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Abstract

Background: Sweet potato (Ipomoea batatas L. [Lam.]) ranks among the top six most important food crops in the world. It is
widely grown throughout the world with high and stable yield, strong adaptability, rich nutrient content, and multiple uses.
However, little is known about the molecular biology of this important non-model organism due to lack of genomic
resources. Hence, studies based on high-throughput sequencing technologies are needed to get a comprehensive and
integrated genomic resource and better understanding of gene expression patterns in different tissues and at various
developmental stages.

Methodology/Principal Findings: Illumina paired-end (PE) RNA-Sequencing was performed, and generated 48.7 million of
75 bp PE reads. These reads were de novo assembled into 128,052 transcripts ($100 bp), which correspond to 41.1 million
base pairs, by using a combined assembly strategy. Transcripts were annotated by Blast2GO and 51,763 transcripts got
BLASTX hits, in which 39,677 transcripts have GO terms and 14,117 have ECs that are associated with 147 KEGG pathways.
Furthermore, transcriptome differences of seven tissues were analyzed by using Illumina digital gene expression (DGE) tag
profiling and numerous differentially and specifically expressed transcripts were identified. Moreover, the expression
characteristics of genes involved in viral genomes, starch metabolism and potential stress tolerance and insect resistance
were also identified.

Conclusions/Significance: The combined de novo transcriptome assembly strategy can be applied to other organisms
whose reference genomes are not available. The data provided here represent the most comprehensive and integrated
genomic resources for cloning and identifying genes of interest in sweet potato. Characterization of sweet potato
transcriptome provides an effective tool for better understanding the molecular mechanisms of cellular processes including
development of leaves and storage roots, tissue-specific gene expression, potential biotic and abiotic stress response in
sweet potato.
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Introduction

Sweet potato [Ipomoea batatas L. (Lam.)], which belongs to the

Ipomoea genus of the Convolvulaceae family, is widely grown around

the world due to its strong adaptability, high and stable yield, rich

nutrient content, low input requirement, easy to manage and

multiple uses [1–3]. It has the highest energy yields per unit area

per unit time among many plants, and is the sixth most important

food crop in terms of production in the world [4,5]. More than

105 million metric tons are produced globally each year, 95% of

which are grown in developing countries [5]. China usually

accounts for 70% and 85% of total area and yield of the world,

respectively [6]. Sweet potato is a genetically challenging

hexaploid (2n = 6x = 90) plant with a genome size between 2,200

to 3,000 Mbp and can hardly be considered as a model species for

studies [6–8]. Comparing with other main crops or model

organisms, the genomic resources for this crop are deficient until

2010 due to its complex hexaploid genome [8]. Therefore,

genomic data sources for sweet potato were eagerly needed for

gene discovery and functional studies.

High-throughput transcriptome sequencing and digital gene

expression (DGE) tag profiling are efficient and economic choice

for characterizing non-model organisms without a reference

genome [9,10]. Until most recently, two sweet potato transcrip-

tomes were sequenced by the International Potato Center (CIP)

and the Guangdong Academy of Agricultural Sciences of China

using the Roche-454 pyrosequencing technology [11] and the

Illumina/Solexa RNA-Seq technology [12], respectively. The
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former used leaf and stem of an African landrace, and the latter

used only the roots of a new edible variety as materials. Although

the former released a sweet potato gene index, it was assembled

with the existing ESTs, and the sequences mainly contained short

open reading frames (ORFs) [11]. The latter only delivered the

original raw reads and reported the assembled scaffolds and

unigenes which were assembled with SOAPdenovo [12]. At about

the same time, we obtained RNA-Seq data from another sweet

potato cultivar ‘Xushu 18’, which was released in 1972, but is still

the leading variety in China both in annual hectarage and in total

root production [13], for transcriptome studies. However, we

found that there were many artifacts and defects in the assembled

transcriptome data provided by the commercial assembler service.

A lot of the assembled unigenes could not be read through and/or

were homologous to more than one gene. Therefore, we

reassembled the reads to enhance the gene accuracy and coverage,

and to get a comprehensive and integrated description of the

transcriptome and gene expression patterns of sweet potato.

Despite the fast development of assemblers that are able to

efficiently handle more reads, transcriptome assembly is still

difficult [9,14]. The quality of a de novo transcriptome assembly is

highly dependent on the user-defined sequence overlap length [9].

Different assemblers have different applicability and performance

[15,16]. Researchers usually chose only one assembler to assembly

a transcriptome [11,12,17–19]. However, new assembly strategies

such as merging the contigs of multiple assemblies [20,21] and

trimming of low-quality bases at the end of reads [22] can give

better assembly results [9]. We assume that trimming of bases at

the 39-end of reads with different lengths and assembling with

different assemblers, and then merging the assemblies with CAP3

can improve the de novo assembly.

In the present study, in order to establish a useful database of

transcriptome sequence as well as of differentially expressed genes

in different tissues and at different developmental stages of sweet

potato, we performed de novo transcriptome sequencing and DGE

tag profiling using the Illumina next-generation sequencing (NGS)

platform Genome Analyzer II (GAII). This platform generated

over 3.6 billion base pairs of DNA sequences from RNA-Seq and

an average of 3.7 million tags of seven tissues from DGE

sequencing. We used a combined de novo transcriptome assembly

strategy and obtained a comprehensive and integrated transcrip-

tomic resource with 51,736 annotated transcripts and 147

associated Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways of sweet potato. Furthermore, we compared the gene

expression profiles of seven tissues using DGE system and the

assembled transcriptome, and identified numerous differentially

and specifically expressed transcripts in different tissues and at

different developmental stages of roots. This represents a fully

characterized sweet potato transcriptome among tissues and

developmental stages through RNA-Seq. Our data should

promote the understanding of the molecular mechanisms of

cellular metabolism, and it is a valuable resource for genetic and

genomic studies on sweet potato in the future.

Results

RNA-Seq and de novo transcriptome assembly
To obtain comprehensive transcripts of sweet potato and an

overview of its gene expression profiles in different tissues and at

various developmental stages, total RNAs were isolated from seven

different tissues: young leaves (YL), mature leaves (ML), stems

(Stem), fibrous roots (FR) and tuberous roots at three develop-

mental stages for RNA-Seq using the Illumina NGS platform

GAII. We obtained 48,716,884 paired-end (PE) 75 bp reads

corresponding to more than 3.6 billion base pairs of sequence

data. Before assembly, we determined the insert size of the PE

reads, and found that more than 93% of the inserts were 200 bp

610% in length (Figure S1). We also assessed the reads quality on

the Galaxy website (http://main.g2.bx.psu.edu/) [23–25], and

trimmed the reads to form six sets of reads with 50, 55, 60, 65, 70

and 75 bp in length, respectively.

Each set of reads was de novo assembled into contigs with three de

novo assemblers under optimal parameters, respectively. A total of

4,275,924 sequences (604,520,440 bp) were generated from 19

sets of contigs, including the one provided by the commercial

assembler service (Table 1). Polymonomers ($10 bp) were filtered

by common perl scripts. Then, we reassembled these sequences by

using CAP3 [26] to reduce redundancy and generate longer

sequences, and obtained 68,227 contigs and 128,486 singletons

with length $75 bp after the last CAP3 assembly. Sequence

statistics of CAP3 assemblies is listed in Table S1. The assembled

transcriptome sequences ($200 bp) were deposited in NCBI’s

Transcriptome Shotgun Assembly (TSA) database under the

accession numbers from JP104589 to JP160056.

