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Abstract

The advent of geographic online social networks such as Foursquare, where users voluntarily signal their current location,
opens the door to powerful studies on human movement. In particular the fine granularity of the location data, with GPS
accuracy down to 10 meters, and the worldwide scale of Foursquare adoption are unprecedented. In this paper we study
urban mobility patterns of people in several metropolitan cities around the globe by analyzing a large set of Foursquare
users. Surprisingly, while there are variations in human movement in different cities, our analysis shows that those are
predominantly due to different distributions of places across different urban environments. Moreover, a universal law for
human mobility is identified, which isolates as a key component the rank-distance, factoring in the number of places
between origin and destination, rather than pure physical distance, as considered in some previous works. Building on our
findings, we also show how a rank-based movement model accurately captures real human movements in different cities.
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Introduction

Since the seminal works of Ravenstein [1], the movement of

people in space has been an active subject of research in the social

and geographical sciences. It has been shown in almost every

quantitative study and described in a broad range of models that a

close relationship exists between mobility and distance. People do

not move randomly in space, as we know from our daily lives.

Human movements exhibit instead high levels of regularity and

tend to be hindered by geographical distance. The origin of this

dependence of mobility on distance, and the formulation of

quantitative laws explaining human mobility remains, however, an

open question, the answer of which would lead to many

applications, e.g. improve engineered systems such as cloud

computing and location-based recommendations [2–5], enhance

research in social networks [6–9] and yield insight into a variety of

important societal issues, such as urban planning and epidemiol-

ogy [10–12].

In classical studies, two related but diverging viewpoints have

emerged. The first camp argues that mobility is directly deterred

by the costs (in time and energy) associated to physical distance.

Inspired by Newton’s law of gravity, the flow of individuals is

predicted to decrease with the physical distance between two

locations, typically as a power-law of distance [13–15]. Besides

distance, more complex versions of gravity models may also

consider a parameter that captures the ‘‘mass’’ of the starting point

and the destination of a trip. In this case, usually the population of

an area is used as a proxy to quantify it. These so-called ‘‘gravity-

models’’ have a long tradition in quantitative geography and

urban planning and have been used to model a wide variety of

social systems, e.g. human migration [16], inter-city communica-

tion [17] and traffic flows [18]. The second camp argues instead

that there is no direct relation between mobility and distance, and

that distance is a surrogate for the effect of intervening opportunities

[19]. The migration from origin to destination is assumed to

depend on the number of opportunities closer than this

destination. A person thus tends to search for destinations where

to satisfy the needs giving rise to its journey, and the absolute value

of their distance is irrelevant. Only their ranking matters.

Displacements are thus driven by the spatial distribution of places

of interest, and thus by the response to opportunities rather than

by transport impedance as in gravity models. The first camp

appears to have been favoured by practitioners on the grounds of

computational ease [20], despite the fact that several statistical

studies have shown that the concept of intervening opportunities is

better at explaining a broad range of mobility data [21–25].

This long-standing debate is of particular interest in view of the

recent revival of empirical research on human mobility. Contrary

to traditional works, where researchers have relied on surveys,

small-scale observations or aggregate data, recent research has

taken advantage of the advent of pervasive technologies in order to

uncover trajectories of millions of individuals with unprecedented

resolution and to search for universal mobility patterns, such to

feed quantitative modelling. Interestingly, those works have all

focused on the probabilistic nature of movements in terms of

physical distance. As for gravity models, this viewpoint finds its

roots in Physics, in the theory of anomalous diffusion. It tends to

concentrate on the distributions of displacements as a function of

geographic distance. Recent studies suggest the existence of a

universal power-law distribution P(Dr)*Dr{b, observed for

instance in cell tower data of humans carrying mobile phones
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b~1:75 [26] or in the movements of ‘‘Where is George’’ dollar

bills b~1:59 [27]. This universality is, however, in contradiction

with observations that displacements strongly depend on where

they take place. For instance, a study of hundreds of thousands of

cell phones in Los Angeles and New York demonstrate different

characteristic trip lengths in the two cities [28]. This observation

suggests either the absence of universal patterns in human mobility

or the fact that physical distance is not a proper variable to express

it.

In this work, we address this problem by focusing on human

mobility patterns in a large number of cities across the world.

