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Abstract

We propose a model for the self-propulsion of the marine bacterium Synechococcus utilizing a continuous looped helical
track analogous to that found in Myxobacteria [1]. In our model cargo-carrying protein motors, driven by proton-motive
force, move along a continuous looped helical track. The movement of the cargo creates surface distortions in the form of
small amplitude traveling ridges along the S-layer above the helical track. The resulting fluid motion adjacent to the helical
ribbon provides the propulsive thrust. A variation on the helical rotor model of [1] allows the motors to be anchored to the
peptidoglycan layer, where they drive rotation of the track creating traveling helical waves along the S-layer. We derive
expressions relating the swimming speed to the amplitude, wavelength, and velocity of the surface waves induced by the
helical rotor, and show that they fall in reasonable ranges to explain the velocity and rotation rate of swimming
Synechococcus.
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Introduction

The swimming of the marine cyanobacterium Synechococcus has

been a longstanding puzzle. Synechococcus is ubiquitous in the

euphotic zone of the worlds oceans making it a major primary

producer. Approximately one third of the open ocean isolates are

motile. It moves through seawater at speeds of 5 to 25 mm/s while

rotating about its long axis at about 1 Hz [2], [3]. It accomplishes

this despite the complete absence of any observable motile

apparatus such as flagella. Mechanisms for self-propulsion such

as self-electrophoresis and the expulsion of a Newtonian fluid have

been ruled out on physical grounds, [4] and [5], leaving the cell

surface as the likely location for the generation of thrust. A

traveling surface wave mechanism was proposed in the mid 1990’s

([6], [7]), but heretofore no mechanism for the generation of the

waves has been found. It was shown that a wave with amplitude

0:02mm, just under the resolution limit of light microscopy, with

wave speed 160 mm=s traveling along the cell surface can propel

the cell at observed velocities. While this wave speed may seem

surprisingly high, we note that even if the entire cell surface were

to flow along the cell body, being created at one end and absorbed

at the other in a mechanism known as tread milling [8], the outer

membrane would still need to move at nearly 40 mm=s to propel

the cell at 25 mm=s. Any mechanism involving cyclic deformations

of the cell surface would require much higher surface velocities.

A clue to Synechococcus’s propulsion comes from a bacterium that

does not swim, but glides on surfaces. Recent work on the gliding

of individual cells of the soil bacterium Myxococcus xanthus showed

that its motion is associated with rotation of a continuous looped

helical track spanning the entire length of the organism [1], see

also [9]. The cell reverses its direction periodically in synchrony

with the helix reversing its rotation direction. The helix rotation is

driven by a transmembrane proton motive force (PMF), and the

track is likely composed of actin-like MreB cytoskeletal filaments.

The rotating helix was found to interact with MotAB homologues,

the stators of the bacterial flagellar motor. The authors proposed a

mechanochemical model in which PMF-driven motors, similar to

bacterial flagella stator complexes, run along an endless looped

helical track, driving rotation of the track. A layer of high viscosity

slime causes ‘‘traffic jams’’ in the AgmU associated proteins to

form on the ventral side of the organism creating surface

deformations. These deformations pass down the cell as the helix

rotates creating pressure waves in the slime thereby pushing the

cell forward at speeds of several body lengths per minute, as

depicted in figure 1A. As MreB and MotA/MotB homologues are

common across a wide variety of bacterial species, Nan, et al.

speculated that a similar mechanism could be responsible for

Synechococcus motility. This speculation was buttressed by the

observation that treating Synechococcus with a chemical (A22) that

halts MreB polymerization halted swimming within two minutes.

Synechococcus, however, swims much faster than myxobacteria glide,

so the question arises whether the same mechanism could operate

over such a wide velocity range. Here we propose a concrete

model based on the helical rotor mechanism that can explain most

of the swimming characteristics of Synechococcus. The purpose of the

current work is to demonstrate that the helical rotor demonstrated

by Nan, et al. can be scaled up to propel Synechococcus thereby

opening a new avenue in the search for the machinery behind its

propulsion.

Electron microscopy studies of two swimming strains of marine

Synechococcus reveal that they both possesses crystalline S-layers

[10], [1]. It was reported in [12] that a 130-kDa cell surface

glycoprotein, SwmA, localized on the cell surface is required for

swimming. Cells lacking the gene expressing SwmA do not possess
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an S-layer [11]. Cells not expressing SwmA are nonmotile, yet

when fortuitously attached to a slide, were still observed to rotate

at *1 Hz about their point of attachment, indicating that the S-

layer is required for translation but not rotation. A second surface

protein, SwmB, is secreted from the cell surface and is also

necessary for swimming, but its role is unknown [13]. Thus while

surface proteins appear to be necessary for swimming, their precise

role remains unclear. The experiments, however, do strongly

implicate the S-layer as an essential component of the swimming

mechanism.

