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Abstract

Background: Cisplatin is an effective anticancer drug that elicits many side effects mainly due to induction of oxidative and
nitrosative stresses during prolonged chemotherapy. The severity of these side effects consequently restricts its clinical use
under long term treatment. Riboflavin is an essential vitamin used in various metabolic redox reactions in the form of flavin
adenine dinucleotide and flavin mononucleotide. Besides, it has excellent photosensitizing property that can be used to
ameliorate these toxicities in mice under photodynamic therapy.

Methods and Findings: Riboflavin, cisplatin and their combinations were given to the separate groups of mice under
photoilluminated condition under specific treatment regime. Their kidney and liver were excised for comet assay and
histopathological studies. Furthermore, Fourier Transform Infrared Spectroscopy of riboflavin-cisplatin combination in vitro
was also conducted to investigate any possible interaction between the two compounds. Their comet assay and
histopathological examination revealed that riboflavin in combination with cisplatin was able to protect the tissues from
cisplatin induced toxicities and damages. Moreover, Fourier Transform Infrared Spectroscopy analysis of the combination
indicated a strong molecular interaction among their constituent groups that may be assigned for the protective effect of
the combination in the treated animals.

Conclusion: Inclusion of riboflavin diminishes cisplatin induced toxicities which may possibly make the cisplatin-riboflavin
combination, an effective treatment strategy under chemoradiotherapy in pronouncing its antineoplastic activity and
sensitivity towards the cancer cells as compared to cisplatin alone.
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Introduction

Cisplatin (CP) or cis- diamminedichloroplatinum (II), a plati-

num based antineoplastic agent, is one of the prominent members

of the most effective broad spectrum anticancer drugs used against

cervical, head and neck, prostrate, breast, lung, testicular and

ovarian cancers [1]. The anticancer activity of this drug is

attributed to its capability to form covalent bonds at N-7 position

of purine residues of DNA leading to formation of 1, 2 or 1, 3-

intrastrand crosslinks and a lesser extent of the interstrand

crosslinks. These adducts of CP-DNA derail the cellular replica-

tion and transcription machinery if these lesions anyhow evade

DNA repair system in the effected cells [2]. Many labs including

ours have demonstrated that CP generates free radicals leading to

oxidative and nitrosative stress which results into such deleterious

effects in vivo [3,4].

Riboflavin (RF) or vitamin B2 is an essential vitamin that is

required for normal cellular functions, growth and development in

all aerobic forms of life. It occurs in two major forms- flavin

adenine mononucleotide (FMN) and flavin adenine dinucleotide

(FAD) that participate in various metabolic redox reactions

including electron transport chain in mitochondria and also as a

prosthetic group of many enzymes like glutathione reductase and

succinate dehydrogenase. It can undergo photolysis and photo-

addition leading to generation of various free radicals having

potential to exert derogatory effects on the macromolecules in vitro

and in vivo [5,6,7]. Furthermore, being an excellent photosensitiz-

er, it is used in photodynamic therapy (PDT) and ribophotother-

apy (RPT) for treatment of various diseases including cancer [8,9].

Interestingly, deficiency of this vitamin has been ascribed to play a

prominent role in progression of various cancers as well as

increased vulnerability of the cells to cancer [10]. RF has been

manifested to enhance antitumor activity of many anticancer

drugs as well as in boosting the immune system to kill tumor cells

[11,12].

Despite being an effective antiproliferative agent, the clinical

usage of CP is limited by various side effects including

nephrotoxicity, hepatotoxicity, neurotoxicity and ototoxicity. They

force the patients either to limit its dose or discontinue its use

during long term CP based chemotherapy. Hence, amelioration or

decreasing the severity of CP elicited toxicity is one the major

clinical challenges in the cancer research arena for the last two
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decades and many strategies have been tried ever since

[1,13,14,15]. In the recent past, our lab has demonstrated that

the photosensitizing property of RF can be used to alleviate the

toxicities induced by CP in situ and in vivo [4,16]. Our present work

is the first to study the blunting effect of cisplatin-riboflavin

combination on cisplatin induced toxicities in vivo at the molecular

level.

