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Abstract

The effect of moonlight and temperature on activity of slow lorises was previously little known and this knowledge might
be useful for understanding many aspects of their behavioural ecology, and developing strategies to monitor and protect
populations. In this study we aimed to determine if the activity of the pygmy loris (Nycticebus pygmaeus) is affected by
ambient temperature and/or moonlight in a mixed deciduous forest. We radio-collared five females and five males in the
Seima Protection Forest, Cambodia, in February to May, 2008 and January to March, 2009 and recorded their behaviour at
5 minutes intervals, totalling 2736 observations. We classified each observation as either inactive (sleeping or alert) or active
behaviour (travel, feeding, grooming, or others). Moon luminosity (bright/dark) and ambient temperature were recorded for
each observation. The response variable, activity, was binary (active or inactive), and a logit link function was used. Ambient
temperature alone did not significantly affect mean activity. Although mean activity was significantly affected by moonlight,
the interaction between moonlight and temperature was also significant: on bright nights, studied animals were
increasingly more active with higher temperature; and on dark nights they were consistently active regardless of
temperature. The most plausible explanation is that on bright cold nights the combined risk of being seen and attacked by
predators and heat loss outweigh the benefit of active behaviours.
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Introduction

The sensory world of the forest at night has strongly influenced

the behaviour and physiology of nocturnal mammals. In the

absence of visual sensory cues, many nocturnal mammals are

solitary [1], rely heavily on smell [2], and use crypsis to avoid

predators [3]. Consequently, the activity of many nocturnal

mammalian prey species is affected by the intensity of nocturnal

illumination. Some prey animals may reduce (lunar phobic) or

increase (lunar philic) activity with increasing moon luminosity

depending on their vulnerability to predators under bright

moonlight [4,5,6,7,8]. Other prey animals may not change their

activity in response to moon luminosity (lunar neutrality) [9].

Temperature also affects the activity of nocturnal mammals [10]

and also their food supply, with the abundance and activity of

invertebrates being lower with decreasing temperature. Periods of

torpor and reduced activity are most commonly energy saving

adaptations in response to extremely hot or cold climatic

fluctuations [11].

Amongst primates, some species are nocturnal specialists, and

others are cathemeral, meaning their activities are distributed

throughout the 24-hour cycle for at least some parts of the year

[12]. Together these comprise some 35% of primate species, found

in every part of their range from the Neotropics (night monkeys),

Africa (galagos, pottos), Madagascar (lemurs), and Asia (tarsiers,

lorises) [13]. All of these taxa are equipped with a suite of

morphological traits suited to this mode of life including the

presence of a tapetum lucidum (a reflecting retinal layer enhancing

vision at night) or extra-enlarged eyes to allow in light; a low basal

metabolic rate to thermal-regulate on cold nights; and enhanced

olfactory and vocal signals to communicate in the dark [14].

Some primate species, through enhanced vision and ability to

mob predators, to produce alarm calls and/or move off with

speed, are better equipped to detect and avoid predators near and

during full moons, and hence, do not need to reduce activity on

bright nights [9,15,16]. Bright nights may enhance foraging

efficiency in some primates, allowing them to see and catch more

insect prey and ripe fruits [8]. Recent studies have reported

different combinations of species-specific lunar responses in

nocturnal primates [9,17,18,19,20,21]. The spectral tarsier (Tarsius

spectrum) and numerous species of galago (Galago senegalensis, G.

moholi, Galagoides demidovii, G. zanzibaricus, Sciurocheirus alleni, and

Euoticus elegantulus) increase foraging and/or travelling during

bright moon nights [8,22,23,24].

Regulation of body temperature in nocturnal primates has been

shown to be of particular importance in one family of Malagasy

lemurs (Cherogaleidae) [25,26,27,28,29,30]. Torpor and hiberna-

tion have been studied extensively in these species, showing some

of the most remarkable specialisations of any nocturnal mammal,

such as extreme lowering of the body temperature, and heavy

storage of fat in the tail [29,30]. Torpor has also been observed in

PLoS ONE | www.plosone.org 1 April 2012 | Volume 7 | Issue 4 | e36396



a captive sub-adult Galago moholi [31], although it was not observed

in two long-term field studies of this species [15,21,32]. Indeed, the

opposite was the case, when galagos became active in the daytime

to feed on valuable gum resources [15].

The Asian lorises (subfamily Lorisinae) have classically been

described to avoid predators by crypsis [33]. Ranging in body size

from 120 to 2100 g, loris species are characterized by non-

saltatory locomotion [34], moving slowly and deliberately through

vegetation [35]. They have reduced second digits, and their limbs

have retia mirabilia, allowing them to maintain grip for long periods

of time [34,36], so that they can remain utterly still in the presence

of a threat. All lorises have monochromatic vision, possessing only

a single functional medium/long wavelength-sensitive cone

[37,38], which affects the way they perceive predators and food

in open versus dense forests.