As a result, about 65% of the final assembly is $100 bp with an

average length of 321 bp (a total of 41.13 Mbp), N50 length of

509 bp, and maximal length of 5,466 bp (Figure 1 and Table 1).

There are 7,667 long transcripts that are $1,000 bp (Table 1) and

9,933 transcripts with ORFs $600 bp, 1,695 transcripts with

ORFs $1,500 bp (Table 2). These results are obviously better

than each individual assembly described above (Table 1).

Quality evaluation of transcriptome assembly
To assess the quality of our assembly, local BLAST similarity

search was performed using the ‘gold standard’ sequences as

queries to blast against the assembled sequences. As shown in

Figure 2, the average value of sensitivity and accuracy of the final

assembly is higher than any of the 19 de novo assemblies, whereas

the scaffolds and unigenes provided by the commercial assembler

service have the lowest value. Taking into account the assembly

statistics (Table 1), the final assembly appears to be the best among

the assemblies.

Reads were also mapped back to the assembled transcripts with

length $100 bp using Bowtie [27]. The result showed that

83.82% of the reads with seed length 50 bp mapped to 99.78%

transcripts (127,769) with no more than two mismatches.

According to the mapping result, the average coverage was 49.6

times, suggesting that the final assembly was highly satisfied. Then,

the transcripts with length $100 bp were used for subsequent

analysis.

We chose fourteen transcripts which have ORFs $900 bp and

do not have BLASTX hits for new gene cloning and validation.

Electrophoresis and sequence alignment results showed that all

PCR products contained the predicted complete ORF except only

one transcript which was slightly shorter than that expected, and

the sequence identities between Sanger sequencing results and the

assembled transcripts were all higher than 97% (Table S2).

Functional annotation and classification
Sequence similarity search was conducted by Blast2GO [28].

Of the 128,052 transcripts with length $100 bp, 51,763 (40.42%)

had significant BLASTX hits and matched to 29,056 unique

protein accessions. A small number of short transcripts had

BLASTX hits; while longer transcripts mostly had BLASTX hits

(Figure 1). For example, less than 20% of contigs shorter than

200 bp had significant BLASTX hits, but more than 82% of

contigs with length 500 bp or longer displayed significant

BLASTX hits (Figure 1). Most of the BLASTX-hit sequences
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(41,427, 80.03%) showed sequence identity of 70% or above, and

1,556 sequences even showed sequence identity of 100% (Figure 3).

Of the 29,056 unique protein accessions, 66.38% (19,288)

correspond to one transcript, while 19.09% (5,546) correspond

to two transcripts, and only 14.53% (4,222) to more than two

transcripts. The sweet potato genes identified in this study are 18%

and 40% more than previously reported by Schafleitner et al. [11]

and Wang et al. [12], respectively. However, there are still a large

number of sequences (76,289, 59.58%) without BLASTX hits.

Most of these sequences (90%) are short fragments (#300 bp),

Table 1. Statistics of de novo assembly output of sweet potato transcriptome.

Assembly No. of transcripts N50 (bp) Average length (bp) Total length (Mbp)
Maximal
length (bp)

. = 75 bp . = 100 bp . = 500 bp . = 1,000 bp . = 75 bp . = 100 bp . = 75 bp . = 100 bp . = 75 bp . = 100 bp

E75 829,797 180,039 2,675 203 77 141 94.03 154.67 78.03 27.85 1,987

E70 279,360 161,606 2,507 204 122 137 125.62 155.01 35.09 25.05 2,172

E65 240,664 142,141 2,198 172 120 137 126.62 154.90 30.47 22.02 2,802

E60 216,837 122,150 1,963 116 115 141 125.52 155.80 27.22 19.03 2,534

E55 184,687 95,969 1,596 90 111 151 124.50 159.18 22.99 15.28 2,258

E50 179,997 69,433 1,529 68 109 180 121.33 176.48 21.84 12.25 1,953

V75 162,206 130,508 8,934 1,309 236 262 199.72 226.65 32.40 29.58 3,467

V70 154,431 125,700 8,501 1,130 235 260 199.62 224.81 30.83 28.26 2,870

V65 146,690 120,234 7,628 972 227 251 197.04 220.57 28.90 26.52 2,939

V60 137,659 114,152 6,457 706 216 239 192.36 213.29 26.48 24.35 3,062

V55 126,336 105,380 4,951 453 198 219 184.85 203.41 23.35 21.43 3,274

V50 111,328 93,081 3,266 233 176 193 174.09 190.05 19.38 17.69 2,082

S75 258,392 146,435 3,885 321 143 189 140.84 184.07 36.39 26.95 2,973

S70 234,234 141,602 4,071 354 149 192 146.35 186.16 34.28 26.36 2,263

S65 222,499 135,430 4,219 361 152 195 148.23 188.48 32.98 25.53 2,363

S60 210,602 127,702 4,167 368 153 197 148.99 190.17 31.38 24.28 2,514

S55 195,912 119,012 3,919 349 154 198 149.43 190.88 29.27 22.72 2,563

S50 176,018 108,063 3,560 284 154 195 149.70 190.13 26.35 20.55 2,747

CC 208,275 154,869 8,125 1,121 194 226 177.08 207.25 36.88 32.10 3,676

FA 196,708 128,052 20,846 7,667 401 509 238.09 321.17 46.83 41.13 5,466

E75, E70, E65, E60, E55 and E50 were assembled by Edena; V75, V70, V65, V60, V55 and V50 by Velvet; S75, S70, S65, S60, S55 and S50 by SOAPdenovo. CC is contigs
provided by the commercial assembler service, and FA is the final assembly with CAP3.
doi:10.1371/journal.pone.0036234.t001

Figure 1. Distribution of transcripts in length and percentage of transcripts with BLASTX hits. 128,052 transcripts $100 bp of the final
assembly were used for BLASTX search. The X-axis represents the range of the transcript length. Size distribution of the final assembled transcripts
(orange) and number of transcripts with BLASTX hits (blue) shown in vertical histograms correspond to left Y-axis. The percentage of BLASTX hits to
size-grouped transcripts shown in diamond corresponds to right Y-axis.
doi:10.1371/journal.pone.0036234.g001
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which may be due to the low expression levels of some genes.

Some of the sequences without BLASTX hits may be new genes

and/or non-coding regions. Among the 51,763 BLASTX-hit

transcripts, it is worth mentioning that only 4.77% of the top

matches hit sweet potato itself, which could be explained on the

basis of the limited number of the sweet potato protein sequences

Table 2. Summary of ORF prediction.