Materials and Methods

Materials
Cisplatin, riboflavin, normal melting agarose (NMA), ethidium

bromide (EtBr), Histopaque 1077, Hank’s balanced salt (HBSS),

RPMI 1640 and low melting point agarose (LMPA) were

purchased from Sigma- Aldrich Chemical Company, USA.

Ethylenediaminetetraacetic acid (EDTA), triton X-100, tris-

HCl, NaCl, Na2HPO4, NaH2PO4 and NaOH were bought from

Qualigens Fine chemical company, India. All other chemicals used

were purchased from Sisco Research Lab, Mumbai and HiMedia

Laboratories Private Limited, Mumbai.

Animal husbandry and treatment
Forty two adult Swiss albino male mice of 6 months’ age

weighing 48–50 g were purchased from the Central Animal House

of Jamia Hamdard University, New Delhi, India. . The animals

were housed in sufficiently large cages and treated under humane

and hygienic conditions with maintained 2562uC and 12 hours

day: night cycle according to ‘Departmental Ethical Committee

for Animal Experimentation’. They were acclimatized for 10 days

before the treatment on standard pellet mice diet (Ashirwad

Industries, Chandigarh, India) and clean drinking water ad libitum.

Animal experimentations were permitted by Ministry of

Environment and Forests, Government of India under registration

no 714/02/a/CPCSEA issued by Committee for the Purpose of

Control and Supervision of Experiments on Animals (CPCSEA)

dated 16th November, 2002. All experiments on animals were

approved by Departmental Ethical Committee (acad/D-833/

ILK/07-09-2007).

They were divided into 7 groups randomly taking 6 mice in

each group. They were named as- group I [control], group II

[treated with riboflavin at the dose of 2 mg/kg body weight],

group III [treated with cisplatin at the dose of 2 mg/kg body

weight]. The combination of CP and RF was named as group IV

[treated with the dose of 2 mg/kg body weight of CP with 1 mg/

kg body weight of RF (CP+RF1)] and Group V [treated with the

dose of 2 mg/kg body weight of CP with 2 mg/kg body weight of

RF (CP+RF2)] respectively. Group I was injected with saline only

in equal volume of the dose given to the treatment groups. All

these groups were exposed to full body irradiation under florescent

light [Philips, India] kept at ,10 cm distance at fluence rate of

38.6 W/m2 for 12 hours daily during daytime. Parallel to these,

additional two combination groups without exposure of light - IV9

(CP+RF1) and V9 (CP+RF2) were also maintained. All the doses

were injected intraperitonially with 1 ml capacity syringe using

saline as vehicle solution for all the treatment. RF was injected

prior to CP by K hour in all the combination treated groups [IV,

IV9, V and V9]. The dorsal surface of all the mice was mildly

shaved for maximum possible absorption of light through the skin.

The mice were given a daily injection for 3 days followed by a gap

of a week; then again a daily dose for 3 days with a week gap and

finally 3 more daily injections were given. This treatment schedule

was applied to mimic the current cancer treatment strategy for the

patients. The treatment strategy, dose and the duration of

treatment were chosen to study the chronic effect of the treatment

at moderately toxic dose of the drug. Group I was taken as the

control for comparison with all other groups. All the mice were

healthy during the whole treatment. All the animals were

sacrificed on the same day by cervical dislocation method on the

next day to the final dose given.

Preparation of samples
After the sacrifice, their kidneys and livers were washed with ice-

cold saline buffer. Each of the samples was cut with sterilized blade

into two parts: one portion was kept in HBSS for comet assay

while the rest was stored in 10% formalin for their histopatho-

logical studies.