More precisely, we aim at answering the following question: ‘‘Do

people move in a substantially different way in different cities or,

rather, do movements exhibit universal traits across disparate

urban centers?’’. To do so, we take advantage of the advent of

mobile location-based social services accessed via GPS-enabled

smartphones, for which fine granularity data about human

movements is becoming available. Moreover, the worldwide

adoption of these tools implies that the scale of the datasets is

planetary. Exploiting data collected from public check-ins made by

users of the most popular location-based social network,

Foursquare [29], we study the movements of 925,030 users

around the globe over a period of about six months, and study the

movements across 5 million places in 34 metropolitan cities that

span four continents and eleven countries.

After discussing how at larger distances we are able to

reproduce previous results of [26] and [27], we also offer new

insights on some of the important questions about human urban

mobility across a variety of cities. We first confirm that mobility,

when measured as a function of distance, does not exhibit

universal patterns. The striking element of our analysis is that we

observe a universal behavior in all cities when measured with the

right variable. We discover that the probability of transiting from

one place to another is inversely proportional to a power of their

rank, that is, the number of intervening opportunities between

them. This universality is remarkable as it is observed despite

cultural, organizational and national differences. This finding

comes into agreement with the social networking parallel which

suggests that the probability of a friendship between two

individuals is inversely proportional to the number of friends

between them [30], and depends only indirectly on physical

distance. More importantly, our analysis is in favour of the concept

of intervening opportunities rather than gravity models, thus

suggesting that trip making is not explicitly dependent on physical

distance but on the accessibility of resources satisfying the objective

of the trip. Individuals thus differ from random walkers in

exploring physical space because of the motives driving their

mobility.

Our findings are confirmed with a series of simulations verifying

the hypothesis that the place density is the driving force of urban

movement. By using only information about the distribution of

places of a city as input and by coupling this with a rank-based

mobility preference we are able to reproduce the actual

distribution of movements observed in real data. These results

open new directions for future research and may positively impact

many practical systems and application that are centered on

mobile location-based services.

Results

Urban Movements and Power-laws
We draw our analysis upon a dataset collected from the largest

Location-based Social Network, Foursquare [29]. The dataset

features 35,289,629 movements of 925,030 users across 4,960,496

places collected during six months in 2010. Foursquare places or

venues are geo-tagged Web entities which correspond to real

venues in the physical world, e.g. coffee shops, airport terminals or

libraries, and which are associated to precise geographic coordi-

nates, expressed with latitude and longitude. In this context a

movement is the indication of presence at a place that a user gives

through the Foursquare system. In the present work we focus on

the 34 cities with the highest number of check-ins in the dataset.

The reader can view summary statistics for all cities we have

experimented with in Table 1.

In order to confirm the large scale results reported in [26,27],

we have computed the distribution of human displacements in our

dataset (Figure 1): we observe that the distribution is well

approximated by a power law with exponent b~1:50 and a

threshold Dr0~2:87 (p{value~0:494). This is almost identical to

the value of the exponent calculated for the dollar bills movement

(b~1:59) [27] and very proximate to the 1:75 estimated from

cellphones calls analysis of human mobility [26]. With respect to

these datasets, we note that the Foursquare dataset is planetary, as

it contains movements at distances up to 20,000 kilometres (we

measure all distances using the great-circle distance between points

on the planet). On the other extreme, small distances of the order

of tens of meters can also be approximated thanks to the fine

granularity of GPS technology employed by mobile phones

running these geographic social network applications. Indeed,

we find that the probability of moving up to 100 meters is uniform,

a trend that has also been shown in [27] for a distance threshold

Drmin. Each transition in the dataset happens between two well

defined venues, with data specifying the city they belong to. We

exploit this information to define when a transition is urban, that

is, when both start and end points are located within the same city.

Figure 2 depicts the probability density function of the about 10

million displacements within cities across the globe. We note that a

power-law fit does not accurately capture the distribution. First of

all, a large fraction of the distribution exhibits an initial flat trend;

then, only for values larger than 10 km the tail of distribution

decays, albeit with a very large exponent which does not suggest a

power-law tail. Overall, power-laws tend to be captured across

many orders of magnitude, whereas this is not true in the case of

urban movements. The estimated parameter values via Maximum

Likelihood are Dr0~18:42 and exponent b~4:67
(p{value~1:0). A detailed description of used methods can be

found in the final section of this manuscript.

