment of the longevity of the Bishop

magma.

Kinetics of melt inclusion faceting. Melt inclusion faceting is the result

of surface free energy minimization. Faceting can be spontaneous

if the increase in total surface area – due to conversion from

spherical to polyhedral shape – is more than compensated by the

accompanying reduction in specific surface energy due to

replacement of curved surfaces by flat surfaces [43]. The kinetics

of melt inclusion faceting has not been treated in detail, and a full

treatment is beyond the scope of this presentation. What we seek is

a simplified treatment that can reveal an order of magnitude

Longevity of the Bishop Giant Magma Body
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assessment of the time required for melt inclusion faceting and,

consequently, of the residence times for quartz crystals in the

Bishop magma.

We note that the problem involves lateral diffusion of material

from the spherical cap that is gradually dissolved into the corner

region that progressively forms by reprecipitation (Fig. 3b). We use

the volume of the spherical cap that sticks out of the flat surface of

the polyhedron of same volume as an estimate of the total volume

that needs to be diffused; this is a limiting case that yields

maximum faceting time, as the equilibrium shape may be a

rounded – rather than a perfect – polyhedron [44]. We then use

Fick’s first law in combination with the Thomson-Freundlich

equation to derive an approximate kinetic expression – similar to

the solution for coarsening of a single particle in a matrix [45].

The volume change DV can be calculated as the volume of the

12 spherical caps that stick out of the flat surfaces of a hexagonal

bipyramid of side a and height h:

DV~4p(r{d)2(2rzd) ð4Þ

where r is the radius of the sphere and d is the distance between

the center of the bipyramid and a flat surface, given by:

d~h

ffiffiffi
3
p

2

h2

a2
z

3

4

 !{1
2

ð5Þ

Because we assume equal volumes for the bipyramid and the

sphere, we find that:

a~
4
ffiffiffi
3
p

9
p

a

h

 !1
3

r ð6Þ

which shows that the volume to be diffused depends only on the

size of the original inclusion (r) and the ratio a/h. For quartz, we

use a value of 0.909 for a/h.

The flux equation simply states that material transport is by

Table 1. Residence times of internal contacts, widths, growth times and growth rates of selected quartz crystals (two of which
shown in Fig. 1), as derived from Ti traverses.

CRYSTAL CORE-INTERIOR CONTACT

Label Fig. 1 Residence timea Interior width Interior growth timeb Interior growth ratec

(years) (mm) (years) (10214 m/s)

F815-Qtz-17 (a) 775 [3747] 400 765 1.5 [0.3]

IbA1-Qtz-503 (b) 923 [4461] 334 922 1.0 [0.2]

IbA1-Qtz-518 512 [2477] 260 506 1.3 [0.3]

aQuantity in brackets is the maximum residence time: t+2st.
bInterior growth time excludes the time estimated for the residence time for rim-interior contacts in crystals with bright-CL, high-Ti rims (Gualda et al., unpublished
data); these times are short enough that interior growth rates would be unaltered even if they were neglected.
cQuantity in brackets is the minimum growth rate obtained using t+2st as time.
doi:10.1371/journal.pone.0037492.t001

Figure 2. Examples of melt (glass) inclusions in quartz at
different stages of faceting. (a) Quartz crystal in refractive index oil
(cross-polarized light) showing several melt inclusions. (b–d) Detailed
views of the three largest inclusions; scale bar is 50 mm and applies to
all 3 images; area, radius (of a circle with same area), and faceting time
are indicated for each inclusion. Note that (b) is non-faceted, (c) is partly
faceted, and (d) is faceted. That only (d) is faceted suggests that crystal
residence times are ,1,500 years. Images (a–d) are from Anderson et al.
[18], reproduced with permission.
doi:10.1371/journal.pone.0037492.g002

Figure 3. Shape evolution due to melt inclusion faceting. (a)
Shape change of a melt inclusion inside a host crystal as a function of
time due to faceting; initial inclusion is spherical, but with time gets
transformed into a polyhedron with rounded edges; with sufficient
time, inclusion may become a perfect anticrystal. (b) Evolution of
shapes emphasizing the role of diffusion (green arrows) in transporting
material to achieve faceting.
doi:10.1371/journal.pone.0037492.g003

Longevity of the Bishop Giant Magma Body
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diffusion [45]:

dV

dt
~J A~{D

DC

r
4pr2 ð7Þ

where V is volume, t is time, J is the flux of material per unit area

and A is the area of the particle such that JA is the total flux of

material through the surface of the particle, D is the diffusion

coefficient, and DC is the concentration difference that drives the

process – in units of mass or mol fraction.