For comet assay, the organs were submerged in HBSS with a

pinch of EDTA and RPMI 1640 followed by their chopping into

small cubes of 2–3 nm thickness in separate Petri dishes. Their

solutions were sieved by muslin cloth into fresh Petri dishes to collect

their cell suspension and were properly labeled. Cell viability test

was conducted for all the samples by trypan blue exclusion method.

Procedure of comet Assay
The assay was performed in alkaline condition in accordance

with protocol of Singh et al. with few modifications. Fully frosted

slides precoated with 1% NMA (as base layer) at 60uC were

prepared a day before sacrificing the animals. About 10,000 cells

isolated from each organ cell suspension were mixed with 100 ml

1% of LMPA to form the working cell suspension separately for

each organ. This suspension was pipetted over the base layer at

37uC followed by covering with cover slips immediately. After

solidification of second layer by keeping on ice packs, the cover

slips were removed and a third layer of 0.5% LMPA (100 ml) was

pipetted over followed by covering with cover slips and kept on ice

packs again. After that, the cover slips were removed and the slides

were immerged in cold lysing solution (2.5 M NaCl+100 mM

EDTA+10 mM tris-base+1% triton X-100) of pH 10 and were

kept as such for 3 hours. They were allowed to unwind in alkaline

electrophoretic running buffer (300 mM NaOH + 1 mM EDTA)

having pH 13 in electrophoretic tank for 30 minutes. Then,

electrophoresis was performed for 35 minutes at 4uC with constant

field strength of 0.74 volts/cm and current strength of 300 mA.

After gently washing with cold saline thrice, the slides were placed

in neutralizing buffer (0.4 M tris-base) of pH 7.5 followed by

washing with cold saline. The process of neutralization followed by

washing was repeated thrice. Their staining was done with 80 ml

ethidium bromide (20 mg/ml) for 5 minutes. Finally, the slides

were washed with chilled saline for three times and cover slips

were placed on. They were kept in humidified slide box in

refrigerator and were analyzed on the next day. The slides were

scored with CX41 fluorescent microscope (Olympus, Japan)

coupled with an image analysis system (Komet 5.5, Kinetic

imaging, Liverpool, U.K.) that was attached to integrated CC

camera COHU 4910 (equipped with 510–560 nm excitation and

590 nm barrier filters). The comets were scored at the magnifi-

cation of 1006and images of 50 cells (25 from each replicate slide)

for each sample were scored. Comet tail-length (migration of DNA

from its nucleus in mm) was chosen as the parameter to assess the

nuclear DNA damage for the present study.

Histopathological study of kidney and liver samples of
treated mice

For histopathology, the kidney and liver samples were kept in 10%

formalin for immersion fixation. 106563 mm sized tissue blocks of

both the organs were processed for paraffin embedding. Their

sections of 7 micrometer (mm) thickness were cut with rotary

Riboflavin Ameliorates Cisplatin-Toxicities

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e36273



microtome and stained with Hematoxylin and Eosin stain. The

sections were observed under trinocular light microscope (Olympus

BX40, Japan) and their photomicrographs were snapped at

magnification of6400. After sectioning of the organs, five randomly

selected sections from each group of both organs were subjected to

counting of cells under light microscopy manually. The cells showing

normal shape and size with clear and well defined nucleus and intact

cytoplasm were considered as normal cells. The cells demonstrating

shrinkage or partial/complete disappearance of nucleus were

considered as apoptotic cells whereas cells showing fuzzy nucleus

and scanty cytoplasm were assumed as cells undergoing necrosis.

Fourier Transform Infrared Spectroscopy (FT-IR) of RF, CP
and their combinations

To get the insight picture of any possible interaction between the

two compounds, the aqueous solution of RF (50 mM), CP (50 mM)

and their combination were prepared freshly followed by their

incubation under fluorescent light for 1 hour parallel with their

controls without any light exposure. The samples were sandwiched

between two potassium bromide discs by hydraulic pressing and

their infrared spectra were recorded by Shimadzu-8300 FTIR

spectrophotometer (Tokyo, Japan). Their scanning range was set at

600–2000 cm21 with resolution of 4 cm21.