Movements across cities
Since the distribution of urban human movements cannot be

approximated with a power law distribution nor with a physically

relevant functional relation, how can we represent displacements

of people in a city more appropriately? We start by comparing

human movements across different cities. In Figure 3, we plot the

distribution of human displacements for Houston, San Francisco

and Singapore noting that similar patterns have been observed

across all cases we have considered in the experiments. The shapes

of the distributions, albeit different, exhibit similarities suggesting

the existence of a common underlying process that seems to

characterize human movements in urban environments. There is

an almost uniform probability of traveling in the first 100 meters,

that is followed by a decreasing trend between 100 meters and a

distance threshold dm[½5,30� km, where we detect an abrupt cutoff

in the probability of observing a human transition. The threshold

dm could be due to the reach of the borders of a city, where

maximum distances emerge.

While the distributions exhibit similar trends in different cities,

scales and functional relation may differ, thus suggesting that

Universal Patterns in Human Urban Mobility

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e37027



human mobility vary from city to city. For example, while

comparing Houston and San Francisco (see Figure 3), different

thresholds dm are observed. Moreover, the probability densities

can vary across distance ranges. For instance, it is more probable

to have a transition in the range 300 meters and 5 kilometers in

San Francisco than in Singapore, but the opposite is true beyond

5 kilometers. This difference could be attributed to many potential

factors, ranging from geographic ones such as area size, density of

a city, to differences in infrastructures such as transportation and

services or even socio-cultural variations across cities. In the

following paragraphs we present a formal analysis that allow to

dissect these heterogeneities.

The importance of place density
Inspired by Stouffer’s theory of intervening opportunities [19]

which suggests that the number of persons traveling a given distance is

directly proportional to the number of opportunities at that distance and

inversely proportional to the number of intervening opportunities, we explore

to what extend the density of places in a city is related to the

human displacements within it. First, we define the density of a

city in the Foursquare dataset by applying a grid onto each city

using squares of area size equal 0:25 km2 and filtering out those

grid areas which feature less than five Foursquare venues. Then

the density is equal to the number of places per square km2

averaged across the grid. As a next step, we plot the place density

of a city, as computed with our check-in data, against the average

distance of displacements observed in a number of cities. In

Figure 4 one observes that the average distance of human

movements is inversely proportional to the city’s density. Hence, in a

very dense metropolis, like New York, there is a higher expectation

of shorter movements. We have measured a coefficient of

determination R2~0:59. Intuitively, this correlation suggests that

Table 1. Summary of city statistics.

City Name Movements Places Density (Places/km2) Area (km2) vDrw (km)