The Thomson-Freundlich equation [46] describes the quantity

DC as a function of particle size:

DC~
2C0sV

RT

1

r
ð8Þ

where C0 is the solubility of a particle of infinite radius, s is the

surface energy, V is the molar volume of the phase of interest, R is

the ideal gas constant, and T is temperature.

Combining Equations 7 and 8, and assuming that the scaling is

appropriate for non-infinitesimal changes, we can calculate the

faceting time as:

Dt~
{RT

8pDC0sV
DV ð9Þ

The solution to Equation 9 is plotted in Fig. 4, where we used the

somewhat conservative values shown in Table 2.

Error propagation. We use error propagation to assess how

sensitive the computations are to uncertainties in the various

parameters in Equation 9, which results:

st

t

� �2

~ 1{
E

RT

� �2 sT

T

� �2

z
E

RT

� �2 sE

E

� �2

z
sV

V

� �2

z
sC0

C0

� �2

z
ss

s

� �2

z
sV

V

� �2

z sln½D0�

� �2

ð10Þ

For the conditions of interest (Table 2), (E/RT)2 = 138 and (12E/

RT)2 = 115, such that the uncertainties in E and T are of much

greater importance than what the values of sX/X may suggest. An

analysis similar to that carried out above for diffusional relaxation

shows that the final error, which is ca. 125%, is dominated by the

uncertainties in E and ln[D0].

Faceting times. Our calculations of faceting times show that melt

inclusions with 50, 100, and 175 mm radius would become faceted

in as little 200, 1,700, and 10,000 years, respectively (Fig. 4). That

the largest central melt inclusions are not faceted suggests that

quartz residence times in the Bishop magma were well below

10,000 years.

Specific results for the melt inclusions shown in Fig. 2 are also

plotted in Fig. 4. The non-faceted inclusion (Fig. 2b), which has an

equivalent radius (i.e. radius of a circle with the same area as the

inclusion) close to 100 mm, suggests that it was entrapped less than

1,500 years before eruption. The faceted and partially faceted

inclusions (Fig. 2c–d), on the other hand, with equivalent radii

,70–75 mm, suggest residence times in excess of ,600 years.

Even if, for sake of argument, we assume that t values are

underestimated by 250% (+2s), our conclusions do not signifi-

cantly change, as illustrated in Fig. 4. In this case, instead of a

residence time of 600–1,500 years, we would infer a residence time

of 2,200–5,300 years for the crystal in Fig. 2, and even inclusions

with 170 mm radius would become faceted in ca. 10,000 years.

Crystal size distributions. Crystal size distributions in rocks

are typically characterized by a monotonic decrease in the number

density of crystals with size, with numerous small crystals and few

large crystals (see [47] and references therein, among many

others). Due to this pronounced decrease in crystal number with

increasing size, we use bin sizes that increase by a factor of 2 with

increasing size, similar to the practice employed in sedimentology;

this yields more robust crystal size distributions, in which the

uncertainties in each bin size are similar to each other, rather than

quickly increasing with size as would happen with equal bin sizes

Figure 4. Melt inclusion faceting time. Time required for faceting
versus inclusion radius plot for conditions relevant for Bishop magma
crystallization. Vertical lines correspond to inclusion sizes estimated
from Fig. 2. Using our best estimate of faceting time for the observed
inclusions, we constrain the timescale for residence of the host crystals
to be between ,600–1,500 years. Even if faceting is significantly slower
(t+2st curve), residence times are within the range ,2,200–5,300 years.
doi:10.1371/journal.pone.0037492.g004

Table 2. Parameters used and estimated uncertainties for the
computation of melt inclusion faceting time as a function of
inclusion radius (r).