Statistical analysis
All the data has been expressed in mean 6 SEM (standard error

of mean). Comparisons among various groups were conducted by

one way –ANOVA with the help of software ‘Origin 6.1’ and

‘GraphPad Prism 5’. p #0.05 was chosen as statistically significant

for the treatment. The experiments were repeated thrice to check

the reproducibility of the results.

Results

CP- RF combination demonstrated better recovery from
CP induced nuclear DNA damage in kidney and liver
samples as assessed by comet assay

CP and RF treatment under photoillumination caused major

DNA damage in the kidney and liver samples as evidenced by

elongated tail length in group III and II with respect to the control

(group I). Group II showed increase in tail length in kidney and

liver cells by 115.8% and 103% [Figure 1(B) and 2(B)] while group

III demonstrated the increment in the tail length in kidney and

liver cells by 231.6% and 218.2% respectively [Figure 1(C) and

2(C)]. The combination groups under photoillumination showed

dose dependent recovery in CP induced DNA damage as group

IV and V demonstrated decrease in the tail length by 26.6% and

55.6% in the kidney cells [Figure 1(D) and 1(E)] while 28.6% and

59.5% in the liver cells respectively [Figure 2(D) and 2(E)] as

compared to group III. Among the combination groups without

light exposure, group V9 displayed 13.5% and 16.2% recovery in

tail-length in kidney and liver cells followed by group IV9 showing

the recovery by 6.4% and 7.6% in kidney and liver cells

respectively (Figures not shown) indicating the better recovery

under the effect of light (Table 1; Table S1).

Histopathological studies showed healing effect of
cisplatin induced tissue damage by riboflavin in the
combination treated group

The liver histomicrograph of group II [Figure 3(B)] was

appeared to be normal having the contour of hepatocytes intact

while sinusoids remained patent without any sign of congestion

except enlargement of the hepatocytes with respect to the control

[Figure 3(A)]. The liver section of CP treated group III showed

prominent alteration in the hepatic microstructure including

altered contour of hepatocytes, sparse presence of cell organelles,

shrunken nuclei, collapsed sinusoids and poorly maintained

hepatic cords [Figure 3(C)]. These cellular features indicate that

the cells were severely damaged and most of them were either

undergoing apoptotic or necrotic pathway. Group IV liver

histomicrograph revealed intact hepatic cords, hepatocyte contour

and patent sinusoids [Figure 3(D)] which was closely comparable

to the control group. These are suggestive of ameliorating effect of

riboflavin in CP-RF combination treated mice under photoillu-

minated condition [Figure 3(D)] while its counterpart; the

combination treated group without photoillumination didn’t show

any significant improvement in their tissue sections [Figures not

shown].

The kidney section from group II [Figure 4(B)] was found very

much comparable to the control group [Figure 4(A)] showing no

any evident change in its microanatomy of renal tubules and renal

corpuscles. Kidney histomicrograph of the CP treated group III

showed structural features of acute tubular necrosis characterized

by swelling which could be due to loss of apical portion or

separation tubular epithelium from its basement membrane at

various sites [Figure 4(C)]. The combination treated group IV

histomicrograph depicted renal tubules as normal comparable the

Figure 1. Showing the average comet picture of kidney from
different treated groups of mice. Average comet picture of kidney
samples of various treated mice groups divided as (A) Control as Group
I (B) Riboflavin treated as Group II (C) Cisplatin treated as Group III (D)
Combination I as Group IV (E) Combination II as Group V.
doi:10.1371/journal.pone.0036273.g001
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control. However, the lumina of some of their tubules showed

renal casts possibly arising from the sloughing of tubular

epithelium. In addition, the lining of epithelial cells appeared flat

as compared to the control. Hence, the combination treated group

IV exhibited less cisplatin induced structural aberrations which is

indicative of the ameliorative effect of riboflavin in the group

[Figure 4(D)].

