
Deep-Sea Fish Distribution Varies between Seamounts:
Results from a Seamount Complex off New Zealand
Dianne M. Tracey1*, Malcolm R. Clark1, Owen F. Anderson1, Susan W. Kim2

1 Deepwater Group, National Institute of Water and Atmospheric Research, Wellington, New Zealand, 2 Flinders Centre for Epidemiology and Biostatistics, Flinders

University, South Australia, Australia

Abstract

Fish species data from a complex of seamounts off New Zealand termed the ‘‘Graveyard Seamount Complex’ were analysed
to investigate whether fish species composition varied between seamounts. Five seamount features were included in the
study, with summit depths ranging from 748–891 m and elevation from 189–352 m. Measures of fish species dominance,
rarity, richness, diversity, and similarity were examined. A number of factors were explored to explain variation in species
composition, including latitude, water temperature, summit depth, depth at base, elevation, area, slope, and fishing effort.
Depth at base and slope relationships were significant with shallow seamounts having high total species richness, and
seamounts with a more gradual slope had high mean species richness. Species similarity was modelled and showed that the
explanatory variables were driven primarily by summit depth, as well as by the intensity of fishing effort and elevation. The
study showed that fish assemblages on seamounts can vary over very small spatial scales, in the order of several km.
However, patterns of species similarity and abundance were inconsistent across the seamounts examined, and these results
add to a growing literature suggesting that faunal communities on seamounts may be populated from a broad regional
species pool, yet show considerable variation on individual seamounts.
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Introduction

Seamounts, knolls, and hills are prominent features of

underwater topography in the New Zealand region, with over

800 known from within the Exclusive Economic Zone (EEZ) [1],

[2]. Often they are located amongst a complex oceanographic

circulation system and they can host diverse and abundant benthic

faunal communities. Features with summit depths over about

700 m often have habitat forming stony corals (Order Scleractinia)

which cover extensive areas of the summit and upper flanks of the

seamounts, with a diverse associated fauna (e.g., [3], [4], [5],

[6].Seamounts also host aggregations of commercial fish species,

and many are the target of substantial deep-sea fisheries [7], [8],

[9].

Seamounts have often been regarded as having elevated

endemism relative to other habitats [10], [11], [12]. However,

limited sampling has been a problem for determining true levels of

endemism [13], and the generality of high endemism has been

questioned in recent years [14], [15], [5]. Much of the historical

research on seamount biodiversity has focused on benthic

invertebrates, many taxa of which potentially have less dispersal

capability than fishes through reduced mobility (e.g., sessile corals)

or limited larval life spans (e.g., nonplanktotrophic larvae of some

gastropods) (see excellent review by Shank [16]). Nevertheless,

several studies have defined characters of seamount fishes and

documented characteristics which distinguish them from those of

the general shelf and slope [17], [18], but there have been few

studies examining the variation of fish assemblage composition

between seamounts.

Tracey et al. [19] examined fish catches from 10 groups of

seamounts around New Zealand, and compared them with fish

composition on neighbouring slope areas. They found that species

composition was generally similar on seamount and slope,

although there were differences between seamount groups in

different parts of New Zealand. The study pooled data from

seamounts in a cluster or complex, and only examined species

composition from individual seamounts within one area. They

concluded there were too few data available at the time for a

robust analysis, but there was a suggestion of substantial variability

between individual seamounts. On a larger geographical scale,

Clark et al. [20] compared deep-sea fish fauna on seamounts from

nine regions in the North Atlantic and South Pacific Oceans. Fish

community composition was found to vary between many of the

areas, and there was also considerable variability within areas for

several of the datasets. Environmental characteristics of water

masses were thought to be important for structuring the fish

communities. Nitlitschek et al. [21] examined changes in the

composition and abundance of fish species taken during 8 years of

fishing for orange roughy (Hoplostethus atlanticus) on seamounts off

Chile. They found the abundance of bycatch species decreased at

more heavily fished sites, and there were indications of differences
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in species richness, diversity and species assemblage composition

between fished areas.

In this paper we examine variability between seamounts in a

cluster of seamount features east of New Zealand (Figure 1),

known as the ‘‘Graveyard Seamount Complex’’ [22], [23]. The

features are reasonably closely grouped, and generally similar in

size, depth, and elevation. Detailed data from fishery research

trawl surveys are examined and the study tests the hypothesis that

fish species composition will be similar between seamounts over

small spatial scales, and also investigates whether levels of fishing,

environmental factors, and physical variables affect species

composition or abundance.