Assembly Number of sequences

Length$300 bp Length$600 bp Length$900 bp Length$1,200 bp Length$1,500 bp

Total seqs ORFs Total seqs ORFs Total seqs ORFs Total seqs ORFs Total seqs ORFs

E75 9,704 4,852 1,524 772 332 166 82 47 16 7

E70 9,433 4,784 1,403 696 321 156 81 36 17 9

E65 8,750 4,375 1,239 601 285 133 65 37 12 10

E60 8,217 4,054 1,053 500 195 97 46 22 9 4

E55 6,976 3,409 831 364 139 72 31 16 6 3

E50 5,490 2,838 768 338 125 57 28 12 6 5

V75 25,464 13,665 5,763 3,124 1,834 1,009 682 387 262 155

V70 24,220 13,091 5,408 2,940 1,651 924 587 330 212 121

V65 22,194 12,067 4,827 2,594 1,429 767 481 254 169 89

V60 19,672 10,490 4,971 2,038 1,057 551 343 175 96 39

V55 16,016 8,444 2,933 1,455 716 355 185 88 55 24

V50 7,613 4,079 1,426 696 322 150 82 39 21 9

S75 15,724 7,348 2,228 1,138 513 289 140 67 43 31

S70 15,956 7,603 2,354 1,222 530 288 155 95 47 21

S65 15,990 7,775 2,437 1,244 561 294 147 82 50 24

S60 15,464 7,665 2,437 1,222 584 308 160 86 47 27

S55 14,674 7,310 2,348 1,171 549 303 143 69 41 21

S50 13,126 6,687 2,107 992 465 241 124 50 28 13

CC 23,826 12,940 5,219 2,909 1,654 909 564 312 208 125

UC 32,742 22,295 13,010 6,870 6,856 3,143 3,978 1,524 2,362 731

FA 37,179 25,771 16,781 9,933 9,243 5,091 5,237 2,649 2,971 1,695

SPGI 51,029 26,430 19,491 6,756 10,006 2,610 5,414 959 2,778 282

E75, E70, E65, E60, E55 and E50 were assembled by Edena; V75, V70, V65, V60, V55 and V50 by Velvet; S75, S70, S65, S60, S55 and S50 by SOAPdenovo. CC, UC are
contigs and unigenes provided by the commercial assembler service. FA is the final assembly with CAP3, and SPGI is the newly published Sweet Potato Gene Index by
CIP (International Potato Center).
doi:10.1371/journal.pone.0036234.t002

Figure 2. Comparison of the sensitivity and accuracy of de novo transcriptome assemblies. Sensitivity (triangle) and accuracy (cross) were
calculated based on the result of blast (See Materials and Methods for detail) under the condition of HSPs length $50 bp, identity $90% and E-
value,1e210. The histogram represents the average value of sensitivity and accuracy. E75, E70, E65, E60, E55 and E50 were assembled by Edena; V75,
V70, V65, V60, V55 and V50 by Velvet; S75, S70, S65, S60, S55 and S50 by SOAPdenovo. CC, SC and UC are contigs, scaffolds and unigenes provided by
the commercial assembler service, respectively. FA is the final assembly, and SPGI is the newly published Sweet Potato Gene Index by CIP
(International Potato Center).
doi:10.1371/journal.pone.0036234.g002
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that are currently available in the NCBI database. Most of the

identified transcripts showed the highest homology with those

from Vitis vinifera (20,472, 39.55%), Populus trichocarpa (8,352,

16.14%) and Ricinus communis (7,807, 15.08%) (Figure 4), and

similar taxonomic distribution of BLASTX hits was also reported

in other plant transcriptomes of asterids such as Craterostigma

plantagineum [29] and Fraxinus [30].

Gene ontology (GO) [31] assignments were used to classify the

functions of the assembled transcripts. In total, we made 140,446

annotations associated with 39,677 transcripts. The terms of ‘cell

and organelle’, ‘binding and catalytic’ and ‘metabolic process and

cellular process’ were the most representatives of the three main

categories of cellular component, molecular function and biolog-

ical process, respectively (Figure 5). As expected, virion and viral

reproduction were found in the categories of cellular component

and biological process, respectively (Figure 5).

To survey genes involved in important pathways, annotated

transcripts were mapped to the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways [32] using Blast2GO software [28]. A

total of 14,117 transcripts were annotated by 17,069 Enzyme

Codes (ECs), which contain 1,039 unique ECs. A total of 147

KEGG pathways were covered by 800 unique ECs in which 39

were found in the pathway of starch and sucrose metabolism

(Figure S2). However, 239 unique ECs were not found in any

known pathways. Sequence annotations are listed in Table S3.

Codon usage and GC content
We analyzed the codon usage of 9,933 transcripts with ORF

$600 bp. The results showed that the stop codon most frequently

used in sweet potato is TGA, which accounted for 55.64% of all

transcripts, the second one is TAA (26.73%) and TAG is the least

one (17.63%). According to the codon usage analysis, we found

that the most abundant amino acids encoded by the triplet codons

in sweet potato are non-polar amino acids (40.7%), and then the

uncharged polar amino acids (24.6%), while the acidic and basic

amino acids accounted for 20.7% and 14.0%, respectively (Table

S4).

Scanning ORFs of all transcripts that are $600 bp indicated

that the GC content of sweet potato coding regions is 44.25% and

AT content is 55.75%. Unlike rice and corn, whose GC

distribution in the coding region has two peaks [33–36], the

genes of sweet potato have a unimodal and narrow GC

distribution (Figure S3), 52% for the first position of codon

(GC1), 40% for the second (GC2) and 37% for the third (GC3),

just like what were found in Arabidopsis and other dicot species [33].

Identification of cDNA-derived SSR markers
We used the MISA (http://pgrc.ipk-gatersleben.de/misa/misa.

html) to search for simple sequence repeats (SSRs) that are defined

as dinucleotide, trinucleotide, tetranucleotide, pentanucleotide and

hexanucleotide repeats at least 18 bp in length. The results showed

that a total of 4,249 potential cDNA-derived SSRs (cSSRs) are

distributed in 4,028 transcripts. The frequency of occurrence is

2.16% and the average distance is 11.02 kb in sweet potato

transcriptome sequences. Most of these cSSRs (31.14%) are

trinucleotide repeats, followed by hexanucleotide repeats (29.23%)

and dinucleotide repeats (26.55%), and only a small portion of

them are tetranucleotide and pentanucleotide repeats (5.86% and

7.23%), respectively. There are 181 transcripts containing more

than 1 cSSR, and 129 cSSRs represent in compound formation.

Among all cSSRs, the motif AG/CT has the highest frequency

(18.10%), followed by motifs AAG/CTT (11.11%) and AT/AT

(6.02%). In total, there were 338 unique motifs. The cSSRs

identified in this study are valuable resource for genetic analysis of

sweet potato.

Statistics of DGE tags
To characterize the digital gene expression profiles in sweet

potato, seven DGE libraries were constructed and sequenced using

Illumina deep sequencing technology. More than 3.5 million raw

tags were obtained in each library (Table 3). About 95% of the raw

tags passed the filter, resulting in 24,557,853 clean tags in which

there were 328,383 distinct clean tags in total. The clean tags in

each sample ranged from 3.35 to 3.63 million, and the distinct

clean tags ranged from 93,593 to 139,389 (Table 3). The clean

tags data are deposited in NCBI’s Gene Expression Omnibus [37]

and are accessible through GEO Series accession number

GSE35929 (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc = GSE35929).

When clean tags were mapped to the final assembled transcripts

described above, it was found that the clean tags mapped to

transcripts in each sample ranged from 2.50 to 3.18 million,

accounting for 74.76% to 87.52% (Table 3). The distinct clean

tags mapped to transcripts ranged from 60,619 to 81,687 in

different samples, accounting for 55.23% to 68.00% (Table 3). A

total of 48,600 transcripts could be mapped by the clean tags. Of

the seven libraries, the number of tag-mapped transcripts ranged

from 28,645 to 35,109 (Table 3). The digital gene expression data

are listed in Table S3.