In this paper we formulate and analyze a theoretical model for

swimming in an unbounded fluid using the machinery of

Myxococcus xanthus. The basic assumption of our model is the

existence of a continuous looped helical rotor analogous to that

found in M. xanthus, figure 1B. The rotor transmits traveling helical

waves to the S-layer which, in turn creates a flow in the

surrounding fluid leading to both translation and rotation. The S-

layer which is comprised of elongated subunits plays a critical role

in our model by providing an asymmetry to the fluid flow and

amplifying the height of the waves, greatly increasing the thrust.

The simplest model for the generation of surface waves involves

stationary motors anchored to the peptidoglycan layer. Rotation of

the helical rotor transmits helical ridges directly to the cell surface,

figure 1C. Alternatively, the motors could move along the helical

rotor carrying elements of ‘cargo’ as in M. Xanthus [1], figure 1B.

In this model the helical rotor counter-rotates with respect to the

cell body. Deformations along the S-layer are created by the

elements of cargo, figure 2C. The S-layer plays several roles in this

model. First, it amplifies the deformation as in the stationary

motor model. Its second role is to cause the deformations created

by the cargo to be expressed as traveling ridges along the cell

surface. Since the motors run in both directions along the cell

there must be an asymmetry so that unidirectional thrust is

created. In [1] this was accomplished by the exchange of small and

large cargo at the ends of the cell. The asymmetry could also occur

as a result of the geometry of the S-layer whose component parts

appear in electron micrographs as elongated subunits making a tilt

of approximately 60o with respect to the cell wall when viewed in

cross section. A deformation, created by the rotating helix or

moving motor cargo, moving against the grain of the tilted

subunits would make large transverse waves while those moving

with the grain would make smaller transverse waves.

Our analysis is based on low Reynolds number hydrodynamics.

Models of self-propulsion at low Reynolds number by small

amplitude surface waves have a rich history in the literature. The

seminal paper was written by G. I. Taylor in 1951 who solved the

swimming problem for an infinite waving sheet [14]. This model

has since been generalized to other geometries including spheres

[15], [16], [17], cylinders [17], [18], and ellipsoids [19]. These

models were initially developed in an effort to understand flagellar

and ciliary propulsion in prokaryotes. The locus of the ciliary tips

were assumed to effectively form an envelope allowing the

organism to be modeled as a squirming sphere [20]. Here the

ciliary tips are replaced with the tips of the subunits comprising the

Figure 1. Cytoskeletal helical rotors. (A) Myxococcus xanthus gliding according to Nan, et al. [1]. Cargo carrying motors run along the helical
rotor track carrying protein ‘‘cargo’’. The high drag cargo (blue) forms traffic jams on the ventral side creating surface deformations on the surface of
the cell. These ridges travel down the cell as the helical structure rotates propelling the cell. The large cargo is deposited at the trailing pole and
exchanged for small cargo (red) that creates little drag. (B) Synechococcus swimming. Elements of motor cargo (blue and red dots) move along a
continuous looped helical track creating distortions along the S-layer. Cargo is represented by blue dots moving from front (right) to back while small
cargo elements move from the back (left) to front. (C) A freeze frame of the red/cyan anaglyph movie video S1. The rotor consists of a right-handed
helix and a left-handed helix joined at the ends. If the rotor rotates in the counter-clockwise direction, as viewed from above, the right-handed helix
causes surface deformations traveling from the top to the bottom of the cell; the left-handed helix causes deformations that travel from the bottom
to the top.
doi:10.1371/journal.pone.0036081.g001

Propulsion of Synechococcus
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S-layer. A general method for the analysis of swimming by small

amplitude waves was derived in [7]. Therefore, much of what we

need to test the viability of our models is available in the literature,

and we need only adapt these earlier models to the geometry of

our models for Synechococcus propulsion. Once more detailed

information emerges it would be interesting to refine our models

using computational techniques such as the immersed boundary

method [21] or the computational model recently developed in

[22].