Methods

Data
The data used for this study came from ten research trawl

surveys carried out between 1994 and 2005 to estimate the

abundance of orange roughy on the Chatham Rise. All vessels

used similar trawl gear, a standard six-panel, rough bottom orange

roughy trawl with cut away lower wings, and cod-end mesh size of

100 mm.

Data were extracted for five key seamounts (those with the most

research sampling effort, Tables 1 and 2), from the New Zealand

Ministry of Fisheries ‘‘trawl’’ database. Information included fish

species composition and catch weight from each trawl, as well as

data on position, depth, and duration of tow. Only research trawl

stations with an acceptable gear performance were used. Lists of

taxa were made by individual seamount for teleost fishes,

elasmobranchs (sharks, rays, chimaeras, and ghost sharks), and

cephalopods. Certain species were excluded (as per Tracey et al.

[19]) due to uncertainty in identification, or when the species were

predominantly midwater, rather than demersal. Species selected

are listed in Appendix S1, with their scientific name, common

name, and 3-letter Ministry of Fisheries code (which is used for a

number of figures).

Data on commercial fishing were obtained from Ministry of

Fisheries logbooks which have individual trawl information, which

enables location to be determined. However, start and finish

positions are recorded only to the nearest 1 degree (about 1.8 km

or 1 nautical mile) and hence some manual examination of tow

sequences and directions was carried out to assign each tow to an

individual seamount (as per Clark and Rowden [3]).

The physical data for each seamount were extracted from the

NIWA ‘‘Seamounts’’ database [24]. Temperature records were

derived from the CSIRO Atlas of Regional Seas [25], a digital

atlas of seasonal ocean water properties covering seas around

Australia and New Zealand.

Analysis
Species dominance. Species dominance was determined by

the mean catch rate, defined as catch per tow (kg). Catch rates

were not divided by tow length or swept area of the trawl net as

some tows on the smaller seamounts had very short tow lengths,

Figure 1. Location of the Graveyard Seamount Complex on the Chatham Rise, east of New Zealand showing location of features for
which data were analysed.
doi:10.1371/journal.pone.0036897.g001
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and gear performance when towing down a rough-sided seamount

is unlikely to be constant.

Species richness. Total species richness on each seamount

was estimated by fitting a ‘‘species accumulation curve’’, as

described by Colwell and Coddington [26], to the survey catch

data by calculating the total number of species caught after each

successive trawl from the first trawl in the first survey to the last

trawl in the last survey, using non-linear least squares estimation.

The species accumulation curve S(n) represents the expected

number of species found in n stations, and takes the hyperbolic

form.

S nð Þ~ Smaxn

Bzn

The Smax parameter is the asymptote of the curve representing

the estimated number of species that would theoretically be found

if a very large number of stations were completed, and B is a

curvature parameter.

Mean species richness (i.e., average number of species caught in

a single tow) is also calculated for each seamount. This is a

measure of the diversity which can be expected within a single

sample, as opposed to the diversity which would be found over

many samples.

Frequency of occurrence. Species were also ranked in terms

of occurrence on seamount, from those occurring on all five

seamounts to those occurring on only one seamount. The gradient

from widespread species that occur on all seamounts to rare

species which occur only on a few, was investigated.

The significance of differences in species occurrence between

seamounts was determined using Fisher’s exact test, based on

presence/absence. The 99% significance level was used through-

out, to compensate for multiple significance testing.

Faunal similarity. The similarities between fauna on differ-

ent seamounts were assessed by comparing species lists for each

pair of seamounts. The Ppos statistic [27] which is similar to the

Sorenson’s Index [28] was used to measure the similarity of each

pair of species lists. The Ppos number of species in common on

both lists was divided by the average length of the two lists, to

provide a relative measure. If there were no species in common
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Table 2. Number of research trawls by survey and seamount.
Column 1 represents the voyage code, e.g., aex9901 = the 1st

voyage on Amaltal Explorer in 1999; tan9908 = 8th voyage of
Tangaroa in 1999.