X sX Unit sX/X Source

r 100 - 1026 m

DV 4.8 10213 - m3 ,10%a

R 8.31451 - J/(K?mol) -

T 750 15 uC 2%

C0 0.7 ,0.2a . ,30%a

s 0.02 0.01 J/m2 50% [71]

V 23.7 1.0 1026 m3/mol 4% b

H2O 3 - Wt. %

D0 25.8 1029 m2/s [72]

ln[D0] 217.5 0.70 4% [72]

E 126.5 8.5 10+3 J/mol 7% [72]

D 1.28 1.06 10214 m2/s 83% [72]

(E/RT)2 132.6 . . . .

Dt 1,242 1,260 a 101%

aApproximate values.
bCalculated using the CORBA Phase Properties applet (http://ctserver.ofm-
research.org/phaseProp.html). Retrieved Nov 12, 2007. Calculations based on
data from [73].
doi:10.1371/journal.pone.0037492.t002
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(for details, see [48]). The crystal size distributions reveal a two-

stage growth history for quartz and sanidine [17], with crystals

.200 mm recording a simple history of growth under small

supersaturation (undercooling) with limited nucleation, character-

istic of the pre-eruptive crystallization of a giant magma body with

large thermal inertia [14]. Both early- and late-erupted Bishop

pumice display such trends (Fig. 5) [14,16,17]. As long as growth

rates can be inferred, quartz crystal size distributions yield

additional information on the timescales of crystallization [47],

and also provide clues to the significance of these timescales.

Theoretical and observational considerations [47] provide

compelling evidence that the usual exponential trends (linear in

semi-log plots of population density versus size) require linear

growth rates with time, as inferred above using relaxation times.

That being the case, the largest crystals present are the oldest, and

knowledge of growth rates and maximum crystal size leads to

estimates of crystal growth time. While determination of maxi-

mum size is plagued by extremely incomplete sampling of the

existing .600 km3 of erupted magma, crystal size distributions

provide constraints on the abundance of such unlikely large

crystals. Our data suggest that crystals up to 2 mm in diameter

comprise at least 95% of the total crystal mass, and crystals larger

than 3 mm (none found in our samples) are exceedingly rare,

corresponding to ,0.1% of the crystal mass. The growth rates

above imply maximum growth times of less than 5,000 years even

for 3 mm crystals, such that .99% of the observed crystallization

would take place within this time frame.

Additional evidence for the timescales of quartz crystallization

derive from crystal size distributions, given that the slope in semi-

log space decreases systematically with time [47,49]:

ln(n)~{
1

Gt
Lzln(no) ð11Þ

where n is population density (i.e. number of crystals per mass per

bin size), L is size, G is crystal growth rate (in length per time) and

no is the intercept at L = 0. We calculate best-fit exponential curves

to quartz crystal size distributions for pumice from Chalfant [14]

and to quartz+feldspar size distributions for pumice from Aeolian

Buttes [16,17]; using the growth rates calculated above, we infer a

duration of the crystallization event between 400 and 2,500 years

(Fig. 5) [17].

Our calculations based on crystal size distributions thus suggest

residence times for quartz crystals in the millennial scale, in

remarkable agreement with our estimates based on diffusional

relaxation and melt inclusion faceting, lending confidence to our

results. Due to the simultaneous saturation in quartz and two

feldspars characteristic of the Bishop magma (see below), this time

frame also includes the vast majority of feldspar crystallization,

leading to the conclusion that the Bishop existed as a large-

volume, crystal-poor magma body for a maximum of only a few

thousand years.

Thermodynamic and heat flow modeling
Different lines of evidence presented above suggest that quartz

crystallization in the Bishop magma lasted only a few thousand

years, and most of the crystallization occurred within the final

1,000 years before eruption. One significant question is whether

such timescales are consistent with heat flow requirements, i.e.

with the need to transport the heat of cooling and crystallization

through the country-rocks.

Heat of cooling and crystallization constraints. It has

long been argued that the Bishop magma is ‘‘eutectoid’’ in nature

(e.g. [18]). In particular for early-erupted Bishop pumice, (1) the

coexistence of quartz, sanidine, plagioclase, biotite, magnetite,

ilmenite, and a H2O-CO2 fluid phase, and (2) the similarity in

major-element composition between bulk pumice [6] and melt

inclusions in quartz [18] strongly argue for nearly invariant

behavior during crystallization.