Amsterdam 32934 8847 275:61 21:63 2:29

Atlanta 63220 10090 214:72 19:94 5:37

[gray].9 Austin 60296 9492 199:32 14:06 5:82

Bangkok 45860 7574 248:32 10:81 3:97

[gray].9 Boston 42196 6795 366:94 13:25 1:57

Chicago 185496 23050 315:16 41:94 4:02

[gray].9 Columbus 32388 7463 181:18 8:88 5:42

Dallas 39380 8177 200:8 13:06 5:21

[gray].9 Denver 30695 6123 215:26 12:81 4:67

Houston 47996 11808 168:68 14:63 7:57

[gray].9 Indianapolis 30382 6417 213:02 5:38 6:99

Kuala Lumpur 62595 14223 268:44 30:88 3:18

[gray].9 Las Vegas 82437 11910 260:39 16:63 4:76

London 62837 15760 290:92 30:5 3:32

[gray].9 Los Angeles 86092 18508 220:92 31:5 4:86

Milwaukee 38697 5318 218:77 9:56 3:15

[gray].9 Minneapolis 29572 5482 228:04 11:13 3:1

New York 371502 43681 715:02 58:0 2:24

[gray].9 Orlando 37783 8060 224:56 8:88 5:44

Paris 38392 12648 261:98 35:94 2:77

[gray].9 Philadelphia 54545 10270 293:2 17:31 2:86

Phoenix 34436 8689 183:1 9:44 6:27

[gray].9 Portland 38409 8413 238:34 15:63 3:08

Rio de Janeiro 25808 6788 248:2 12:31 5:99

[gray].9 San Antonio 33516 8237 144:17 6:0 8:35

San Diego 69152 13365 227:26 22:38 5:7

[gray].9 San Francisco 112168 15970 377:64 32:25 2:36

Santiago 56743 10636 235:17 20:69 4:94

[gray].9 Seattle 66423 10410 294:6 20:75 3:61

Seoul 44303 9271 250:76 18:31 4:8

[gray].9 Singapore 79624 15617 316:67 21:31 5:26

São Paulo 52855 14291 224:68 32:56 4:31

[gray].9 Toronto 77548 13870 322:26 24:81 3:59

Washington 71557 10279 325:11 21:31 1:92

doi:10.1371/journal.pone.0037027.t001
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while distance is a cost factor taken into account by humans, the

range of available places at a given distance is also important. This

availability of places may relate to the availability of resources

while performing daily activities and movements: if no super

markets are around, longer movements might be more probable in

order to find supplies. As a next step, we explore whether the

geographic area size covered by a city affects human mobility by

plotting the average transition in a city versus its area size (see

Figure 5). Our data indicates no apparent linear relationship, with

a low correlation R2~0:19, thus indicating that density is a more

informative measure.

To shed further light on the hypothesis that density is a decisive

factor in human mobility, for every movement between a pair of

places in a city we sample the rank value of it. The rank for each

transition between two places u and v is the number of places w

that are closer in terms of distance to u than v is. Formally:

ranku(v)~Dfw : d(u,w)vd(u,v)gD: The rank between two places

has the important property to be invariant in scaled versions of a

city, where the relative positions of the places is preserved but the

absolute distances dilated. In Figure 6 we plot for the three cities

the rank values observed for each displacement. The fit of the rank

densities on a log-log plot, shows that the rank distribution follows

linear trend similar to that of a power-law distribution. This

observation suggests that the probability of moving to a place

decays when the number of places nearer than a potential

destination increases. Moreover, the ranks of all cities collapse on

the same line despite the variations in the probability densities of

human displacements. We have fit the rank distribution for the

thirty-four cities under investigation and have measured an

exponent a~0:84+0:07. This is indicative of a universal pattern

across cities where density of settlements is the driving factor of

human mobility. We superimpose the distribution of ranks for all

cities in Figure 7.

Interestingly enough, a parallel of this finding can be drawn

with the results in [30], where it is found that the probability of

observing a user’s friend at a certain distance in a geographic

social network is inversely proportional to the number of people

geographically closer to the user.

Modelling urban mobility
The universal mobility behaviour emerging across cities paves

the way to a new model of movement in urban environments.

Given a set of places U in a city, the probability of moving from

place u[U to a place v[U is formally defined as

Pr½u?v�! 1

ranku(v)a

where

ranku(v)~Dfw : d(u,w)vd(u,v)gD:

Figure 1. Global movements. The probability density function (PDF)
of human displacements as seen through 35 million location broadcasts
(check-ins) across the planet. The power-law fit features an exponent
b~1:50 and a threshold Dr0~2:87 confirming previous works on
human mobility data. The spatial granularity offered by GPS data allows
for the inspection of human movements at very small distances,
whereas the global reach of Foursquare reveals the full tail of the
planetary distribution of human movements.
doi:10.1371/journal.pone.0037027.g001

Figure 2. Urban movements. The probability density function (PDF)
of human displacements in cities (intracity). For two successive location
broadcasts (check-ins) a sample is included if the locations involved in
the transition belong to the same city. Approximately 10 million of
those transitions have been measured. The poor power-law fit of the
data (b~4:67, Dr0~18:42) suggests that the distribution of intracity
displacements can not be fully described by a power law. Short
transitions which correspond to a large portion of the movements
distribution are not captured by such process.
doi:10.1371/journal.pone.0037027.g002

Figure 3. Urban movement heterogeneities. The probability
density function (PDF) of human displacements in three cities: Houston,
San Francisco and Singapore (for 47, 112 and 79 thousand transitions,
respectively). Common trends are observed, e.g., the probability of a
jump steadily decreases after the distance threshold of 100 meters, but
the shapes of the distributions vary from city to city, suggesting either
that human movements do not exhibit universal patterns across cities
or that distance is not the appropriate variable to model them.
doi:10.1371/journal.pone.0037027.g003
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In addition to the rank-distance model presented above, we have

adopted a gravity-based model of human urban movement. In this

context such model should incorporate two factors. On the one

hand, the deterrence affect of distance in movement, and on the

other hand, the attractiveness of places due to a gravitational force.