Survey code Morgue Deadringer Graveyard Zombie Scroll

aex9901 3 3 8 2 5

ama0501 0 3 13 1 4

ora0201 0 1 4 3 1

sra9901 0 0 4 0 0

tan0104 3 0 3 0 2

tan0208 0 4 11 4 5

tan9406 3 4 3 2 0

tan9608 1 0 15 0 0

tan9708 1 2 6 0 1

tan9908 5 0 6 2 4

All 16 17 73 14 22

doi:10.1371/journal.pone.0036897.t002
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then Ppos = 0, and if the species lists were identical then Ppos = 1.

The resulting similarity in seamount fauna table was displayed

graphically in R [29], using classical metric multidimensional

scaling and the principal component analysis of seamount features.

This method is similar to that of Venables and Ripley [30], and

follows that of [19]. The areas are displayed on a 2-dimensional

plot so that areas with high faunal similarity are close together, and

less similar areas are further apart.

Differences in species diversity and faunal similarity among the

five seamounts were analysed by applying analysis of variance and

multiple analysis of variance techniques using seamount features

such as slope and base depth, as covariates. Principal component

analysis of seamount features was also carried out to reduce the

number of covariates used for the analysis of variance and multiple

analysis of variance models.

Effects on species cycles impacting abundances or species

compositions is poorly known. As such any temporal effect such as

year of sampling to explain variability or similarities among

seamount communities were not explored.

Fishing pressure. The level of accumulated commercial

fishing effort prior to the surveys was used as a predictor to

investigate the effects of fishing on the seamount fish communities.

Commercial catch records show a large number of trawls in the

vicinity of these seamounts, but for our purposes seamount trawls

were defined as those recorded from a rectangular area around

each seamount with a tow duration of less than 30 minutes.

Manual assignment of trawls to a seamount also took into account

the recorded trawl direction and depth [3].

Results

Dominant Species
The ten dominant species at each seamount is shown by

descending mean catch rate per trawl in Figure 2. Orange roughy

(Hoplostethus atlanticus, ORH), was caught in all but five trawls (and

in all trawls on Deadringer and Zombie), and produced the highest

catch rate on all seamounts. Smooth oreo (Pseudocyttus maculatus,

SSO) and Baxter’s dogfish (Etmopterus baxteri, ETB) were the next

most dominant species rating second and third in percentage

occurrence on all five seamounts. Other species that were in the

top 10 on each feature were two deepsea sharks, plunket shark

(Centroscymnus plunketi, PLS) and Owston’s dogfish (Centroscymnus

owstoni, CYO), as well as black cardinalfish (Epigonus telescopus,

EPT). Black oreo (Allocyttus niger, BOE) had a high mean catch rate

on Morgue but on all other seamounts this species fell outside the

top ten.

Species Rarity
There were 69 species of fish in total identified from the five

seamounts. Table 3 summarises the species common to multiple

seamounts, and those found on only a single seamount. Fifteen

species were found on all five seamounts, and ten further species

were found on four of the five seamounts. Twenty-six species were

found on only one seamount.

Seamounts on which the 37 rarer species (those which occurred

on only one or two seamounts) were found are shown in Table 4.

Rare species are expected to be over-represented on seamounts

with many samples compared to seamounts with few tows (as per

Clark et al [15], and this is apparent with the results here.

Graveyard stands out with the highest number of species, the

largest number of rarer species and also is the seamount that has

had the greatest number of research tows (as well as being the

largest seamount). Deadringer rates second. Deadringer and

Morgue have a similar research effort (number of tows) but

Deadringer has a higher number of total species and slightly more

rare species. Both seamounts are similar in size. Zombie and Scroll

produce similar numbers of rare species to Morgue.

Rarer species include the Portuguese dogfish (Centroscymnus

coelolepis, CYL), lepidion cods (Lepidion schmidti and L. inosimae,

LEG), warty oreo (Allocyttus verrucosus, WOE) and macrourid

rattails such as black javelin fish (Mesobius antipodum, BJA) and

humpback rattail (Coryphaenoides dossenus, CBA).

Species Richness
Total species richness is shown in Figure 3 with species

accumulation curves presented for each seamount. The model

predicts Zombie to have the highest total species richness (85),

although this is poorly defined due to the continued capture of new

species on each of the relatively few trawls. Graveyard has the next

highest species richness (57), partly caused by an unusually large

number of new species captured at about the 20th trawl on this

seamount. Species richness on the other three seamounts was

similar (Scroll, 37; Morgue, 39; Deadringer, 43) and based on a

similar number of trawls (16–22).