Using rhyolite-MELTS [23], a modified calibration of MELTS

that better predicts the quartz+feldspar saturation surface as a

function of pressure, we have simulated the crystallization of

representative Bishop compositions under various conditions. In

all cases, the expected nearly invariant behavior is well-captured

by rhyolite-MELTS (see detailed discussion in [23]); once the

system becomes multiply saturated with quartz, sanidine, plagio-

clase, and fluid, crystallization becomes essentially isothermal, with

Figure 5. Crystal size distributions. (a) Whole-quartz crystal size
distributions for pumice from Chalfant Quarry, obtained by a crushing,
sieving and winnowing procedure (data from [14]). (b) Quartz+feldspar
crystal size distributions for pumice from Aeolian Buttes, obtained by x-
ray tomography (data from [16,17]). (c) 3D view of pumice chip (sample
AB-6203F), showing euhedral quartz and feldspar grains (green),
magnetite (blue), and pyroxene6biotite (white); notice the overall
trend of decreasing numbers of crystals with increasing size; sample is
approximately cylindrical, field of view ,9 mm (see Movie S1 for
animated version). In (a) and (b), only crystals larger than 35 mm are
shown. Crystal size distributions are well-approximated by exponential
distributions (dashed lines). Using growth rates of ,10214 m/s (as
calculated above), we calculate crystallization times between 430 and
2,500 years, as indicated; only maximum and minimum estimates
shown. Inset in (a) shows slopes of distributions with crystallization
times of 10–100,000 years (for G = 10214 m/s), demonstrating that
crystallization times in excess of 10,000 years would yield effectively
horizontal size distributions at the scale used, in contrast with the
crystal size distributions obtained by us.
doi:10.1371/journal.pone.0037492.g005
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.50 wt. % crystallization over less than 1uC (Fig. 6). For early-

erupted Bishop, the 0.5–12 wt. % crystals typically observed in

pumice [6,14,50] require ,1uC cooling, while late-erupted Bishop

can achieve typical 12–25 wt. % crystals in ,10uC (Fig. 6).

The importance of this nearly isothermal behavior is that the

amount of heat that needs to be withdrawn is essentially limited to

latent heat of crystallization, which rhyolite-MELTS calculates to

be only 20–30 J/g (see Fig. 6). As a point of comparison, cooling

these magmas by 50uC would produce an additional ,65–70 J/g

of heat, making the total amount of heat to be transported 3.5–4

times larger than the nearly isothermal case. Consequently, the

nature of the heat-flow problem is significantly influenced by the

invariant aspect of crystallization. Furthermore, nearly invariant

crystallization effectively locks the system at a fixed temperature,

given that temperature excursions are only possible after the

nearly invariant phase (quartz, in this case; see Fig. 6) is completely

resorbed.

Heat flow problem. Our rhyolite-MELTS simulations not

only constrain the total heat of cooling and crystallization required

to attain the observed compositions and crystal contents, but also

confirm our expectation of nearly invariant crystallization. To

contrast the behavior of invariant and non-invariant magmas, we

employ well-known analytical solutions [51], which, rather than

describing the systems in great detail, capture the essence of the

problems of interest.

The Bishop magma body can be reasonably approximated as a

2 km thick body [18,50] losing heat from both top and bottom.

Importantly, the evidence accumulated to date for the Bishop Tuff

suggests that renewed injections of mafic or felsic magma –

common in many systems (e.g. [52]) – did not play a major role

during crystallization of the Bishop magma body; no direct

evidence has been found to date of co-erupted mafic material (e.g.

[50]), and felsic magma additions during crystallization are

inconsistent with the observed homogeneity of phenocrysts [6],

except for late additions [50] possibly connected with the

transition towards eruption [31]. Accordingly, we consider a

1 km thick magma column emplaced instantaneously in country-

rock at 400uC, with heat loss solely through the top of the column

(or, equivalently, a 2 km thick column with heat loss from top and

bottom). We explore 3 different solutions (parameters used listed in

Table 3):

(1) Continuous Source (Section 2.4 of [51]). In this case (Fig. 7a), an

invariant magma (pure substance or eutectic) is emplaced at

the invariant temperature (assumed to be 750uC). Crystalli-

zation is dispersed through the melt and the temperature of

the magma is kept constant. Heat transport through the

magma is fast compared to heat transport through the

country-rock. No correction is made for changes in the

thermal properties of the magma due to gradual crystalliza-

tion, but the effect is minimal given the small crystallization

interval considered here. Progress of crystallization can be

calculated from the heat flux at the boundary, given that all

heat lost is latent heat.