Analysis of differential gene expression
To compare differential expression patterns among seven

libraries, we normalized tag distribution for gene expression level

in each library to make an effective library size and extracted

significance of differentially expressed transcripts (DETs) with p

value#0.05 and log2 fold-change $1 by edgeR (Empirical

analysis of Digital Gene Expression in R) [38], which provides

an empirical approach and eliminates a bias being introduced by

RNA composition [39], according to the user manual. We

compared these seven libraries pair-wisely so that 21 pairs of

comparison were implemented. Among these comparisons, we

found that 4,721 to 12,151 transcripts had significant changes in

expression, and the average number was 9,657 (Table S3). The

up-regulated and down-regulated transcripts are shown in

Figure 6. The differential expression patterns among libraries

Figure 3. Sequence identity distribution. All BLASTX-hit transcripts
were calculated. Vertical histogram shows the number of transcripts
with which the range of percentage hit by BLASTX.
doi:10.1371/journal.pone.0036234.g003
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revealed that the largest differences occurred between ML and

HTR (harvest tuberous roots), and there were 7,994 and 4,157

transcripts up- and down-regulated in ML, respectively. The top

five up-regulated transcripts in ML are non-photosynthetic

ferredoxin, thiamine biosynthetic enzyme, glycolate oxidase,

ribulose bisphosphate carboxylase, chloroplast LHCII type I

chlorophyll a/b binding protein (Cab). The top five up-regulated

transcripts in HTR are sporamin A, sporamin B, expansin 2,

sucrose-phosphate synthase, aspartyl protease. The smallest

difference was shown between FR and ITR (initial tuberous

roots), in which only 4,721 DETs were identified. The differences

of other comparisons ranged from 6,109 to 11,664 transcripts.

We also observed a large number of specifically expressed

transcripts (SETs) between each two libraries (Table S3). SETs

were defined as those did not express in one library but the tag

numbers were larger than 11 in another one. Comparisons showed

that there were 559 to 2,874 SETs with an average number of

1,808 among 21 comparisons (Figure 7). The largest difference

was observed between ML and ETR (expanding tuberous roots)

and there were 1,952 and 922 transcripts specifically expressed in

ML and ETR, respectively. The smallest difference was seen

between ITR and ETR, in which only 477 and 82 transcripts were

specifically expressed, respectively.

All DETs were used for function enrichment analysis by R tools.

For pathway enrichment analysis, we mapped those DETs to

terms in KEGG database and searched for KEGG terms that were

significantly enriched comparing with the transcriptome back-

ground. We applied hypergeometric test and adjusted the p-value

Figure 4. Top-Hit species distribution. 51,763 BLASTX-hit transcripts were calculated. Species with proportions of more than 1% are shown.
More than 70% of the identified transcripts have the highest homology with Vitis, Populus or Ricinus. Less than 5% of the top matches hit sweet
potato itself due to the limited number of the sweet potato protein sequences available in the NCBI database.
doi:10.1371/journal.pone.0036234.g004

Figure 5. Histogram representation of GO classification. Transcripts were annotated in three categories: cellular components, molecular
function and biological processes.
doi:10.1371/journal.pone.0036234.g005
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using Bonferroni method [40] to identify significantly enriched

pathways. Results showed that the functional transcripts involved

in ‘porphyrin and chlorophyll metabolism’ pathway were enriched

in ML as compared to other six libraries. Comparison between

ETR and HTR displayed that transcripts involved in ‘carbon

fixation in photosynthetic organisms’ pathway were enriched in

ML. When comparing to all roots libraries (FR, ITR, ETR and

HTR), transcripts being active in ‘polyketide sugar unit biosyn-

thesis’ pathway were enriched in Stem. Furthermore, all SETs

were also used for functional enrichment analysis. When

comparing all root libraries with YL and ML, the SETs involved

in ‘carbon fixation’ pathway were enriched in leaves. The results

also demonstrated that during tuberous root development, the

SETs involved in ‘starch and sucrose metabolism’ pathway were

enriched in ETR comparing with ITR.

In order to study the tissue-specifically expressed transcripts, we

treated young and mature leaves (named leaves), initial, expanding

and harvest tuberous roots (named tuberous roots), fibrous and

tuberous roots (named roots) as biological replicates, respectively.

Comparisons displayed that there were 2,139 differentially

expressed transcripts between leaves and roots, in which 2,001

transcripts were up-regulated in leaves and 138 transcripts up-

Table 3. Statistics of DGE library sequencing and tag mapping.

Summary YL ML Stem FR ITR ETR HTR Averages

Raw Tags 3,536,026 3,630,797 3,616,244 3,847,265 3,823,315 3,711,657 3,745,496 3,701,543

Clean Tags 3,352,753 3,429,018 3,453,654 3,583,907 3,630,619 3,566,630 3,541,272 3,508,265

Clean Tags/Raw Tags (%) 94.82 94.44 95.50 93.15 94.96 96.09 94.55 94.79

Distinct Raw Tags 307,858 302,173 280,858 384,868 280,755 237,874 299,486 299,125

Distinct Clean Tags 125,145 118,397 118,715 139,389 109,697 93,593 115,636 117,225

Distinct Clean Tags/Clean Tags (%) 3.73 3.45 3.44 3.89 3.02 2.62 3.27 3.35

Mapped Clean Tags 2,506,655 2,894,248 2,904,513 2,890,484 3,177,381 3,101,355 2,764,216 2,891,265

Mapped Clean Tags* (%) 74.76 84.40 84.10 80.65 87.52 86.95 78.06 82.35

Mapped Distinct Clean Tags 69,118 76,860 75,256 81,687 74,598 60,619 68,341 72,354

Mapped Distinct Clean Tags * (%) 55.23 64.92 63.39 58.60 68.00 64.77 59.10 62.00

UCT Mapping to Transcript 2,154,554 2,529,417 2,551,795 2,504,573 2,760,652 2,699,212 2,363,845 2,509,150

UCT Mapping to Transcript* (%) 64.26 73.77 73.89 69.88 76.04 75.68 66.75 71.47

UDCT Mapping to Transcript 51,109 56,449 57,232 59,107 54,378 43,755 49,798 53,118

UDCT Mapping to Transcript* (%) 40.84 47.68 48.21 42.40 49.57 46.75 43.06 45.50

Tag-mapped Transcripts 30,977 32,131 33,754 35,109 32,900 28,645 30,730 32,035

Unambiguous Tag-mapped Transcripts 25,558 26,717 28,013 29,162 27,244 23,490 25,309 26,499

Unknown Tags 846,098 534,770 549,141 693,423 453,238 465,275 777,056 617,000

Unknown Tags* (%) 25.24 15.60 15.90 19.35 12.48 13.05 21.94 17.65

Distinct Unknown Tags 56,027 41,537 43,459 57,702 35,099 32,974 47,295 44,870

Distinct Unknown Tags* (%) 44.77 35.08 36.61 41.40 32.00 35.23 40.90 38.00

*: Percent of Clean Tag; UCT: Unambiguous Clean Tags; UDCT: Unambiguous Distinct Clean Tags; YL: Young leaves; ML: Mature leaves; Stem: Stems; FR: Fibrous roots;
ITR: initial tuberous roots; ETR: expanding tuberous roots; HTR: harvest tuberous roots.
doi:10.1371/journal.pone.0036234.t003

Figure 6. Transcripts differentially expressed between different tissues. Up-(red) and down-regulated (green) transcripts were quantified.
The results of 21 comparisons between each two samples are shown.
doi:10.1371/journal.pone.0036234.g006
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regulated in roots, including 835 transcripts specifically expressed

in leaves and 119 ones in roots (Table S3). Significance

enrichment was observed in ‘carbon fixation in photosynthetic

organisms’, ‘glyoxylate and dicarboxylate metabolism’, ‘porphyrin

and chlorophyll metabolism’ pathways in both differential and

specific expression. Transcripts involved in photosynthesis were

observed to be differentially expressed, including genes encoding

ribulose bisphosphate carboxylase, cab-like protein, photosystem I
reaction center subunit chloroplast and proton gradient regulation

5. All these genes were up-regulated in leaves and are functional

essential for carbon dioxide assimilation. Expression patterns of

some stress-responsive or defense-related genes were also differ-

entially expressed, such as those encoding cdsp32 protein, cristal-

glass1 protein, ripening protein and phytochelatin synthetase-like

protein.