After qualitative histopathological examination of the tissue

sections, semiquantitative cell counting was performed on randomly

selected five tissue sections of both the kidney and liver from all the

groups. As kidney parenchyma consists of diverse type of cells; the

cells per renal tubule epithelium were taken as the parameter to

count the cells. It was observed that number of cells showing

necrotic features was highest in group III followed by group II while

the cells showing apoptotic features was more prominent in group

IV with decrease in number of cells undergoing necrosis as com-

pared to group III.

In liver, because of the uniformity in the cellular arrangement all

hepatocytes in a section were taken into account for their counting.

The number of cells under necrosis was highest in group III while

group IV demonstrated the highest number of cells under apoptosis,

Table 1. Showing the average tail length of comet of the treated cells of different groups.

Name of Group Treatment
Average tail-length
of kidney cells (in mm)

Average tail-length
of liver cells (in mm)

I Saline 7.661.65 6.661.7

II Riboflavin (2 mg/kg) 16.4**61 13.4*61.5

III Cisplatin (2 mg/kg) 25.2**62. 5 21.0**61.2

IV CP(2 mg/kg)+RF(1 mg/kg) 18.5##61.2 15.0#61.5

IV9 CP(2 mg/kg)+RF(1 mg/kg) 23.6#61.4 19.4#62

V CP(2 mg/kg)+RF(2 mg/kg) 11.2##61.5 8.5##61. 5

V9 CP(2 mg/kg)+RF(2 mg/kg) 21.8#61.2 17.6#62

All the data have been expressed in mean 6SEM for six different preparation of each sample of three independent experiments.
*indicates significantly different from control at p#0.05.
**indicates significantly different from control at p#0.01.
#indicates significantly different from group III at p#0.05.
##indicates significantly different from group III at p#0.01.
doi:10.1371/journal.pone.0036273.t001

Figure 2. Showing the average comet picture of liver from
different treated groups of mice. Average comet picture of liver
samples of various treated mice groups divided as (A) Control as Group
I (B) Riboflavin treated as Group II (C) Cisplatin treated as Group III (D)
Combination I as Group IV (E) Combination II as Group V.
doi:10.1371/journal.pone.0036273.g002

Figure 3. Histomicrographs of mice liver of major groups.
Showing histomicrographs of liver samples of various groups indicated
in parentheses. All the sections have been stained with Hematoxylin
and Eosin stain and were snapped at 4006. (A) Control [group I] depicts
normal hepatocellular structure and sinusoids (s). (B) Riboflavin treated
[group II] shows features very akin to normal. (C) Cisplatin treated
[group III] reveals microvesicular changes in the hepatocytes as well as
regions devoid of hepatocytes (*). (D) The combination of cisplatin and
riboflavin treated [group IV] again shows features quite similar to
normal control.
doi:10.1371/journal.pone.0036273.g003
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a pattern very similar to one observed in kidney sections [Figure 5(A)

and 5(B); Figure S1].

FTIR results and analysis
FTIR of combination -II showed that there is a strong

interaction between CP and RF in both the cases. RF showed a

characteristic peak of –NH2 (amide III) group of the alloxazine

ring at 1240.02 cm21 while CP displayed its characteristic peaks at

and 1558.93 and 1539.24 cm21 for both of its –NH2 (amide II)

group [17,18]. These peaks demonstrated noticeable shift in case

of their combinations under photoilluminated condition. Hitherto,

the combination without light exposure didn’t show any significant

shift in the peaks. It indicates involvement of the interaction

between the active groups of both the compounds at the molecular

level was pronounced in presence of light.