The mean species richness was considerably lower for Dead-

ringer than for the other four seamounts (Table 5). The values for

Figure 2. Mean catch rate (bars, log-scale, left axis) and percentage occurrence (line graph, right axis) for the 10 species with the
highest catch rates on each seamount. Numbers above each bar represent the number of trawls in which the species was caught. See Appendix
S1 for the 3-letter Ministry of Fisheries species codes on the x axes.
doi:10.1371/journal.pone.0036897.g002

Table 3. Species found on all five seamounts, on four out of five, and so on, to those found on only one seamount.

No. of seamounts
No. of species found by
seamount(s) Species

5 15 BEE, CHG, CMA, CSQ, CSU, CYO, CYP, EPL, EPT, ETB, HOK, ORH, PLS, SMC, SSO

4 10 APR, BOE, CIN, CSE, EPR, HJO, MCA, RCH, SBI, SND

3 7 CKA, CKX, JAV, LCH, SBK, TSQ, WSQ

2 11 BCR, BSH, CHP, DWO, LPI, LPS, NNA, RUD, SOR, SSM, WHX

1 26 BJA, BTA, CBA, CFA, CHA, CMX, COL, CXH, CYL, GRC, GSP, HAK, HCO, HYP, LEG, MRQ, PDG, PSK,
SNE, SUS, TRS, TUB, VCO, VSQ, WHR, WOE

The rarer species found on only one or two seamounts are highlighted and described in more detail in Table 4. See Appendix S1 for species codes.
doi:10.1371/journal.pone.0036897.t003
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Morgue, Graveyard, and Zombie were similar and Scroll had the

highest level at 26 species per km.

Differences in species composition. Pairwise tests showed

that in only seven cases was a species significantly more commonly

caught on one seamount than on another (Table 6).

Black oreo (BOE) was the second most common species on

Morgue (Figure 2), but on both Graveyard and Zombie remained

outside of the ten most common species. Black oreo was also more

common on Graveyard and Deadringer than on Zombie (none of

the 14 trawls on Zombie caught any black oreo). Largescaled

brown slickhead (Alepocephalus australis, SBI) and Owston’s dogfish

(CYO) were both significantly more common on Deadringer than

on Graveyard. Although Owston’s dogfish were caught on seven

occasions on both Deadringer and Graveyard, there were more

than four times as many research trawls on Graveyard. The small

cardinalfish (Epigonus robustus, EPR) was more common on Morgue

(where it was the sixth most common species) than on Graveyard.

The pair-wise similarity (Ppos statistic) results are shown in

Table 7. A high similarity (.0.70) occurs between Scroll and

Morgue and to a lesser extent between Deadringer and

Graveyard. The seamounts least similar in terms of species

composition (,0.60) are Zombie and Morgue, and Zombie and

Graveyard. Deadringer is more similar to the other four

seamounts and Zombie least similar, based on the mean similarity

obtained from the average of all Ppos seamount values (excluding

the values equal to 1.00).

The patterns of similarity are seen more clearly in a

multidimensional scaling plot (Figure 4), where Deadringer is in

the centre, Morgue and Scroll are most similar, and Zombie lies

more separate.

Principal component analysis. Correlations between the

physical variables were calculated to avoid using too many similar

and highly correlated variables in the model. Latitude was more

than 95% correlated with base depth and base temp, as was longitude

with slope (95%), summit depth with peak temp (100%), and base depth

with base temp (100%). Therefore in the following models the

variables slope, base depth, and summit depth, were preferred as they

were the most meaningful given the spatial scale and physical

characteristics of the five seamounts, along with effort, area, and

elevation.

The principal component analysis was carried out using the

most meaningful physical variables and they were reduced into

two main components with a cumulative proportion of 96.5%

(Table 8). Effort is important in the first component while the depth

variables (particularly base depth, and elevation) were important in the

second component. This analysis shows that it is these two

variables that better separate the seamounts.

Seamount base depth (the deepest depth contour which

completely encircles the seamount), seamount elevation (the depth

range between the seamount summit and base), and fishing effort

(the historical number of commercial bottom trawls associated

with the seamount) are sufficient to describe the main environ-

mental influences (Table 8). The pseudo-variables PC1 and PC2

are in multiple dimensions (each dimension relating to a real

variable), and the influence of each variable on the pseudo-

variables is indicated by the values shown in Table 8.