(2) Solidification Front (Section 11.2.IV of [51]). This case (Fig. 7b)

is similar to the previous one, except that crystallization takes

place along the melt-rock contact. Initially, melt is in direct

contact with country-rock, but melt solidifies completely at the

contact, and the melt-rock contact migrates inward as

crystallization proceeds. While the new solid can have distinct

thermal properties, we assume the limiting case in which the

thermal properties of the new solid are the same as in the

original melt. Progress of crystallization is calculated from the

rate of migration of the melt-rock boundary.

(3) Lovering-type [53]. In this case (Fig. 7c), magma is non-

invariant. The effect of latent heat is accounted for by

adjusting the specific heat so as to cause latent heat to be

released gradually with cooling (see Table 3). In effect, this

case is the antithesis of invariant crystallization, with

crystallization proceeding linearly with temperature.

Interestingly, solutions (1) and (2) are two end-members of

invariant crystallization. In (1), crystallization is dispersed within

the melt, with no gradient in crystallinity within the magma, while

in (2), melt is always crystal-free and crystallization takes place

along the walls. Crystallization of an invariant magma is likely to

be intermediate in character between these two models.

Heat flow and crystallization timescales. Application of

the analytical solutions discussed above (Fig. 7) shows that both

Figure 6. Thermodynamic and heat flow modeling results.
Temperature (uC) versus enthalpy change (J/g; top panel) and versus
abundance (wt. %; bottom panel) plot shows results of MELTS [22,23]
simulations. Initial composition is average late-erupted pumice
composition from Hildreth [6]. Simulation assumes equilibrium
crystallization at 175 MPa, under fluid-saturated conditions (see [23]),
in agreement with melt inclusion data [18,24]. Note short crystallization
interval (,10uC). Nearly invariant condition is reached at 756.1uC when
the system becomes saturated in quartz (in addition to fluid, sanidine,
magnetite, and plagioclase), after which point crystallization is nearly
isothermal. Quartz crystallization effectively locks the system at the
nearly invariant temperature, given that, upon heating, temperature
excursions above the nearly invariant temperature are only possible
after complete resorption of quartz.
doi:10.1371/journal.pone.0037492.g006
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kinds of invariant crystallization lead to rather quick crystalliza-

tion, with 25 vol. % crystals being attained within the first 1,000

years of evolution (Fig. 8). In contrast, in the non-invariant case,

crystallinity is a function of temperature, and a continuum of

crystallinity develops within the magma. Extended periods of time

(.10 ka) are needed to start cooling the bottom of the column, by

which point ,1/3 of the column is fully crystallized, less than half

has ,25 vol. % crystals, and the bottom of the column is

essentially crystal-free. Even for a point lying at half distance from

the initial melt—country-rock contact, crystallization rates are

much slower than for the invariant case, requiring ca. 8,000 years

to attain 25 vol. % crystals (Fig. 8). Not only is non-invariant

behavior inconsistent with our rhyolite-MELTS simulations, but

the evidence for a continuum in crystal contents is entirely lacking

in the Bishop Tuff. And, the relatively narrow range of crystal

contents [14,50] and the compositional homogeneity of pheno-

crysts [6] observed are quite consistent with nearly invariant

crystallization.

The contrast in timescales between invariant and non-invariant

magmas can be understood based on the differences between the

two kinds of heat flow problems. For invariant magmas, all heat loss

promotes crystallization, given that there is no sensible heat

generation within the magma. Further, with magma temperatures

buffered at the invariant temperature, thermal gradients at the

magma-rock contact are steeper in the invariant case than the

thermal gradients within the magma in the non-invariant case. It

results that crystallization proceeds a lot more quickly in the

invariant case. That invariant magmas can crystallize as much as 25

vol. % in ca. 1,000 years lends significant support to the timescales

of crystallization estimated based on quartz geospeedometry.