The combination of CP and RF without photoillumination

showed poor interaction between two compounds as mild alteration

was observed in their characteristic peaks of all the active groups [at

1648.49 and 1630.41 cm21 (for C = O group) and 1240.02 cm21

(for –NH group) of alloxazine ring of RF; 1245.85, 1234.96,

1539.24 and 1558.93 cm21 for two -NH2 groups while 676.81 and

720.12 cm21 for two chloride groups of CP] (Figures not shown).

Hitherto, the combination generated a series of new peaks (from

1698.71 to 1540.03 cm21 for –NH groups and 1212.63 and

1188.52 cm21 for C = O groups) after 1 hour of light exposure

[17,18]. The generation of these novel peaks indicates that an

interaction existed between RF and CP that increased by many

folds after photoillumination [Fig. 6(A) and 6(B)].

Discussion

During prolonged chemotherapy, the clinical usage of CP is

restricted or discontinued because of its severe side effects like ne-

phrotoxicity, hepatotoxicity, neurotoxicity and ototoxicity [2,4,19,20].

Their amelioration has been a great challenge for medical research

since its clinical implementation. The present investigation is aimed to

make CP based chemoradiotherapy more effective and less toxic in

the same league [19,20]. RF is an important ubiquitously occurring

vitamin in all aerobes. Recent studies have demonstrated that RF is a

potential apoptosis inducer in various cancerous strains and have been

recommended as an effective adjuvant therapeutic agent in the

treatment of diverse class of diseases including cancers [21–24].

Our present work for the first time demonstrates that CP-RF

combination is significantly less toxic as demonstrated by comet

assay and histopathology of liver and kidney samples of treated

animals. These results are also supported by our previous study in

which all the major oxidative stress parameters and target organ

functional markers were almost normalized when RF was used

with CP in vivo [7] which is also in agreement with our previous

investigation on mice keratinocytes [16].

Cancer cell lines based studies conducted by various investigators

have demonstrated that riboflavin can activate extrinsic apoptosis

pathway at low concentration in their culture but additional cell

death mechanisms like intrinsic apoptotic pathway and ubiquitin/

proteasome pathway are also triggered at higher concentration of

RF leading to further inhibition in their proliferation [20,21,25]. RF

has also been implicated in downregulation of many anti-apoptotic

factors like P13K, JNK and ERK K phosphorylation as well as

upregulation of many other apoptosis inducing factors like

cytochrome C, Smac/Diablo and htr A2/Omi. Recently, RF has

also been shown to promote extensive vacuole formation in HeLa

and HL-60 cells indicating involvement of autophagy parallel to

intrinsic and extrinsic pathways of apoptosis [26]. Hence, it is

expected that all modes of cell death might get involved when RF

was present in the cancer cell culture. This potential of RF can add

teeth to anticancer drug like CP when used to combat the cancer

cells in vivo as well.

The CP toxicity in target organs including kidney and liver is very

complex and involves network of various interrelated mechanisms.

CP is supposed to bind with cellular reductants and proteins inside

the cells leading to accumulation of ROS. The invasion of ROS on

the cells causes inflammation locally via upregulation of pro-

inflammatory cytokines (TNF-a, IL-1b and IL-6) as well as

chemokines (CXCL1/KC) that triggers expression of iNOS as well

as the adhesion molecules (e.g., ICAM-1) in the target cells [27]. It

leads to NO generation and adhesion molecules facilitate the

recruitment of inflammatory cells for inflammatory response in the

target cells. Besides, CP mediated inflammation also enhance the

expression of ROS generating phagocytic NADPH oxidases like

NOX4 and NOX2 [28,29]. Hence, oxidative and nitrosative stress

both play roles in CP-mediated toxic insults. Furthermore, these

stresses can activate interrelated downstream pathways such as

the nuclear enzyme PARP that is considered as a hallmark of

irreversible apoptosis induction [30]. As literature suggests that

higher oxidative and nitrosative stress triggers necrosis while its low

to moderate level induces programmed cell death [31], it is possible

in our case that riboflavin is either directly decreasing the stresses by

replenishment of cellular reducing powers and antioxidant enzymes

or maybe it is not allowing CP to cause any organ injury thereby

avoiding any derogatory inflammatory response.