Gene expression during root development and
carbohydrates accumulation

To better understand gene expression during root development

and carbohydrate accumulation, we collected the FR, ITR, ETR

and HTR at 1, 1.5, 3 and 5 months after planting, respectively.

The ITR and ETR were sampled during the early stages of

storage root formation, while the HTR was sampled at the late

stage. The DGE results (Table S3) showed that ITR and ETR had

the highest expression levels for UDP-glucose pyrophosphorylase.

The expression level of sucrose synthase in ITR was 4,066 TPM

(number of transcripts per million clean tags), but this value for

FR, ETR and HTR was only 1,938, 1,652 and 1,101, respectively.

Sucrose-phosphate synthase was up-regulated in tuberous roots

comparing with FR, and highly expressed in ETR and ITR. These

three enzymes play important roles in sucrose biosynthesis

pathway, and their expression patterns match well with early

studies [41,42]. For ADP-glucose pyrophosphorylase (AGPase),

which is involved in starch accumulation, HTR and ETR had the

highest expression levels. Invertase inhibitor-like protein and

fructokinase were both elevated in tuberous roots comparing with

FR. The expression of granule-bound starch synthase I, sporamin

A and sporamin B was all elevated in rapid bulking periods. In

addition, the differential expression of 19 out of 22 genes possibly

related to storage root induction identified by You et al. [43] was

observed in our study.

Dozens of genes involved in storage root induction were found

to be differentially expressed, including those in cell division,

regulation of transcription, membrane transport, and stress

response. Class III HD-Zip protein 8 was elevated in FR and

was reported to play a role in regulating the development of

cambia and secondary vascular tissues [44]. Differential expression

was observed for short-root protein, which is a key regulator in

root radial patterning, meristem maintenance [45] and asymmet-

ric cell division [46], and this gene was highly expressed in FR.

The expression of Spf1 protein, a regulator for sporamin and beta-

amylase gene [47] displayed the same pattern as short-root

protein.

Candidate genes for potential abiotic stress tolerance
and insect resistance

Among the genes annotated in the sweet potato transcriptome,

we found that there were a large number of genes that could

respond to drought, salt, cold, heat or osmotic stresses (Table S3).

Such as those encoding metallothionein (MT), Mn-superoxide

dismutase (MnSOD), catalase (CAT), vacuolar H+-pyrophospha-

tase (PPase), ascorbate peroxidase (APX), polyphenol oxidase

(PPO), late embryogenesis abundant proteins (LEA), Na+/H+

antiporter (NHX), early-responsive to dehydration stress protein

(ERD), aquaporin (AQP), vacuolar cation/proton exchanger

(CAX), betaine aldehyde dehydrogenase (BADH), and abscisic

acid responsive elements-binding factor (AREB). The DGE

analysis showed that most of these genes had relatively high

expression levels. The highest expression level in seven tissues was

7,790 TPM for MT, 7,734 for MnSOD, 5,990 for CAT, 2,460 for

PPase, 1,903 for APX, 1,671 for PPO and 1,360 for ethylene-

responsive element binding protein (EREBP) genes.

Plant proteinase inhibitors (PIs) are toxic to insect pests [48].

Genes coding for several PIs were found in this study, such as

kunitz-type protease inhibitor, cysteine protease inhibitor, trypsin

inhibitor. These genes displayed different expression patterns

(Table S3). For example, at least four different cysteine protease

inhibitor genes were found in DGE libraries, two of them were

highly expressed in ETR (987 and 94), while the other two were

highly expressed in ML (1,041) and Stem (1,194), respectively.

Sporamins, which are the major storage proteins in sweet potato

tuberous roots, belong to kunitz-type protease inhibitors and can

be grouped into two subfamilies [49,50], were abundant in some

tissues, but very pool in other tissues. Sporamin B had the highest

expression level in HTR (4,213), while almost none in YL (0), ML

(1) and Stem (0). For one sporamin A, the highest expression level

Figure 7. Transcripts specifically expressed between different tissues. Specifically expressed transcripts were quantified. The numbers of
DGE transcripts of 21 comparisons between each two samples are shown in blue and red histograms (top vs. bottom).
doi:10.1371/journal.pone.0036234.g007
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in HTR reached 110,994, while only 5 in YL. However, another

sporamin A showed the highest expression level in YL (4,486), and

extremely low in other tissues, only 26 for ITR, 17 for ML, 4 for

Stem, and not expressed in FR, ETR and HTR. Some sporamin

A genes were also expressed in all the seven tissues. Therefore, the

existence and differential expression patterns of these potential

abiotic and biotic stress genes in sweet potato may be an important

reason for sweet potato’s strong adaptation capacity in nature.

Discussion

Improving de novo transcriptome assembly
In published papers, authors usually employed one commonly

used software to construct transcriptomes with short reads data. In

this study, we used a combined strategy to conduct de novo

assembly of sweet potato transcriptome on the basis of Illumina/

Solexa short reads. We trimmed the bases at the 39-ends of reads

in different lengths (5–25 mers at 5 mers interval) to obtain six read

sets. Each of them was assembled under various parameters by

using different de novo assemblers. These assemblers implement

different assembly algorithms including the traditional OLC

approach (Edena) [51] and the de Bruijn graph approach (Velvet

and SOAPdenovo) [52,53]. The results showed that, Velvet

produced better assembly result than SOAPdenovo, while Edena

generated more short contigs (Table 1). Different assemblies

resulted in different N50 values. When 75 bp reads were

assembled by using Edena, Velvet and SOAPdenovo, the N50s

(contig $100 bp) were 141, 262 and 189 bp, respectively.

However, trimmed reads decreased the N50 of Velvet assembly,

but increased the N50 of Edena and SOAPdenovo (Table 1). All

the contigs in individual assembly including the one assembled by

commercial assembler service were still too short to be used, and

some overlaps still existed between the contigs. Therefore, merging

of them could get better results. Hence, we clustered the contigs of

the 19 assemblies by CAP3 [26]. The results displayed that the

final assembly was markedly improved in contiguity in terms of

N50, average, maximal and total sequence length, and number of

long sequences as compared to each single assembly (Table 1). The

final assembly output was also much better than the recent study

on sweet potato root transcriptome, which was assembled with the

SOAPdenovo software [53]. Although ours had 20% less reads

than theirs, our assembly has higher contiguity, i.e. with N50

length 401 bp versus 252 bp, average contig length 238 bp versus

202 bp and number of contigs (.1,000 bp) 7,650 versus 3,024

[12]. We also carried out scaffolding the final assembly by using

SSPACE [54], but only a small portion of the transcripts could be

merged (data not shown). Therefore, we suggest that trimming of

all raw reads sequences at the 39-ends and merging of assemblies

from different assemblers could significantly improve the assembly

outcome.