This was clearly demonstrated by two species of South Asian

slender lorises (Loris). L. lydekkerianus inhabits open dry acacia scrub

forests. On bright nights it increased foraging activity for energy-rich

foods, but do not alter their distance travelled [15,24]. It whistled

more frequently during dark nights than bright nights. In contrary,

the rain-forest dwelling L. tardigradus whistled more frequently on

bright nights than dark nights [39]. On dark nights it slept, travelled

less and groomed more, reducing active behaviours [39].

The lunar response of slow lorises in South and Southeast Asia

has not been previously investigated prior to the present study.

Metabolic rates are extremely low in slow lorises [40,41,42,43],

with the greater slow loris (N. coucang) having a basal metabolic rate

60% lower than predicted [44]. Captive pygmy slow lorises (N.

pygmaeus) in Northern Vietnam exhibited extensive periods of

inactivity and reduced body temperatures during cooler months

[45,46]. This species was also encountered at lower rates during

colder months in the dry season in Laos, suggesting its activity was

reduced with lower temperatures [47].

We, therefore, chose to study the lunar response of the pygmy

slow (hereafter pygmy) loris Nycticebus pygmaeus. Endemic to

Vietnam, Laos, southern China and eastern Cambodia [48,49,

50,51], it is listed as Vulnerable in the IUCN Red List [52], and in

Appendix 1 of CITES [53] based on increasing and unsustainable

trade [53], habitat loss and degradation [52].

Optimal foraging theory in its most basic form suggests an

animal will forage in ways that will maximise its energy intake

[54], with a trade off between the risk of being seen by predators

on bright nights, and the benefit of increasing food intake. The

study site is located in a seasonal deciduous forest rich in species

diversity of civets, pythons, monitor lizards and predatory birds,

which are known predators of other small nocturnal primates

including loris species [55,56]. The site experiences low temper-

atures during the dry season from December to February, with a

marked reduction of foliage, increasing the visibility for predators.

Foraging at low temperatures would increase heat loss, and

foraging during bright nights would increase the risk of predation.

These conditions allow us to test how moonlight and temperature

interact to affect nocturnal animal behavior.

We predict that the pygmy loris will:

1. be more active during dark nights when predation risk

decreases;

2. reduce active behaviour such as travel and foraging, and

increase inactive behaviours such as resting and grooming

during cold periods.

Figure 1. Proportion of active behaviours across individuals in the study. The standard error of the logit values were used to construct 95%
confidence intervals indicated by the error bar.
doi:10.1371/journal.pone.0036396.g001
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Results

Mean activity differed significantly between the 10 studied

individuals (x2 = 234.86, d.f. = 9, p = ,0.001; Figure 1). Time of

the night significantly affected mean activity (x2 = 73.72, d.f. = 4,

p = ,0.001; Figure 2). These individual and temporal differences

were accounted for in the following test results.

Temperature on its own did not significantly affect mean

activity (x2 = 0.06, d.f. = 1, p = 0.809). Mean activity was signifi-

cantly affected by moonlight (x2 = 5.14, d.f. = 1, p = 0.023), and the

interaction between moonlight and temperature was significant

(x2 = 4.05, d.f. = 1, p = 0.044), with temperature affecting mean

activity during bright nights, but not dark nights (Figure 3).

Mean activity was constant across the temperature range from

16 to 28uC on dark nights, and did not reach the proportion on

bright nights until the temperature reached above 26uC.

Discussion

The observed effect of moonlight on activity indicates that

during the dry, cool season the pygmy loris is lunar phobic. A

plausible explanation for this is that during this season the

deciduous forest is sparse, providing reduced cover for animals

from potential predators, resulting in a less effective anti-predator

strategy. This was exacerbated by burning of the forest by local

people to improve access for collecting non-timber forest products

[57]. The pygmy loris uses more crypsis and concealment than

faster nocturnal primates such as the slender lorises, galagos,

mouse lemurs and tarsiers [9,17,19,20,21,24]. The most plausible

explanation for the pygmy loris reducing its activity with lower

temperature on bright nights is that the combined risk of both

predation and heat loss on bright, cold nights outweigh the benefit

of active behaviours.

Figure 2. Proportion of active behaviours across the night excluding periods of astronomical twilight. The standard error of the logit
values were used to construct 95% confidence intervals indicated by the error bar. Means are adjusted for other fixed effects.
doi:10.1371/journal.pone.0036396.g002

Figure 3. Interaction between moonlight and temperature on activity of the pygmy loris as predicted by the model.
doi:10.1371/journal.pone.0036396.g003
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Avoiding predators at the study site requires multiple adapta-

tions, as potential predators occur on the ground (small cats), in the

trees (snakes), in the air (hawk-eagles), and those animals that move

between these areas (monitor lizards, civets) [58]. Kenyon [pers.

comm.] reports that monitor lizards and birds of prey caused high

levels of mortality to reintroduced pygmy lorises in Vietnam.