CP also binds to DNA leading to its damage triggering p53

phosphorhylation and activation. After activation, the p53

mediated downstream regulation mechanism can be divided in

two categories: transcription-independent (mitochondrial and

cytosolic) and transcription dependent (nuclear). By transcriptional

regulation, nuclear p53 can activate proapoptotic genes like

PUMA-a, PIDD, caspases and ER-iPLA as well as can also repress

antiapoptotic genes like p21 and taurine transporter (Tau T).

Besides, it is also speculated that p53 may also induce cell death by

Figure 4. Histomicrograph of mice kidney of major groups.
Showing histomicrographs of kidney samples of various groups
indicated in parentheses. All the sections have been stained with
Hematoxylin and Eosin stain and were snapped at 4006. (A) Control
[group I] depicts normal renal corpuscles (Rc) and tubules (T). (B)
Riboflavin treated [group II] shows features very akin to normal. (C)
Cisplatin treated [group III] reveals changes suggestive of dilatation of
tubules, and nuclear cytoplasmic dissociation in the tubular epithelium.
(D) The combination of cisplatin and riboflavin treated [group IV] shows
reasonably intact tubular epithelium and lumen filled with cast (q).
doi:10.1371/journal.pone.0036273.g004
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transcription independent mechanisms via interaction with Bcl-2

family proteins in mitochondria or cytosol [32]. Moreover, various

studies entail that increased oxidative and nitrosative stresses can

directly trigger nuclear p53 gene to avoid any DNA damage or

enter apoptosis depending upon the severity of damage and cell

types [31]. However, it is proved that excessive free radicals can

perturb mitochondria and can induce cytochrome C -mediated

apoptosis. In our case, it is possible that RF or CP-RF combination

can favor the apoptosis inducing pathways or it may bring down

the stress level to threshold level which favors apoptosis instead of

necrosis. The results with combination treated mice indicate this

possibility in the present investigation. Furthermore, reduction in

necrotic cell death in group IV organ samples indicates that tissue

damage is minimized with RF supplementation. In addition, the

increase in apoptosis could be index towards the increase in

malignant cell death providing explanation to our preliminary

data on BC-3 cell line in which CP-RF combination has shown

plausible enhancement in cell death under MTT assay (data not

published).

It is documented that low dose of CP triggers apoptosis in the

target cells while necrosis is induced at the higher dose depending

upon the alteration of the redox status of the cells [33,34,35]. RF

and CP individually are known stress inducers in the cells via

generation of various free radical(s) that are able to transcend

organ(s) damage and cause alteration in biomlecules as well as their

respective functions [5,16] but, their interaction in all probabilities

would wane the cellular stress to the level favoring apoptosis as

mode of cell death instead of necrosis [35,36]. This possibly is

operative in our case when CP-RF combination is used leading to

normalization of all the parameters tested [5]. In addition, RF in the

form of FAD/FMN is used in many energy generating pathways

including ETC and oxidative phosphorylation. If RF is not sufficient

in the cancer patients, the aerobic mode of energy generation shifts

to anaerobic glycolysis which is favorable to tumor growth. Hence,

Figure 5. (A): Bar diagram showing average number of cells per renal tubular epithelial cell in kidney section of various groups. All
the data have been expressed in mean 6SEM for five different preparation of each sample. * indicates significantly different from control at p#0.05.
** indicates significantly different from control at p#0.01. # indicates significantly different from group III at p#0.05. ## indicates significantly different
from group III at p#0.01. (B). Bar diagram showing average number of cells in liver section of various groups. All the data have been expressed
in mean 6SEM for five different preparation of each sample. * indicates significantly different from control at p#0.05. ** indicates significantly different from
control at p#0.01. # indicates significantly different from group III at p#0.05. ## indicates significantly different from group III at p#0.01.
doi:10.1371/journal.pone.0036273.g005
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supplementation of RF may somehow suppress or at least slow

down the tumerogenesis. RF, in the present context, in spite of being

proved pro-oxidant, possibly acts as an antioxidant because it has

shown quenching of the free radicals generating potential of CP.