Evaluation of de novo transcriptome assembly quality
There were no standard criteria to evaluate the quality of

transcriptome assemblies [20]. Researchers assess the quality of an

assembly mostly by looking at the contiguity and accuracy of the

assembly [55]. In addition to the contiguity, we also assessed the

assembly quality with several metrics. Due to lack of genomic

resources for sweet potato, the sweet potato mRNAs with full-

length cds from GenBank were considered as ‘gold standard’

reference in our studies. To calculate the sensitivity, the

overlapped high-scoring segment pairs (HSPs) were only calculat-

ed once. We also considered the effect of the e-value threshold on

sensitivity calculation, but there seems to be little effect (data not

shown). For each individual assembly, Edena achieved higher

sensitivities than Velvet and SOAPdenovo. But the final assembly

produced by CAP3 had the highest sensitivity (Figure 2). To

calculate the accuracy, all unmatched parts were considered as

false positives. As the terminal sequences usually could not match

the alignments, we considered the effect of terminal length on

accuracy calculation. But the terminal length seems to have little

effect (data not shown). As there is usually a trade-off between

contiguity and accuracy [55], we considered the average value of

sensitivity and accuracy as the metric. The final assembly’s average

value of sensitivity and accuracy was higher than any single

assembly as well as the newly published sweet potato gene index

(SPGI) [11] (Figure 2). The accuracy of the final assembly may be

underestimated, because many genes may exist as gene families,

and the untranslated regions (UTRs) are relatively less conserved.

Moreover, graphical visualization tools such as Tablet [56] may

be very valuable for assessing assembly quality [55]. Mapping the

reads to the final assembly using Bowtie [27] allows us to visualize

the assembly quality.

Furthermore, we evaluated the ORFs of assembled sequences.

The final assembly had more transcripts with longer ORFs than

any single assembly and the recently released SPGI [11] (Table 2).

All results from above metrics indicate that our final assembly

quality is the most satisfying.

Due to lack of genome resources, DGE tags were mapped to the

assembled transcriptome for gene expression analysis and 74.76%

to 87.52% of the clean tags in the seven libraries mapped to the

transcriptome sequences. While the clean tags were mapped to the

75 bp reads, 87.46% to 95.85% of tags hit. But only 28.91 to

34.74% clean tags mapped to the unigenes provided by the

commercial assembler service, and 69.68% to 79.83% to the

previous reported SPGI [11]. This also indicates that our final

assembled transcriptome is more comprehensive and integrated.

Comparison of the combined assembly with Trinity
assembly

Our combined assembly was finished in September 2010. In the

preparing of this paper, a new de novo transcriptome assembly

package ‘‘Trinity’’ was developed at the Broad Institute [57]. As

Trinity seems to be the standard now, we reassembled our data

using Trinity (release 2011-11-26) and compared the results

obtained from these two assembly strategies. The Trinity

assembling is more user-friendly and time-saving as compared to

our combined strategy. However, we found that our previous

assembled results were more preferable based on deeply

comparison and analysis (Table S5).

First, Trinity produced much more transcripts with length

.200 bp, and a little more long transcripts (.1 kb) than the

combined assembly. But the combined assembly generated better

results in mean length, maximal contig length and N50. It is worth

noting that 67,610 transcripts (.200 bp) from the Trinity

assembly were derived from 50,609 components (genes). But the

combined assembly produced 55,181 contigs with length

.200 bp. The result of the predicted ORFs using EMBOSS

[58] demonstrated that for transcripts $300 bp, the Trinity

assembly had more transcripts while the combined assembly had

higher percentage and more transcripts of long-ORFs ($900 bp).

Second, we mapped the reads back to these two assemblies

using Bowtie [27] provided in the Trinity package with default

parameters. The results showed that 57.96% and 60.58% reads

were mapped back to the Trinity assembly and the combined

assembly, respectively. Moreover, we compared the DGE

mapping results and found that more tags could mapped to the

combined assembly than the Trinity assembly in all samples except

sample YL.
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Third, comparison of the Trinity assembly with the combined

assembly using BLAT (version 34) [59] indicated that the shared

transcripts accounted for around 95% of the total number of

transcripts, and most of the unique (none shared) sequences were

short fragments. This demonstrates that most of the sweet potato

transcriptome sequences could be reconstructed by either the

combined strategy or the Trinity approach. In addition, the top

BLASTX-hits indicated that most of the identified transcripts of

these two assemblies had the highest homology with Vitis, Populus

or Ricinus. This indicates that these two assemblies are somehow

equivalent in the reconstruction of total number of genes.

Fourth, evaluating the accuracy and sensitivity using full-length

cds of sweet potato from GenBank as reference showed that

Trinity assembly had a little higher accuracy (0.73 vs. 0.72), but

lower sensitivity (0.79 vs. 0.85) than the combined assembly.

Similar results were also reported in a recently published paper

[60]. Zhao et al. compared several de novo transcriptome assemblers

and different assembly strategies, and found that Trinity was the

best single k-mer assembler for transcriptome assembly [60].

However, in order to achieve a better assembly, multiple k-mer

approach should be considered [60]. In our combined assembly

strategy, we have not only used multiple k-mer method but also

different assemblers.

Global gene expression patterns of sweet potato
The transcriptome differences of the seven tissues (including

roots at different developmental stages) were characterized using

Illumina DGE technology, which is essentially an improved

version of MPSS [61,62]. Comparing with other genome-wide

microarray expression profiling platforms, deep sequencing-based

expression analysis does not need laborious and costly cloning and

sequencing steps [62]. It gives an unbiased methodology to

investigate expression pattern for each gene based on digital signal

and does not depend on reference genome. DGE can eliminate

background signals caused by cross-hybridization and share a

higher consistence with qPCR than other platforms [62]. Being

superior, NGS has been widely used since its inception [63–68]. A

large number of short reads generated by NGS systems require

efficient development of algorithm and software in computing.

Some differential expression analysis tools have been developed

and widely used in the last several years, some of which were

developed for deep sequencing technology, such as DESeq [69],

DEGseq [70] and edgeR [38]. In this study, edgeR was chosen

because it could be used for RNA-Seq, Tag-Seq and SAGE

experiments, and it describes an empirical approach to estimate

the bias introduced by RNA composition and integrates that into

the effective library size.

We compared the gene expression variations between each two

libraries, and identified numerous differentially expressed tran-

scripts between tissues and different developmental stages (Table

S3). To verify whether these DETs identified by DGE were

reliable, we compared the results with those from previous studies.

You et al. [43] constructed a cDNA library and identified 22 genes

differentially expressed between fibrous and tuberous roots. In our

study, 19 of these genes (86.4%) were found to be differentially

expressed and only the J8-like protein, NAM-like protein, and

G10-like protein had no differential expression. Actually, there is

no CATG site in the transcripts encoding J8-like protein and

NAM-like protein. Only the transcript encoding G10-like protein

showed the same expression levels in fibrous and tuberous roots.

When analyzing the expression between leaves and roots, the

specifically expressed transcripts involved in carbon fixation and

photosynthesis were all up-regulated or specifically expressed in

leaves, while some sporamins and starch-related genes were up-

regulated in roots. These all illustrate that gene expression

profiling from DGE can give reliable results.