The former factor is captured in a straightforward way by

measuring the geographic distance, d(u,v), between two places u

and v. Next, we need to quantify the gravitational mass of a place u.

To achieve this, we measure the number of nearby settlements

assuming that the denser the area that surrounds a place, the

higher its attractiveness. That has required the use of an additional

parameter ru, which corresponds to the radius of the circle

centered on the geographic position of place u. We can now define

the mass mu of u, simply by enumerating the number of places that

fall within the circle’s surface. The probability of a transition

between two places u and v in the gravity-based model is set to be

proportional to the product of the places’ masses and inversely

proportional to their geographic distance. Formally

Pg½u?v�! mu:mv

d(u,v)b

We run agent based simulation experiments (see detailed

description in Methods Section) where agents transit from one

place to another according to the probabilities defined by the two

models above. Averaging the output of the probability of

movements by considering all possible places of a city as potential

Figure 4. City place densities and mean movement lengths.
Scatter plot of the density of a city, defined as the number of places per
square kilometer, versus its mean human transition in kilometers. Each
datapoint corresponds to a city, while the red line is a fit that highlights
the relationship of the two variables (R2~0:59). A longer mean
transition corresponds to the expectation of a sparser urban
environment, indicating that the number of available places per area
unit could have an impact on human urban travel.
doi:10.1371/journal.pone.0037027.g004

Figure 5. City area sizes and mean movement lengths. Scatter
plot of the area of a city, measured in square kilometers, versus its mean
human transition in kilometers. Unlike place density, the area of a city
does not seem strongly related to the mean length of its transitions
(R2~0:19). To measure the area of a city we have segmented the
spatial plane around its geographic midpoint in squares of size
250|250 m2. The area of a city has been defined as the sum area of
all squares that feature at least five places.
doi:10.1371/journal.pone.0037027.g005

Figure 6. Rank distributions in three cities. (a) Probability density
function (PDF) of rank values for three cities (Houston, Singapore and
San Francisco). Our methodology to measure the rank distribution is the
following: for each transition between two places u and v, we measure
ranku(v) defined as the number of places that are geographically closer
to u than v. We observe that the distributions of the three cities collapse
to a single line, which suggests that universal laws can be formulated in
terms of the rank variable. The observation confirms the hypothesis that
human movements are driven by the density of the geographic
environment rather than the exact distance cost of our travels. A least
squares fit (red line) underlines the decreasing trend of the probability
of a jump as the rank of a places increases.
doi:10.1371/journal.pone.0037027.g006

Figure 7. Rank distributions in urban environments. Superim-
position of the probability density functions (PDF) of rank values the
thirty-four cities analyzed in the Foursquare dataset. A decreasing trend
for the probability of a jump at a place as its rank value increases is
common. The trend remains stable despite the large number of plotted
cities and their potential differences with respect to a number of
variables such us number of places, number of displacements, area size,
density or other cultural, national or organizational ones.
doi:10.1371/journal.pone.0037027.g007
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starting points for our agents, we present the human displacements

resulting from the model in Figure 8: as shown, despite the

simplicity of the rank model, this is able to capture with very high

accuracy the real human displacements in a city. On the contrary,

the gravity model does not present a desirable fit, since small

distances are overestimated. A potential explanation for this

behaviour could be given by the fact that in urban environments

most settlements are positioned in a central, highly dense, core of a

city. In this case, not rare in an urban context, the probability of a

transition to a proximate place may rise dramatically when

considering a gravity model, as density reaches a maximum and

geographic distances are minimized.

Besides comparing the performance of the two models in the

task of fitting the empirical distributions of human movement, it is

worth discussing their parameterization too. In the case of the rank-

distance model, a common parameter a~0:84 has been set for the

simulations of all cities. That is the empirical average observed by

fitting the distributions of the rank values observed in cities as

depicted in Figure 7. Given the small standard deviations observed

across cities, it is remarkable to observe that it would be sufficient

to observe movements in one city and fit accurately the transitions

of others, provided we have knowledge on the geographic position

of their settlements. On the other hand, the identification of the

parameters for the gravity model was a more complex task.