Hence, in the present study, we propose that the quenching is

probably due to molecular interaction between CP and RF via their

excitable groups. Although this interaction happens without

photoillumination but upon exposure of light, RF being a strong

photosensitizer is expected to be excited and hence the process of

enolization is favored leading to formation of stronger co-ordination

between CP and excited RF. This may be the reason for stronger

effect of CP-RF combination under light. Moreover, FTIR analysis

vividly indicates that RF undergoes enolization under photoillumi-

nation. On the other hand, CP undergoes aquation reaction in

water that ultimately forms diammoniumplatinum oxide. The Light

exposure can cleave the p- bond between platinum (Pt) and oxygen

of diammoniumplatinum oxide in heterolytic fashion, making Pt an

electron deficient species (Pt+). This highly unstable species can

attack at lone pairs of electrons of nitrogen atoms of the alloxazine

ring. Thus, Pt+ can form four possible complexes through co-

ordination bonding thereby engaging most of CP and RF in

combination. The RF-CP interaction occurs without exposure to

light also because of propensity of RF to interact with CP without

being excited. This could be due to the available lone pair of

electrons on N-atom in the ring of RF which can co-ordinate with

CP easily (Figure 7).

Figure 6. FTIR of CP-RF combination with and without photoillumination. Showing infrared spectra of CP-RF combination in presence and
absence of photoillumination taking wave number (cm21) and % transmission (%T) at X and Y-axes respectively. (A) FTIR spectra of CP-RF
combination without incubation under light. (B) FTIR spectra of CP-RF combination after I hour of incubation under light.
doi:10.1371/journal.pone.0036273.g006
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Thus, RF is a potentially strong therapeutic adjuvant for

alleviation of the drug induced toxicities and improves its

therapeutic potential possibly by assisting in induction of apoptosis

as well as autophagy specifically in the cancer cells and the effect

becomes stronger in light. Furthermore, the literature suggests that

RF can enhance the antineoplastic action of CP and may also

increase the sensitivity in CP resistant cancer cells [20,25,37,38,39].

Hence, supplementation of RF to the cancer patients undergoing

CP based chemotherapy will not only help to overcome the CP

induced side effects but also increase its anticancer activity in all

probabilities. We, therefore suggest with caution prescribing CP-RF

combination followed by low dose of radiation as a better treatment

strategy for cancer patients as compared to CP alone. However, the

anticancer activity of this combination needs to be tested before its

clinical application.

Supporting Information

Figure S1 Statistical analysis of cells of renal tubular
epithelium and liver histopathological sections at normal,
apoptotic and necrotic stages. Statistical analysis of cells per

renal tubular epithelium and liver showing normal, apoptotic and

necrotic features was done GraphPad Prism 5.

(DOC)
Table S1 Post hoc analysis of comet tail-length of kidney
and liver samples. Post hoc analysis of comet tail-length of kidney

and liver samples of various treatment groups was done by GraphPad

Prism 5. Group I: control Group II: RF Group III: CP Group IV:

Combination I under photoillumination Group IV9: Combination I

without photoillumination Group V: Combination II under photo-

illumination Group V9: Combination II without photoillumination.

(DOC)

Figure 7. Putative mechanism of complex formation between riboflavin and cisplatin. Bio-activated form of cisplatin may eventually
become electron-deficient compound and can interacts with electron-rich alloxazine ring N-atoms of riboflavin (keto-enol forms) in aqueous medium
resulting into formation of four complexes of both the compounds.
doi:10.1371/journal.pone.0036273.g007
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