Each seamount feature was examined with multiple physical

variables (e.g., elevation, slope, area) and transformed into two

principal component axes (Figure 5). From this analysis the spread

of points show Scroll and Zombie clustered, but Graveyard,

Morgue, and Deadringer positioned well apart as they have

different physical features from all other seamounts.

Total and mean species richness in relation to some of the

physical characteristics of each seamount, and fishing effort, are

compared in Figure 6. In general, total species richness varied

between seamounts with different physical characteristics. How-

ever, mean species richness was similar for Graveyard, Zombie

and Morgue (at about 10 species per km) for each factor. Mean

richness on Deadringer was consistently low, and Scroll consis-

tently high.

Analysis of Variance (ANOVA) showed no significant relation-

ship between these features and total species richness, but slope

(p = 0.08), was a significant predictor of mean species richness.

Species similarity. Species similarity among seamounts was

modelled using a multiple analysis of variance (MANOVA) on the

values from multidimensional scaling (see axes 1 and 2, Figure 4),

and testing each of the physical factors as explanatory variables.

Summit depth was the only significant explanatory variable.

Summit depth generally explained the species similarity well,

especially on Graveyard and Deadringer, but the model did not

predict any species differences between Zombie, Morgue, and

Scroll (Figure 7).

Discussion

The study shows clearly that fish species composition and

abundance can vary between seamounts, even on a small spatial

scale. This was a somewhat surprising result, as many of the

common and widespread species found on the seamounts are

among New Zealand’s main commercial species ([31], [19], [20]),

and most deep-sea fish species in New Zealand waters have a

widespread geographical and depth distribution, spanning the

ranges of all the seamounts in the study ([32], [21]). Nevertheless,

strong differences were apparent, with species like black oreo more

common on Morgue than Graveyard, and the species was not

recorded at all from Zombie. It was also surprising that a relatively

Table 4. Total number of species and number of rare species found on each seamount.

Seamount
Total No. of
species

No. of rare
species

No. of research
tows Rarer species

Morgue 33 7 16 BCR, CMX, COL, LPS, NNA, SOR, VCO

Deadringer 42 11 17 CHP, GSP, LEG, LPI, RUD, SOR, SSM, SUS, TRS, TUB, WHR

Graveyard 51 20 73 BJA, BSH, BTA, CBA, CFA, CHA, CHP, CYL, DWO, GRC, HAK, HCO, NNA, PDG, PSK,
RUD, SSM, VSQ, WHX, WOE

Zombie 27 5 14 BCR, BSH, HYP, LPI, MRQ

Scroll 31 5 22 CXH, DWO, LPS, SNE, WHX

See Appendix S1 for 3-letter species codes.
doi:10.1371/journal.pone.0036897.t004
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Figure 3. Diversity curve (potential number of species caught with number of stations) and the total species richness (asymptote
curve) for each seamount. The symbols on each plot represent actual number of species recorded after the number of trawls indicated.
doi:10.1371/journal.pone.0036897.g003
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large number of species were recorded from only a single

seamount. Partly this may be due to the different sampling effort

between the seamounts, with predicted species numbers much

greater than actually recorded given the number of tows carried

out. This is consistent with the result that rare species were higher

in numbers on Graveyard, which had a high number of research

station trawls. However, in contrast, Deadringer has had a low

number of research trawls but was next highest in numbers of

rarer species.

The main environmental factor that was identified as influenc-

ing the composition and abundance of the fish communities was

depth-both base depth and summit depth. Base depth, elevation,

and summit depth are linked, and together describe potential

changes in fish species presence due to the actual depths covered

by the seamount, and the depth range. Depth is a common factor

that has a very strong influence on species composition (e.g., [33],

[34]. However, although the MANOVA performed well with

Graveyard and Zombie, it was inadequate for the other

seamounts, indicating that community composition is more than

simply a derivative of depth.

In a larger scale study for the New Zealand region, Tracey et al.

(2004) [19] found that total species richness was similar in all

seamount regions, but mean species richness much higher in

southern areas. A similar latitudinal effect was observed for New

Zealand deep-sea fish generally [31], and on the Chatham Rise by

Hurst et al. [35]and Beentjes et al. [36]. In the present study, the

spatial scale of the seamounts proximity to each other was too

small to expect latitude per se to have an influence, but

characteristics of slope and summit depth were correlated.