Initially, we had to choose a radius ru to define the mass mu of a

place u. While this would have been easier to perform if we were

considering movement across countries, or across cities, by

considering for instance the size of their populations, it is much

harder to define a similar geographic or organizational scope

within a city. In our experiments we tested exhaustively ru values

ranging from 0:1 to 1 kilometers. Equally, selecting an exponent b
to control the effect of distance in movements required again a

brute-force exploration of values (we have experimented for values

within the range 0:5 to 2:5). We note that our aim is not to exclude

the possibility that more complex gravity models could be devised

achieving potentially better fits of urban movement. Nonetheless,

in light of the evidence that our experiments have provided, the

use of a rank-distance variable qualifies better for the division of a

universal urban mobility model. Moreover, it is worth noting that

the rank model does not take into account other parameters such

as individual heterogeneity patterns [26] or temporal ones [27]

that have been studied in the past in the context of human

mobility and yet it offers very accurate matching of the human

traces of our dataset. Plots with the performance of the models for

all thirty four cities that we have evaluated can be found in

Figure 9.

Controlling urban geography
This analysis provides empirical evidence that while human

displacements across cities may differ, these variations are mainly

due to the spatial distribution of places in a city instead of other

potential factors such as social-cultural or cognitive ones. Indeed,

the agent based simulations are run with the same rules and

parameters in each city, except for the set of places U that is taken

from the empirical dataset. The variation across the spatial

organization of cities is illustrated in Figure 10, where we plot

thermal maps of the density of places within cities and in Figure 11,

where we plot the probability density function that two random

places are at a distance Dr. Both figures highlight large

heterogeneities in the distribution of places across cities and have

provoked us to examine further how the geography of a city,

encoded through the longitudinal positions of its settlements,

impacts human mobility. Could we then alter the spatial

distribution of settlements in a city and quantify the affect of this

process in human movement?

The methodology we have put forward to demonstrate this is

based on the spatial randomization of places, U , of a city. We do

so by iterating through all places in U and randomizing the

coordinates, latu,longu, of a place u with probability Prand . A new

pair of latitude and longitude coordinates is elected, (latu’,longu’),
by considering a uniform sample in a predefined range, where

latu’[ ½latu+0:1� and longu’[ ½longu+0:1�. In Figure 12, we

present the Kullback–Leibler Divergence (KL-Divergence),

DKL(H DDR), between the empirically observed distribution of

human displacements, H, and the distribution R obtained by the

rank-distance model for different values Prand . The KL-Divergence

[31] is a non-symmetric measure of the difference between two

probability distributions and is formally defined here as

DKL(H DDR)~
X

i

H(i) ln
H(i)

R(i)

The reader may observe that as the probability of randomizing the

position of a place increases, the quality of the fit attained by the

rank-distance model on average drops. This observation becomes

statistically significant only for Prand§0:7. We note that any

alternative randomization process which, instead, preserves the

Figure 8. Fitting urban movements. Probability Density Functions (PDF) of human movements and corresponding fits with the rank-distance and
gravity models in three cities (Houston, San Francisco and Singapore). In the rank-distance model the probability of transiting from a place u to a
place v in a city, only depends on the rank value of v with respect to u. In the case of the gravity model, the deterrence affect of distance is co-
integrated with a mass based attractiveness of a place u. The associated mass, mu , has been defined according to the number of neighboring places.
The parameters for the depicted fit of the gravity model are b~1:0 and ru~100 meters. The places of a city employed for the simulation experiments
where those observed in the Foursquare dataset, hence while the rank-based model is the same for all cities the underlying spatial distribution of
places may vary. Excellent fits are observed for all cities analyzed. It is interesting to note that the model is able to reproduce even minor anomalies,
such as the case of San Francisco where we have ‘jumps’ in the probability of a movement at 20 and 40 kilometers.
doi:10.1371/journal.pone.0037027.g008
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relative density between all pairs of places would not have an

impact with regards to the performance of the model on the

original set of places U (or Prand~0:0 equivalently). That is

expected as the probability of a transition in the rank-distance model

is dependent exclusively on this factor. Overall, this analysis

highlights the impact of geography, as expressed through the

spatial distribution of places, on human movements, and confirms

at a large-scale the seminal analysis of Stouffer [19] who studied

how the spatial distribution of places and employment opportu-

nities in the city of Cleveland affected the migration movements of

families.