Results

Here we describe and analyze two possible models for the self-

propulsion of Synechococcus utilizing a continuous looped helical

rotor. In the rotating helix model, motors anchored to the

peptidoglycan layer drive rotation of the rotor creating helical

waves along the cell surface. In the traveling cargo model elements

of motor cargo move along the the helical track creating

deformations along the cell surface.

Whether the surface deformations necessary for propulsion are

created by motor cargo moving along the helical rotor as with M.

Xanthus or directly by rotation of the rotor itself, the S-layer plays

two important roles: it creates an asymmetry in the deformations

and it amplifies the distortions. These are accomplished through

the geometrical arrangement of the subunits within the S-layer.

Electron micrographs of its cross section indicates that it is

comprised of elongated protein subunits tilted at an angle of 60o

with respect to the cell surface; see figure 2A. As viewed from

above, the subunits are arranged in a rhomboidal crystalline lattice

(Figure S1). It is the tilt of the subunits that leads to the asymmetry

in the cell surface deformations that leads to unidirectional

motility.

The helical rotor consists of a left handed helix and a right

handed helix connected to each other at the ends, figure 1C,

(Video S1). Whether deformations of the cell surface are created

by the rotating helix itself as in the rotating helix model or by

elements of cargo as in the traveling cargo model, deformations

travel from the front of the cell to the rear and vice versa. Without

some mechanism creating an asymmetry the resulting fluid flows

Figure 2. Model 1: Fixed-Motor model for Synechococcus. TEM images courtesy of John Heuser. (A) A cross section of the cell wall of
Synechococcus strain WH8102 showing the elongated subunits of the S-layer inclined at *60 degrees. (B) A stereo TEM showing the paracrystalline
lattice structure of the SwmA protein S-layer. (C) Amplification of the wave height along the S-layer. The helical rotor, or an element of motor cargo,
moving against the grain tilts and displaces the subunits of the S-layer amplifying the surface deformation. The motors (not shown) driving the
motion of the helical rotor are attached to the peptidoglycan layer. (D) The motors drive the helical structure to rotate beneath the cell surface in the
counter-clockwise direction (as viewed from above). This creates a traveling helical wave passing from the top to bottom, and the cell surface
counter-rotates in the clockwise direction. (E) Cross section of Model 1: Elements of motor cargo (blue dots) anchored to the peptidoglycan drive
rotation of the helical rotor relative to the rest of the cell, including the cell surface S-Layer. The resulting helical wave causes the cell to rotate at
*1 Hz relative to the surrounding fluid.
doi:10.1371/journal.pone.0036081.g002
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would cancel. In M. Xanthus exchange of low drag and high drag

cargo at the poles creates the asymmetry. In our model of

Synechococcus it is the tilt of the subunits comprising the S-layer that

creates the asymmetry. A section of helix or element of motor

cargo moving against the tilt of the subunits causes them to rotate

on end creating a relatively large transversal wave while a section

of helix or element of motor cargo moving with the grain creates

negligible transverse waves and possibly longitudinal waves.

Remarkably, transverse and longitudinal waves propel the

surrounding fluid in opposite directions [23]. It is therefore

possible that deformations running in both directions contribute to

the forward propulsion of the cell.

Rotating helix model
We assume that the helical track rotates creating a small

amplitude, high frequency helical wave along the S-layer,

figures 2D and 2E. This could be realized either by motors

running along the track, as in [1], or by motors anchored to the

peptidoglycan layer driving the helical track. If the cell surface

assumes a helical pattern due to the interior helix, the helix

rotation would be reflected in waves on the surface providing both

axial thrust and rotational torque. To test the viability of this

model we estimate the pitch and rotational frequency of the helical

rotor necessary to propel the cell with observed translational and

rotational speeds.

We begin by assuming a constant velocity field on the surface of

a prolate spheroid with aspect ratio 2:1. By assuming a constant

velocity field V~pewzqeh, where (h,w) are spherical coordinates

with w being the azimuthal angle, we determined the constants p

(leading to translational velocity) and q (leading to rotational

velocity) such that the cell swims at 15–25 mm/s with a rotational

speed of 1 Hz. Applying formulas for the translational and

rotational speed of a prolate spheroid associated with a constant

velocity field on the cell surface derived in [7] we find that

p~11{22mm=s and q~2:7mm=s. The helical rotor should have

between 5 and 10 turns between the ends of the cell.