Broad similarities in fish communities over large spatial scales

were also recorded by Koslow et al. [37] and Clark et al. [20] with

prominent affinities in the species composition between areas as

distant as the Southwest Pacific and the north Atlantic Oceans.

Prevailing oceanic circulation, and a similar water mass distribu-

tion between ocean basins was believed to be the underlying cause

of similarities, but Clark et al. [20] also noted strong community

patterns characterising only a single locality, and concluded that

the distribution of deep-sea species is not a simple relationship with

water mass. Although the Graveyard seamounts are all in the same

water mass at depth (Antarctic Intermediate Water), the findings

of the current research are similar, that environmental factors may

affect the distribution of some species, but it is difficult to isolate

environmental drivers of overall patterns of assemblage composi-

tion.

Total species richness patterns were inconsistent with mean

species richness trends. Mean species richness, which avoids the

problem of differing sampling effort, was high on Scroll, and low

on Deadringer. Reasons for why Scroll was high are unclear.

However, it may be significant that Deadringer is the most isolated

of the seamounts examined. Graveyard, Morgue, Scroll and

Zombie are all within several km of one another, and the cluster of

features may provide a greater variety of habitat types and depths

to support a larger number of species. Fish association with

biogenic habitats, such as outcrops of stony coral, is well

documented [38], [39], However, direct linkages between

demersal fish and substrate type are not as obvious as for benthic

invertebrates, where the type and characteristics of the substratum

may control the composition of fauna (e.g., [40], [41], [42]) and

high megafaunal diversity can be associated with the variety of

topography and microrelief (e.g., [43]. Variation in substrate type

between the seamounts is a possible source of confoundment or

bias, but all the seamounts in the Graveyard complex have a

mixture of substrate [4]. Trawl catches are integrated across

patches of rocky and soft sediment seafloor, and together with

trawl direction from the summit being randomised on a number of

surveys, this reduces the likelihood of any substrate effect.

The level of historical fishing effort was a significant factor

affecting community composition when we investigated species

similarity with a principal components analysis.

Disturbance to the environment is expected to cause species that

tolerate the perturbation to thrive, while intolerant species decline

in abundance [44]. Differences in diversity may result from only

certain species being targeted by the fishery (in this area primarily

orange roughy), but changes can involve both a reduction in

diversity as rare species are eliminated, or an increase in species

richness by reducing abundance of the dominant species and

allowing new species to gain a foothold (e.g., [45], [46], [47]).

Differences in life history characteristics (e.g. slower growth, larger

size at maturity) also make certain species more vulnerable to

fishing, and many seamount-associated species have been classed

Table 5. Species richness (mean number of species per km
trawled) by seamount.

Seamount Mean species richness (per km)

Morgue 20.7

Deadringer 7.4

Graveyard 20.0

Zombie 19.5

Scroll 26.5

doi:10.1371/journal.pone.0036897.t005

Table 6. Species occurring in a significantly greater
proportion of tows on Seamount1 than on Seamount2, based
on Fisher’s exact test with a 99% significance level.

Species Seamount1 Seamount2

BOE Morgue Graveyard

BOE Morgue Zombie

BOE Graveyard Zombie

BOE Deadringer Zombie

SBI Deadringer Graveyard

CYO Deadringer Graveyard

EPR Morgue Graveyard

doi:10.1371/journal.pone.0036897.t006

Table 7. Pair-wise similarity (Ppos) between species for each
pair of seamounts.

Deadringer Graveyard Morgue Scroll Zombie
Mean
similarity

Deadringer 1.00 0.71 0.69 0.68 0.67 0.69

Graveyard 0.71 1.00 0.62 0.66 0.59 0.65

Morgue 0.69 0.62 1.00 0.75 0.57 0.66

Scroll 0.68 0.66 0.75 1.00 0.62 0.68

Zombie 0.67 0.59 0.57 0.62 1.00 0.61

Values close to 1 denote strong similarity. Mean similarity shown in the final
column is an average of all Ppos seamount values.
doi:10.1371/journal.pone.0036897.t007
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as highly vulnerable (e.g., [17]). In studies of invertebrate fauna for

the region, strong differences in community composition were

reported between fished and unfished hills in the Graveyard

Complex by Clark and O’Driscoll and Clark and Rowden [8], [3].