Discussion

The empirical data on human movements provided by

Foursquare and other location-based services allows for unprec-

edented analysis both in terms of scale and the information we

have about the details of human movements. The former means

that mobility patterns in different parts of the world can be

analyzed and compared surpassing cultural, national or other

organizational borders. The latter is achieved through better

location specification technologies such as GPS-enabled smart-

phones, but also with novel online services that allow users to

layout content on the geographical plane such as the existence of

places and semantic information about those. As those technol-

ogies advance our understanding on human behavior can only

become deeper.

In this article, we have focused on human mobility in a large

number of metropolitan cities around the world to perform an

empirical validation of past theories on the driving factors of

human movements. As we have shown, Stouffer’s [19] theory of

intervening opportunities appears to be a plausible explanation to

the observed mobility patterns. The theory suggests that the

distance covered by humans is determined by the number of

opportunities (i.e., places) within that distance, and not by the

distance itself. This behaviour is confirmed in our data where we

observed that physical distance does not allow for the formulation

of universal rules for human mobility, whereas a universal pattern

emerges across all cities when movements are analyzed through

their respective rank values: the probability of a transition to a

destination place is inversely proportional to the relative rank of it,

raised to a power a, with respect to a starting geographical point.

Moreover, a presents minor variations from city to city.

We believe that our approach opens avenues of quantitative

exploration of human mobility, with several applications in urban

planning and ICT. The identification of rank as an appropriate

variable for the deterrence of human mobility is in itself an

important observation, as it is expected to lead to more reliable

measurements in systems where the density of opportunities is not

uniform, e.g. in a majority of real-world systems. The realization of

universal properties in cities around the globe also goes along the

line of recent research [32,33] on urban dynamics and organiza-

tion, where cities have been shown to be scaled versions of each

other, despite their cultural and historical differences. Contrary to

previous observations where size is the major determinant of many

socio-economical characteristics, however, density and spatial

distribution are the important factors for mobility. Moreover, the

richness of the dataset naturally opens up new research directions,

such as the identification of the needs and motives driving human

movements, and the calibration of the contact rate, e.g. density- vs

frequency-dependent, in epidemiological models [34]. The current

study also shares the interests in determining the universal laws

governing human mobility and migration patterns with [35]. We

concentrate on modelling movement at the city scale, using the

distribution of places in cities while the radiation model presented

in [35] exploits population densities to model larger scale mobility

patterns across states or municipalities. Finally, we note that there

may be a strong demographic bias in the community of

Foursquare users. While this is an inherent characteristic of many

telecommunication services and corresponding datasets, it is

encouraging that the analysis and models developed in the context

of the present work demonstrate strong similarities across multiple

urban centers and different countries. Moreover, these data

appear to exhibit properties similar to those in mobile phone

cellular data [8,9].

Materials and Methods

The mobility dataset used in this work is comprised from check-

ins made by Foursquare users and become publicly available

through Twitter’s Streaming API. The collection process lasted

from the 27th of May 2010 until the 3rd of November of the same

year. During this period we have observed 35,289,629 check-ins

from 925,030 unique users over 4,960,496 venues. In addition,

locality information together with exact GPS geo-coordinates for

each venue has become available through the Foursquare website

allowing us to associate a given venue with a city. By considering

only consecutive check-ins that take place within the same city we

have extracted almost 10 million intracity movements analysed in

Figure 9. Fitting urban movements for all cities in the Foursquare dataset. The dominance of the rank-distance model over the gravity case
extends to the rest of the cities (34 in total) we have experimented with in the Foursquare dataset. The results depicted here correspond to the
gravity model with parameters b~1:0 and ru~100 meters, whereas in the case of the rank-distance model an exponent a~0:84 has been used to
simulate movement in all cities and corresponds to the empirical average of the exponents resulting from the fit of the rank value distributions.
doi:10.1371/journal.pone.0037027.g009

Figure 10. Geographic distribution of places in cities. Gaussian
kernel density estimation (KDE) applied on the spatial distribution of
places in three cities (Houston, San Francisco and Singapore). Each dark
point corresponds to a venue observed in the Foursquare dataset
encoded in terms of longitude and latitude values. The output of the
KDE is visualised with a thermal map. A principal core of high density is
observed in the three cities, but point-wise density and spatial
distribution patterns may differ. The rank-based model can cope with
those heterogeneities as it accounts for the relative density for a given
pair of places u and v.
doi:10.1371/journal.pone.0037027.g010
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Figure 2. Detailed statistics including the number of check-ins and

venues in each city can be found in Table 1.