Decreasing activity during the light moon would confound at least

several classes of these predators.

The lunar phobic behaviour observed is possibly seasonal and the

pygmy loris may be more active on bright nights during the wet

season when temperatures are higher and the forest provides denser

vegetation cover. Other mammals are known to display seasonal

variation in their lunar response [5]. Unfavourable conditions due

to the lack of rain for tropical plants and invertebrates during the

dry season may lower food supply and the pygmy loris may use

inactivity to conserve energy in response. The heavy reliance of the

species on gum during the study [59] parallels that of Galago moholi

which relied on this resource during the cold winter months, when it

also decreased activity [60].

It has been suggested that highly insectivorous nocturnal

primates will be more lunar philic because moonlight improves

their hunting success [8,9,24]. Although animals in our site were

frequently observed to catch and consume arthropods, and a high

proportion of invertebrates were found in scats throughout the

study period (CS, unpub. data), our data did not indicate that this

resource was important enough to select for lunar philia in the

local population at the site.

A behaviour exhibited rarely by the study animals was emitting

their loud long-distance whistle. Although slender lorises produced

this whistle varyingly in dry versus wet environments, they still

whistled multiple times per hour regardless of moonlight [24,39].

Pygmy lorises kept in outdoor enclosures also whistle regularly

[46]. Towards the end of our study, the study animals were heard

to begin to whistle on occasion, and it might have been that as the

forest became denser with foliage they could afford to decrease

crypsis.

Ambient temperatures are known to affect the activity in a

range of cathemeral [61,62,63,64,65,66] and nocturnal [29,67]

primates. Many of these primates undergo periods of torpor or

heterothermy to conserve energy to cope with low ambient

temperatures [25,26,27,28,29,30,31]. Fernández-Duque et al. [68]

reported that the activity of a lunar philic primate was reduced

during cooler temperatures, despite luminance. Some species are

known to adapt their behaviours as a coping mechanism. For

example, at lower temperatures, G. moholi displayed diurnal

activity such as moving into the sunlight, or feeding during the

day [60,69,70]. Our study animals became inactive on cool nights

only when the moon was up, however it is plausible the species

may undergo periods of torpor or heterothermy in cooler parts of

their range such as Northern Vietnam, where nightly temperatures

are known to reach 5uC [46,71]. Female pygmy lorises experience

late pregnancy, birth and begin lactation during the cool season

[72], which would further increase their energy demands, and may

result in further inactivity during times of food shortage and low

ambient temperatures.

Field surveys have indicated that densities of pygmy lorises in

Cambodia are low [73], and an effective monitoring method is

required. Our data suggest that monitoring of this species should

occur on dark nights, or warm bright nights during the dry season

to maximize the chance of encountering animals. Enforcement

initiatives may also focus on patrolling the forest during these

nights when pygmy lorises are more active, and, therefore, more

likely to be encountered by poachers.

Figure 4. Location of Seima Protection Forest, Cambodia. The study site is indicated on the map.
doi:10.1371/journal.pone.0036396.g004
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Methods

Ethics statement
This research involved work with wild non-human primates.

Animal ethics approval for this project (Approval number: SAS/

696/07/PhD) was approved by the University of Queensland

Animal Ethics Committee. All experiments comply with the

current laws of the country where they were performed.

Animals were hand captured, fitted with a radio-collar and

immediately released at the point of capture in the field to

minimise stress in accordance with the recommendations of the

Weatherall report, ‘‘The use of non-human primates in research’’.

Direct observations of study animals were used to collect

behavioural data, and we attempted to retrieve all radio-collars

on completion of the project to minimise discomfort of the study

animals. We were unable to recapture 2 individuals despite

numerous attempts; however the collars were made of thin leather

bands which would eventually break free from the animals.

Study site
The study was conducted in the Seima Protection Forest (PF), in

southern Mondulkiri province, Cambodia (Figure 4). This

conservation area encompasses 292,690 hectares. The study was

conducted in two periods: from 12 February to 31 May 2008; and

from 9 January to 24 March 2009.

In Mondulkiri dry season extends from November to April and

the rainy season from May to October and the mean annual

rainfall is approximately 2000–2500 mm [74]. Rainfall levels in

the southern, more mountainous part of the province are

considerably higher, with an annual mean of over 3,200 mm.

The conservation area lies between 100–700 m asl on the western

slopes of the Sen Monorom plateau, and in the south is part of the

Annamite Range [57].