Within the North Sea, patterns of diversity of the groundfish

assemblage have changed over time, and in areas with different

fishing histories. However, changes have varied, with reduced

diversity reported in some heavily fished areas (e.g., [48], [49]),

while other studies have noted increased diversity in some areas

[50], [51]. Bianchi et al. [52] examined a global dataset, and found

differences in diversity measures caused either by changes in the

patterns of dominance or in the numbers of species because of

improved species identification. Off Alaska, reduced fishing effort

was thought to be the cause of an increase in the frequency of

occurrence of a number of fish species during the 1990s [53].

Comparative biodiversity studies are often difficult to achieve,

because of issues with data or analytical techniques. Taxonomic

consistency is often a major problem with deep-sea data sets from

seamounts where new species are often found (e.g. [13]). The fish

identifications used in this study were made by experienced

fisheries scientific staff, and where uncertain verified by museum

fish taxonomists. Utilising research data also ensured that the

species composition of the entire catch was established. Uneven

sampling effort was dealt with by comparing asymptotic estimates

of total species richness, and by mean richness per tow. Other

studies have reduced the uneven sample sizes to a smaller number

across all seamounts (e.g., [20]). However, this latter approach

does not utilise all the available data, and potentially loses

information. Most of the asymptotic predicted diversity curves

derived in this study looked reasonable against the actual samples,

but Zombie stands out as an anomaly because of the large

difference between actual recorded and estimated number. The

Zombie result has to be regarded as highly uncertain when

interpreting of the differences in diversity levels.

Care is also needed extrapolating species richness to the entire

seamount area. The estimated total species richness was highest

for Graveyard, which was also the largest seamount with the

greatest elevation. The other seamounts generally had similar

levels despite differences in size. It is common ecological theory

that the number of benthic species increases with area (e.g., [54])

and a larger seamount will generally have more species than a

small one because it spans a greater depth range and will have a

more varied complex of substrate types and micro-habitats. Depth

range can affect demersal fish distribution, but while habitat

complexity is definitely relevant for benthic invertebrates, it is

uncertain whether it applies equally to fish, especially the larger-

bodied species caught by the trawl gear used in this study. The

variation in seamount size in this study is probably insufficient to

draw firm conclusions about this result.

This study has been able to focus on a unique dataset from a

complex of seamounts in close proximity to one another and

reasonably isolated from other seamounts. However, the types of

fish species caught by bottom trawl gear with heavy bobbin and

rockhopper ground gear tend to be larger species, or larger sized

fish. Catches may not, therefore, represent the full fish community,

or very small spatial scale structure which may be associated with

variable habitats within a seamount (e.g., [55]). Such studies

ideally should incorporate other methods as well, such as data

from ROV’s and towed camera systems. Recent research has

Figure 4. Multidimensional scaling plot of similarity between
the species lists of seamounts. Seamounts with the most similar
species composition are plotted close together. D, Deadringer; G,
Graveyard; M, Morgue; S, Scroll; Z, Zombie.
doi:10.1371/journal.pone.0036897.g004

Table 8. Rotating axes coefficients of physical variables from
Principal component analysis. PC1 and PC2 are important
axes.

PC1 PC2

Base depth 20.013 0.796

Summit depth 0.072 0.242

Elevation 20.085 0.553

Area (km2) 20.002 0.003

Slope 0.000 0.020

Effort 20.994 20.040

Cumulative Proportion 0.993 0.999

The variables in bold are seen as the main environmental influences.
doi:10.1371/journal.pone.0036897.t008

Figure 5. Principal component analysis of seamount features.
PC1 is the first principal component 1 and PC2 is the second principal
component from Table 8.
doi:10.1371/journal.pone.0036897.g005
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Figure 6. Total species richness and mean species richness plotted against five physical variables (see Table 1), and commercial
fishing effort. D, Deadringer; G, Graveyard; M, Morgue; S, Scroll; Z, Zombie.
doi:10.1371/journal.pone.0036897.g006
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shown that the effects of climate change will extend into deep sea

environments and stress the need to increase the collection of

seamount specific environmental data sets to help improve these

types of analyses.

Supporting Information

Appendix S1 Species included in the analysis and their
composition by seamount in the Graveyard Complex.
Species are identified by unique 3-letter Ministry of Fisheries

species codes. D, Deadringer; G, Graveyard; M, Morgue; S,

Scroll; Z, Zombie.
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