We also found a large number of potential stress tolerance and

insect resistance related genes in sweet potato. Most of these genes

were first reported in this crop, such as SIZ1, PPase, CAX, ERD,

LEA and AQP. The expression patterns of these genes were

characterized. For example, the PPO gene was highly expressed in

YL, CAT in ML, APX in FR, BADH in ITR, MnSOD in ETR

and MT in HTR (Table S3). Several PIs that may play important

roles in insect pest resistance were found too, and displayed high

expression levels in some tissues (Table S3). Sporamins, which

account for 60% to 80% of the total soluble proteins in sweet

potato tuberous roots, belong to the PIs and are considered to be

tuber-specific [49,50]. Usually the expression levels of sporamins

are very high. But in this study, we found that not all sporamin

genes were specifically expressed in roots and high level of

expression also existed in leaves. These may help us to explain why

sweet potato has such a strong adaptation capability and can

produce tuberous roots with a little irrigation and pesticide.

Discovery of viruses with RNA-Seq
NGS makes virus identification easier. With the application of

Life Sciences 454 high-throughput sequencing, viruses could be

identified in genomes of animals [71] and plants [72]. Kreuze et al.

[73] identified some novel viruses and the sequence of an entire

viral genome by the Illumina’s small RNA sequencing technology.

Coetzee et al. [74] used the sequencing-by-synthesis technology

offered by the Illumina Genome Analyzer II to characterize the

virome of a vineyard. These approaches could not only identify

known viral pathogens that occur at extremely low titres, but also

novel viruses, without the necessity of any prior knowledge.

Moreover, these methodologies are able to detect both RNA and

DNA viruses.

Sweet potato viral diseases are the major reasons for yield loss

and cultivar decline and cause over 20% of yield losses in China,

with the most severe case reaching 78% reported in Shandong

province [6,75]. Using RNA-Seq, we also detected both RNA and

DNA viruses, and novel viruses. Among the BLASTX-hit

transcripts, there were 79 virus sequences putatively belonging to

12 viral species (Table S3). Two of them were DNA viruses, and

were previously reported only in Peru [73] and Tanzania [76].

Surprisingly, four viruses were first found in China, and some

viruses were first found in sweet potato. Due to lack of genome

sequences of some viruses, although 77 out of 79 putative viral

transcripts were found to have BLASTX-hit sequence identity

.75%, some of them may still need to be confirmed. More

sequence information for these viruses is needed. Five viruses with

100% homologies of BLASTX-hit to known viruses are Sweet potato

feathery mottle virus (SPFMV), Sweet potato virus G (SPVG), Sweet potato

latent virus (SwPLV), Ipomoea vein mosaic virus (IVMV) and

Mikania micrantha mosaic virus (MMWV). Most viral transcripts

belong to SPFMV which is the most common sweet potato virus

worldwide [77]. MMWV was only reported in Mikania micrantha

H.B.K. in Guangdong province, China [78]. During the last

decade, 11 viruses were reported in China [75], but to our

knowledge, this is the first time to detect so many viruses in one

sweet potato variety from one field.

It was estimated that sweet potato viral diseases caused annually

economic losses of four billion Chinese Yuan to the sweet potato

industry in China [75]. But how the viruses cause the yield loss is

unknown. Previous studies revealed that vegetative growth and

physiology of virus-infected sweet potato plants contributed to

losses of roots yield [75]. Virus-free plants showed much better

vegetative growth than virus-infected ones and roots of virus-free
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plants developed earlier and expanded faster at early stage of root

development than those of virus-infected ones [75]. Based on

DGE analysis, we found that the gene expression levels of the viral

genes were extremely low in leaves. However, the viral genes of

SPFMV, SPVG and SwPLV were highly expressed in FR and

tuberous roots, while those of IVMV were highly expressed in

ETR (Table S3). Depending on the number of FR forming storage

roots, sweet potato plants yield either a high number of uniform

and high-grade roots, or a low number of large storage roots per

plant or no marketable roots at all [79]. Well-developed root

system is beneficial for water uptake and nutrient absorption, and

their transport to sink organs, thus resulting in increased root yield

[75]. We, therefore, believe that the high level of viral gene

expression in roots, especially in fibrous roots may affects the

function and development of the root system (e.g. uptake of water

and nutrients, formation and expanding of tuberous roots),

eventually leads to yield loss and cultivar decline.

Materials and Methods

Plant material and RNA extraction
Stem cuts of sweet potato [I. Batatas (L.) Lam. cv. Xushu 18]

were planted in June, 2009, and grown under normal conditions in

Chengdu, Sichuan Province of China. Tissue samples of young

leaves (YL), mature leaves (ML) and stems (Stem) were collected at

1.5 months after planting. Fibrous roots (FR), initial tuberous roots

(ITR), expanding tuberous roots (ETR) and harvest tuberous roots

(HTR) were collected at 1, 1.5, 3 and 5 months after planting,

respectively. All tissue samples collected were snap-frozen

immediately in nitrogen and stored at 280uC until further

processing.

Total RNAs were extracted using the TrizolH Reagent

(Invitrogen, USA), and treated with DNase I (Fermentas, USA)

according to the manufacturer’s instructions. RNA quality and

purity were assessed with OD260/230 ratio and RNA integrity

number (RIN) by using the SMA3000 and the Agilent 2100

Bioanalyzer, respectively.

Transcriptome sequencing
To obtain a comprehensive list of transcripts, equal amounts of

total RNA from each sample were pooled together. The poly (A)+

RNAs were purified from the mixed high quality total RNAs

(20 mg) on oligo(dT) Dynabeads and impurities were removed

from the hybridized sample with a series low-salt solution washes.

The purified poly (A)+ RNAs were then dissolved into a Tris-based

buffer, precipitated with 70% ethanol, and then resolubilized. First

strand cDNAs were synthesized using Oligo(dT) primer, then

second strand cDNAs were synthesized using RNase H and DNA

polymerase I. Double stranded cDNAs were random fragmented

using Nebulizer, then repaired and added an adenine base to the

39 end. Two different adapters were ligated to 59 and 39 ends,

respectively. The ligated fragments were separated on gel, and the

fragments about 200 bp were extracted. After amplification by

PCR, the fragments were separated using electrophoresis and

purified, then submitted to Illumina GA II platform for sequencing

at Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China

(http://www.genomics.cn). Raw sequence data were generated by

Illumina pipeline and were available in NCBI’s Short Read

Archive (SRA) database (http://www.ncbi.nlm.nih.gov/Traces/

sra/sra.cgi?) under accession number SRA043582.

De novo transcriptome assembly and evaluation
The pipeline of de novo transcriptome assembly and analysis is

shown in Figure S4. All the assemblies were run on a 64-bit Linux

system (Ubuntu 10.10) with 32G physical memory except those

assembled by BGI (referred as commercial assembler service in

above description). Reads quality was assessed on the Galaxy

website (http://main.g2.bx.psu.edu/) [23–25]. As most of the

RNA-Seq experiments, reads quality at the 39 end dropped down.