We have employed the methods detailed in [36] to apply

goodness-of-fit tests on the Probability Density Functions of global

and urban transitions observed in Figures 1 and 2. In particular, we

have measured the corresponding p{values using the Kolmo-

gorov-Smirnov test by generating 1000 synthetic distributions, while

the Maximum-Likelihood Estimation technique has been used to

estimate the parameters of the power-laws. Exceptionally, we have

resorted to a least squares based optimization to measure the

exponent a of the rank values shown in Figure 6, because a power-

law distribution is not, strictly speaking, well-defined for exponents

smaller than 1. However we are confident of the values estimated

due to the excellent movement fits produced during our simulations.

We now describe the rank-based model we have devised with

the aim to fit human movements. Our aim is to calculate the

displacement probability distribution over a given city, which is

described by a set of places U~fu1,u2::::uMg. We measure the

pairwise transition probability from a starting place u[U to a

destination place v[U as

Puv~
ranku(v){a

P
u[U

ranku(v){a

where, recall that ranku(v)~Dfw[U : d(u,w)vd(u,v)gD and we use

the convention that ranku(u)~0 for every u[U . The above

configuration takes into account all places in the city away from u
and suggests a probabilistic setting that the sum of the probabilities

of transition to any destination place is equal to 1.

Elaborating further, we define the probability of observing a

movement of length Dr away from an initial place u as

Pu(Dr) : ~
X

v:d(u,v)[½Dr,Drz �
Puv

where is some prescribed ‘‘resolution’’ parameter. We can now

measure the probability of observing a transition of length within

½r,rz � considering an arbitrary starting place u[U as

P(Dr)~
1

M

X

u[U

Pu(Dr)

.

We note that the parameter a of the model has been set equal to

0:84 in all cases. This is the empirically calculated average of the

rank value distributions, observed across the cities of the

Foursquare dataset. The parameter e has been set by binning

the x-axis logarithmically using 100 bins in the range ½10{2,102�.
To obtain the Probability Density Functions (PDF) shown in the

figures, we have divided P(Dr) with the size of each bin, that is

½Dr,Drz �.
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Figure 11. Probability density function (PDF) of observing two randomly selected places at a distance Dr in a city. We have
enumerated 11808, 15970, 15617 unique venues for Houston, San Francisco and Singapore respectively. The probability is increasing with Dr, as
expected in two dimensions before falling due to finite size effect. It is interesting to note that the probability for two randomly selected places to be
the origin and destination of a jump monotonically decreases with distance (see SI).
doi:10.1371/journal.pone.0037027.g011

Figure 12. Effect of place coordinate randomization on the
performance of the rank-distance model. On the y-axis we present
the KL-divergence, DKL(H DDR), between the empirically observed
distribution of displacements in a city H and R which is the one
obtained by the rank-distance model. On the x-axis the probability of
randomization, Prand , is depicted. In order to randomize the spatial
distribution of places in a city, we iterate through the associated set of
places U and the coordinates of a place u, (latu,longu) are randomized
with probability Prand . A new pair of coordinates, (latu’,longu’), is
assigned uniformly and within a pre-specified range, where latu’[
½latu+0:1� and longu’[ ½longu+0:1�. Prand~0 corresponds to the case
that the original distribution of displacements within a city is
maintained, whereas the opposite extreme where Prand equals 1:0
means that all places have been randomized. The errors bars
correspond to standard deviations across cities.
doi:10.1371/journal.pone.0037027.g012
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35. Simini F, González AMM, Barábasi AL (2012) A universal model for mobility
and migration patterns. Nature.

36. Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in

empirical data. arXiv:physics:/07061062.

Universal Patterns in Human Urban Mobility

PLoS ONE | www.plosone.org 10 May 2012 | Volume 7 | Issue 5 | e37027