Discussion

Implications for the longevity of giant magma bodies
Geospeedometry results suggest quartz crystallization on

millennial timescales, and heat flow considerations suggest that

these are the expected timescales for the problem of interest. These

timescales contrast drastically with radiometric results (e.g. [10])

and with timescales derived from modeling of basalt-to-rhyolite

crystallization trajectories using MELTS [54].

Ion probe U-Pb dating suggest zircon crystallization spanned

over .100,000 years [10]. In contrast, TIMS U-Pb zircon

crystallization ages combined with Ar-Ar eruption ages suggest

that zircon crystallization within the final millennia of the Bishop

magma history was substantial [11]; these results are contentious

given the difficulties inherent in comparisons of U-Pb and Ar-Ar

ages [12], and their potential significance has not been explored.

The contrast between these zircon timescales suggests that they are

Table 3. Parameters used in heat-flow simulations.

Property Country rock Liquid

(Units) (CGS, 6C) (CGS, 6C)

r 2.6a 2.1c

c 0.21a 0.32c

K 0.006b 0.0036b

k= K/(r*c) 0.011 0.0058

L – 35c

c* = L/50+c – 1.02d

aCarslaw & Jaeger [51].
bWhittington et al. [74].
cRhyolite-MELTS simulations.
dOnly for Lovering-type simulation.
doi:10.1371/journal.pone.0037492.t003

Figure 7. Results of heat-flow simulations showing the thermal
evolution of a 1 km thick, semi-infinite magma column. Initial
thermal profile is a step-function, with hot (750 or 780uC) magma on
the left side and cool (400uC) country-rock on the right side. We use
three different analytical solutions: (a) Continuous source, in which
crystallization is dispersed throughout the invariant magma, and the
magma—country-rock interface is maintained at its original position;
changes in the thermal properties of the magma as a function of
crystallization are neglected. (b) Solidification front, in which crystalli-
zation of invariant magma takes place from the magma—country-rock-
interface inward; as a limiting case, thermal properties of the solidified
zone are taken to be the same as those of the liquid. (c) Lovering [53], in
which the specific heat of the melt (c1) is adjusted so as to simulate
crystallization taking place linearly over the course of 50uC cooling; no
correction is made to account for changes in thermal properties of
initially molten zone as a function of crystallization. Simulation times as
indicated; thermal profiles are shown every 500 years.
doi:10.1371/journal.pone.0037492.g007
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in fact recording different facets of the evolution of the Bishop

magma. Much of the success in using zircon as a geochronometer

stems from its ability to survive through time, but we suspect that it

is this unparalleled survival capacity that makes it a poor recorder

of the lifetimes of large pools of crystal-poor magma. In order to

generate a giant body of crystal-poor magma like the Bishop

magma body, it is necessary to partially melt large amounts of

crust [55] or to accumulate and crystallize large amounts of

parental magma [56], and to segregate this melt from crystal-rich

mush, which almost certainly leads to a very dynamic environment

characterized by waxing and waning of the melt pool through time

[55,57,58]. In such a scenario, it is not surprising that zircon will

record a much more protracted history, as slow dissolution rates

may limit resorption [59]. Further, zircon extraction from mush

may be facilitated by its small size, leading to complex zircon

populations [60]. It is thus much more likely that zircon in fact

records the construction of these giant bodies of magma (see

[61,62] and references therein), which seems to take place over

tens to hundreds of thousands of years, in agreement with recent

studies of zircon ages in younger volcanic deposits [63,64]. Quartz,

on the other hand, records the crystallization of these large masses

of segregated evolved melt in hundreds to thousands of years from

a virtually crystal-free state.