The median Phred quality score was below 30 (which means the

sequencing error was more than 0.1%) from cycle 61 and 56 of the

forward and the reverse reads, respectively. So, the 39 ends of the

clean reads were trimmed, ranging from 5 to 25 mers at 5 mer

intervals, to form 6 sets of reads, which were used for assembly

with de novo assemblers of Edena v2.1.1 [51], Velvet v1.0.12 [52]

and SOAPdenovo v1.04 [53] using different parameters, respec-

tively. Statistics data of 330 assemblies were generated according

to the assembled contigs by common perl scripts (data not shown).

All the best assemblies obtained from each set of reads by using

every assembler with the optimized parameter were pooled,

together with the contigs provided by the commercial assembler

service (19 sets of contigs in total), and then were reassembled with

CAP3 [26]. The raw reads were also assembled using Trinity

release_2011-11-26 [57] with default parameters.

In addition to the statistics of each assembly, another method

was used to evaluate the quality of the assemblies. The known

mRNA sequences with full-length cds of sweet potato available in

GenBank were considered as ‘gold standard’ reference in this

study, and used to blast against each assembly by BLASTN [80].

Based on the blast results, we considered the average of sensitivity

and accuracy of each assembly. Sensitivity, also known as integrity

or transcriptome coverage, is the ratio of the sum of all unique

aligned segment length to the reference length. We calculated the

sensitivity with Sen = TP/(TP+FN) (TP = true positives, FN = false

negatives), where Sen is sensitivity, TP is the sum of all aligned

segment length (the overlap aligned regions were only calculated

once), FN is the sum of all reference segment length that were not

aligned. Accuracy is the ratio of the sum of all unique aligned

segment length to the assembled transcript length. We calculated

the accuracy with Acc = TP/(TP+FP) (FP = false positives), where

Acc is accuracy, FP is the sum of all assembled segment length that

were not aligned.

To further assess and/or visualize the assembly, we mapped the

reads onto the final assembled transcripts using the Bowtie

program [27] available at the Galaxy website (http://main.g2.bx.

psu.edu/) [23–25]. The results were viewed by Tablet [56].

Moreover, we evaluated the assemblies by scanning ORF with

EMBOSS package [58]. Fourteen transcripts with long ORFs but

without BLASTX hits were selected for reverse transcription-

polymerase chain reaction (RT-PCR) validation. Primers were

designed according to assembled transcripts using Primer Premier

5.0 (PREMIER Biosoft. International, CA, USA) and sequence

amplifying was implemented using KOD-Plus-Neo DNA poly-

merase (Toyobo, Japan). PCR products were sequenced by Sanger

method.

Functional annotation and classification
The final assembled transcripts ($100 bp) were submitted for

homology and annotation searches using Blast2GO software

v2.4.4 [28]. For BLASTX against the NR database, the threshold

was set to E-value#1026. GO classification was achieved using

WEGO software [81]. Enzyme codes were extracted and Kyoto

Encyclopedia of Genes and Genomes (KEGG) [32] pathways were

retrieved from KEGG web server (http://www.genome.jp/kegg/).

Sequence analysis
After sequence assembly, we extracted ORFs using EMBOSS

[58], and analyzed GC content and codon usage bias using
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DNAStar (http://www.dnastar.com/) and CodonW (http://

codonw.sourceforge.net/). We also searched cDNA-derived simple

sequence repeats (SSRs) using a perl script known as MIcroSAt-

ellite identification tool (MISA, http://pgrc.ipk-gatersleben.de/

misa/misa.html).

DGE library preparation and sequencing
Total RNAs were extracted from the seven tissues individually,

and their qualities were assessed as described above. The poly (A)+

RNAs were purified from 6 mg of total RNAs, and cDNAs were

synthesized as described above for each sample. The double

stranded cDNAs were digested with Nla III to produce a CATG

cohesive end, followed by purification with Dynabeads and

ligation to Illumina adapter I that contains a Mme I restriction

site. cDNA fragments containing adapter I were purified and

digested with Mme I which recognizes the junction of the adapter I

and the CATG site, and makes a cut at 17 bp downstream of the

NlaIII recognition site. The 21 bp tags containing adapter I were

ligated to Illumina adapter II to generate a tag library. These tag

fragments were amplified by liner PCR for 15 cycles using PCR-

primers annealed to the adapter ends. The 85 bp amplicons were

separated on 6% TBE PAGE gel, purified and denatured to

produce single strand molecules. These molecules were anchored

to Solexa sequencing array and sequenced on Illumina GA II at

BGI-Shenzhen, Shenzhen, China (http://www.genomics.cn).

Raw sequence data were generated by Illumina pipeline and

were available in NCBI’s SRA database (http://www.ncbi.nlm.

nih.gov/Traces/sra/sra.cgi?) under accession number

SRA043583.

Analysis of DGE tags and mapping to reference
transcripts

Pipeline for DGE analysis was shown in Figure S4. The 21 bp

DGE tags were extracted, filtered and counted by custom shell

scripts. Raw sequences were transformed into clean tags as

described [82]. All clean tags were aligned to the final assembled

transcripts using Bowtie [27] available at the Galaxy website

(http://main.g2.bx.psu.edu/) [23–25], allowing no more than one

nucleotide mismatch. In order to compare the expression

abundance among samples, tags were normalized to TPM

(number of transcripts per million clean tags) [62,63].

Analysis of differential expression
The edgeR package [38] was used for differential expression

analysis of genes. We compared each two libraries and used

hypergeometric test to identify differentially expressed transcripts

(DETs), specifically expressed transcripts (SETs) and functionally

enriched transcripts.

Supporting Information

Figure S1 The insert size histogram of PE reads. The

insert size of PE reads was inferred by mapping the PE reads to a

chloroplast genome of I. purpurea (GenBank Accession Number

NC_009808) which is a species close to I. batatas.

(TIF)

Figure S2 Map for KEGG starch and sucrose metabo-
lism pathway of sweet potato. ECs in red were found in this

study.

(TIF)

Figure S3 Distribution of GC in the coding region of
sweet potato. 9,933 transcripts with ORF$600 bp were used

for GC content analysis. GC: GC contents of entire ORFs; GC1,

GC2, GC3: GC contents of the first, second, third position of

codon, respectively.

(TIF)

Figure S4 Pipeline of the transcriptome and DGE
bioinformatic analysis. The Illumina reads with length of

75, 70, 65, 60, 55 and 50 bp were individually assembled using

Edena, SOAPdenovo and Velvet, respectively. Contigs obtained

from each set of reads by using every assembler with the optimized

parameter [E75, E70, E65, E60, E55 and E50 assembled by

Edena; S75, S70, S65, S60, S55 and S50 assembled by

SOAPdenovo; V75, V70, V65, V60, V55 and V50 assembled

by Velvet; and contigs provided by the commercial assembler

service (CC)] were pooled and reassembled with CAP3. Final

transcripts were evaluated, annotated and analyzed. For DGE

analysis, DGE tags were filtered and clean tags were mapped to

the final assembly. Differentially expressed transcripts (DETs) were

screened by edgeR. Then, we used hypergeometric test to identify

DETs, SETs and functionally enriched transcripts between each

two samples.

(TIF)

Table S1 Statistics of CAP3 reassembly output of sweet
potato transcriptome.

(XLS)

Table S2 Validation of new genes by RT-PCR amplifi-
cation and Sanger sequencing.

(XLS)

Table S3 Sequence annotations of sweet potato tran-
scripts and the gene expression levels.

(RAR)

Table S4 Codon usage of sweet potato.

(XLS)

Table S5 Comparison of two assembly strategies on de
novo assembly of sweet potato transcriptome.

(XLS)
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