The Seima PF consists of a mosaic of forest types, including

semi-evergreen, mixed deciduous, deciduous dipterocarp, and

evergreen forests [75]. The mixed deciduous forest is dominated

by Lagerstroemia sp., a deciduous tree species. This study occurred in

mixed deciduous forest, which had patches of bamboo throughout.

We selected this forest type for our study for two reasons. First,

spotlight surveys identified higher encounter rates in this habitat

type [73], and second, it was easier to catch, collar and observe

animals in mixed deciduous forests as they were less dense, making

it easier to pursue animals quietly. We were unable to collect data

during the wet season due to heavy rains and inaccessibility to the

site during these months.

Study animals
Animals were located using Petzl Zoom 4.5v headlamps (Petzl,

Crolles, France) with a red filter and hand captured. Each

captured animal was fitted with a two-stage transmitter (SirtrackH,

Havelock North, New Zealand) and released at the point of

capture. Ten individuals were tracked on foot, using a 6-element

Yagi antenna (SirtrackH, Havelock North, New Zealand), and a

portable radio receiver (ICOM IC-R10 receiver; Icom Inc. H,

Osaka, Japan). Data were collected on nightly follows of collared

animals between dusk and dawn, over two shifts: 18:00–00:00 and

00:00–06:00. Each individual had at least one all-night follow from

18:00–06:00. We captured and collared four adult females, three

adult males, one sub-adult female, and two sub-adult males. Sub-

Table 1. Number of observations collected on bright and
dark nights for individuals.

Individual ID Bright nights Dark nights

Adult female 1 11 54

Adult female 2 110 76

Adult female 3 174 78

Adult female 4 164 104

Adult male 1 105 245

Adult male 2 166 153

Adult male 3 411 113

Sub-adult female 1 152 123

Sub-adult male 1 50 60

Sub-adult male 2 165 222

doi:10.1371/journal.pone.0036396.t001

Figure 5. Frequency distribution of observations across moon phases. Moon phase is expressed as the illuminated percentage of the
portion of moon. When the moon was not above the horizon the moon phase was given a value of 0.
doi:10.1371/journal.pone.0036396.g005
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adults were generally smaller, and were recognizable as observed

by Wiens and Zitzmann [76] as having teeth that were white and

unworn, little or no wear on the inner surfaces of nails, longer, and

paler fur when compared to adult animals, and females were

nulliparous.

Behavioural observation
Focal animal sampling and instantaneous sampling methods

were used to collect behavioural data [77,78], and scan samples

were taken at 5-min intervals, recording data at the end of each

observation [78,79]. We adapted behavioural categories from

Gursky [8] and Nekaris [80]. Our categories were alert (eyes were

open, the animal was not moving), sleeping (eyes were closed),

travel, feed (we pooled data on hunting and foraging in to this

category), activity unknown, auto-grooming, and others (less

common behaviours such as scent marking and allo-grooming

were pooled in to this category). Very few observations were made

in the category ‘others’. A total of 2736 (1233 active, 1503 inactive)

observation points were collected from 10 individuals. The

number of observations made on bright and dark nights are listed

for individual study animals in Table 1.

Analysis
The response variable, activity, was binary, and a logit link

function was used. The model allowed baseline activity to vary

between individuals. Inactive behaviour was either sleeping or

being alert. All other categories of behaviours were defined as

active behaviour. The model consisted of individual ID, time of

night, temperature, moonlight and the interaction between

temperature and moonlight. Time of the night was classified

(taking into account astronomical twilight) by five time bands:

,21:00; 21:00–22:59; 23:00–00:59; 01:00–02:59; and .03:00.

Observations collected during the twilight periods were excluded

from the analysis to avoid the possible effect of sunlight. Nearly all

observations were collected when the moon was either below the

horizon and had a phase value of 0% (dark nights), or a phase

value from 50% to 100% (bright nights). Preliminary analyses of

the data indicated that classifying moonlight by dark/bright nights

was more parsimonious than using an illumination index given

nearly all observations were collected on either dark or bright

nights (Figure 5). Illumination indices were used in some previous

studies of primate activity [81,82]. This index was used in earlier

models during preliminary analysis but was not used in the final

model to improve the parsimony of the model. Given the small

number of individuals observed, we did not investigate the effect of

sex or age class on activity. The analyses were performed using the

GENMOD Procedure in SASH version 8.2.

Temperature
Ambient temperature was collected by a HOBO Pro series data

logger (OnsetH, Massachusetts, US) at the Seima PF base camp.

The logger was set to record at 15 minutes intervals. Linear

interpolation was used to calculate temperature for 5 minute

intervals. Temperature fluctuated between dusk and dawn across

the study period (Figure 6).

Moon
Sunrise, sunset, moonrise, moonset, and moon phase were

sourced from Geoscience Australia (http://www.ga.gov.au/

geodesy/astro/) for the time at which each observation was

collected.
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