Crystallization timescales on the order of millions of years have

been recently suggested based on MELTS calculations and simple

heat balance considerations [54]. Fowler & Spera [54] consider

the derivation of high-silica rhyolite from basaltic parental

magmas, despite the complete lack of evidence of such derivation,

or even for interaction between mafic and felsic magma in the

Bishop Tuff. They compute evolution over .400uC, with resulting

large changes in melt and mineral compositions, none of which are

recorded in Bishop Tuff minerals [6], melt inclusions [18,25], or

eruptive products [50]. The significance of their results, in the

absence of physical evidence, is thus questionable. On a broad

sense, if high-silica rhyolites derive from mafic magmas through

step-wise fractionation (e.g. [56]), it is possible that the analysis by

Fowler & Spera [54] provides information on the timescales

required for fractionation, and it is intriguing that these timescales

could be as short as ,130 ka [65], similar to the timescales

recorded by zircon. If, on the other hand, high-silica rhyolites are

to a significant extent products of crustal recycling (e.g. [55]), then

the timescales derived from the exercise conducted by Fowler &

Spera [54] are meaningless. In any case, we argue that their

analysis does not yield information on the longevity of a large body

of crystal-poor rhyolitic magma, which our data strongly suggest to

have evolved on millennial timescales.

Our interpretation has fundamental implications. The Bishop

magma is characteristically zoned in many respects [6], with this

zonation most likely reflecting crystal fractionation processes

[66,67]. The homogeneity of phenocryst compositions in individ-

ual pumice clasts implies that the magma body zonation predates

crystallization [6,50] and was established during emplacement or

segregation of magma from a crystal mush. Evidence to date

suggests that the Bishop magma was oversaturated in volatiles and

contained .15 vol. % pre-eruptive bubbles in its uppermost

regions [24]. In this context, the difficulty is not how to trigger a

supereruption as much as it is how to prevent one from happening,

especially with the timescales inferred from zircon geochronology.

With quartz crystallization, bubble exsolution would also occur,

with the potential consequence that the system could quickly

evolve towards an eruptible state, preventing itself from residing in

the crust for extended periods of time. The relatively long repose

times – frequently hundreds of thousands of years [3] – observed

in many volcanic centers are often taken as an indication of the

longevity of giant magma bodies. Short repose times between

supereruptions in some areas [68–70] provide circumstantial

evidence that giant magma bodies can evolve quickly. In this

sense, while zircon geochronometry indicates that it may take

hundreds of thousands of years for the crust to be capable of

accumulating and segregating large amounts of crystal-poor

magma, our data suggest that the giant pools of eruptible magma

thus formed are rather ephemeral features, which quickly and

effectively destroy themselves during supereruptions.

Conclusions
We use four lines of evidence to infer the timescales of

crystallization of the Bishop Tuff magma body:

1. Timescales of relaxation of Ti profiles in quartz suggest quartz

residence times of ,500–3,000 years; crystal size distributions

suggest that .99 wt. % of crystals present would have

crystallized within this timeframe;

2. The coexistence of round and partly faceted (negative crystal

shape) melt inclusions in quartz suggest that quartz residence

times are similar to the timescale for melt inclusion faceting;

calculated faceting times suggest quartz residence times of

,500–1,500 years;

3. Using growth rates constrained by Ti relaxation times and

known crystal sizes, we calculate crystallization times based on

crystal size distributions of ,500–2,500 years;

4. Thermodynamic considerations suggest crystallization of

nearly invariant magma under essentially isothermal condi-

tions; crystallization of such magma would be particularly

efficient due to the absence of sensible heat contributions and

steep thermal gradients, resulting in crystallization times of

,1,000 years.

Figure 8. Evolution of crystallinity with time for the three
solutions presented in Fig. 7 and discussed in the text. Notice
the dramatic differences in behavior between the solutions for invariant
magmas (Continuous Source and Solidification Front) and for non-
invariant magmas (Lovering). Curves for Lovering-type crystallization
are for the center and the bottom of the 1 km column. In particular,
notice that significant crystallization (e.g. 25 vol. %) is attained in ,1 ka
for invariant magmas, in accordance with geospeedometry estimates
presented in the text. Much longer timescales are required to cause
significant crystallization of the interior of non-invariant magma bodies.
doi:10.1371/journal.pone.0037492.g008
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The agreement between these various estimates strongly

supports crystallization of a giant magma body from a nearly

crystal-free initial state over millennial timescales. We thus argue

that giant magma bodies are ephemeral.

Supporting Information

Movie S1 Animation showing 3D view of crystals in pumice chip

(sample AB-6203F). Euhedral quartz and feldspar grains shown in

green, magnetite in blue, and pyroxene6biotite in white. Note the

overall trend of decreasing numbers of crystals with increasing size.

Sample is approximately cylindrical, field of view ,9 mm in

diameter.
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