To estimate the frequency of the rotating helical rotor we appeal

to the squirming sphere model of [15] and [16]. This model

provides the swimming velocity associated with an axially

symmetric traveling wave expanded in a basis of Legendre

functions. By changing the basis to a Fourier basis we can estimate

the necessary wave speed and from this the rotational frequency of

the helical rotor. The required frequency will be somewhat less for

an elongated cell. On the other hand, by assuming an axially

symmetric wave, we have neglected the relatively small rotational

component of the wave.

Assume a traveling wave on a sphere of radius R given by

rm~R(1zE sin (kw{vt)) ð1Þ

where rm is the radius of a material point on the deformed sphere.

Fix a wave number k~16 corresponding to 8 cycles between the

north and south poles of the sphere. The wavelength is 2pR=16
and the wave speed is c~vR=16. By expanding equation 1 in

terms of Legendre polynomials and applying the result of [15] and

[16] we obtain

v~82:2E2c ð2Þ

for the velocity of propulsion. The coefficient 82.2 depends on the

wave number n~16. See the Methods section for a derivation of

this formula and its generalization to other wave numbers.

To determine the rotation frequency of the helical rotor we

match the wave speed necessary to propel the cell at the observed

speed to the speed of a wave generated by the rotating helix. For

example, assume the helix has 8 turns, and take R~1mm and a

velocity of propulsion of 15mm/s. The wavelength is then

l~0:39mm. If the wave amplitude is E~0:02mm, the required

wave speed is 456 mm/s. To generate a traveling wave with this

wave speed the rotor must spin with frequency of 1169 Hz. For an

amplitude of E~0:05mm the wave speed is 73 mm/s and required

frequency of the rotor is 186 Hz. The frequency could be

somewhat less if we allow for both transversal and longitudinal

waves but would still be on the order of 100 Hz.

By comparison, the flagellar motor of E-coli, a large membrane

embedded structure, can rotate at speeds up to 300 Hz (at zero

torque) [24]. In the low speed regime (0–200 Hz) the torque-speed

curve of the E-coli flagellar motor is approximately constant (2.7–

4:6|10{11dyn cm) after which it decreases linearly reaching zero

at about 350 Hz. The flagellar motor of certain marine bacteria

have been observed to rotate at more than 1 kHz [25].

Traveling Cargo Model
In this model cargo carrying motor proteins move along a

continuous looped helical track in a manner analogous to those

found in M. xanthus [1], figure 1B. The motor cargo creates surface

distortions along the S-layer as shown in figure 3A and B. Since

the motor proteins run along the track in both directions an

asymmetry in the mechanism must be present to generate

unidirectional motion. In M. xanthus the asymmetry is created by

the exchange of high and low drag cargo at the poles of the cell.

This asymmetry is consistent with our model; however, the

electron micrograph in figure 2A reveals another possibility. In this

cross section, the components comprising the S-layer appear as

subunits making an angle of approximately 60o with respect to the

cell wall. Elements of motor cargo moving ‘against the grain’ (i.e.

against the tilt) could create large transverse surface distortions

while motor cargo moving ‘with the grain’ would make smaller

transverse distortions (figures 3C and D). The helical track would

rotate relative to the cell wall due to the higher drag of motor

cargo when running against the grain of the S-layer. The effect of

this would be that the helical pattern of the surface distortions

would have a larger pitch than does the helical rotor itself.

The ‘rowing’ of a single subunit in the S-layer would produce

only a small propulsive force. If the subunits are sterically coupled

to their neighbors, a moving motor driving a stroke on one subunit

would produce a distributed displacement with decreasing

amplitude along a row of subunits, e.g. a moving Gaussian-like

wave as shown in figure 3E). The result would be a traveling

transverse wave along a ribbon above the helical track, figure 3A.

The surrounding fluid would be propelled in the direction of the

cargo, thus propelling the cell in the opposite direction, as shown

in figure 3C.

This model could explain the observation that cells lacking the

S-layer, but otherwise intact, lose the ability to translate but still

rotate when attached to a slide [11]. Without the S-layer, the

ridges would not form leaving surface distortions in the form of

traveling lumps. While the profile of the ridges leading to

translation would be greatly diminished, the profile producing

rotation would not be significantly changed.

As noted earlier, elements of motor cargo moving with the grain

of the S-layer subunits would make small amplitude transverse

waves. It is also possible that longitudinal compression-expansion

waves could be created due to rotation of the subunit as an

element of motor cargo passes by, as shown in figure 3D. While

longitudinal waves propel fluid in the direction opposite of the

Propulsion of Synechococcus
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wave direction, compression waves propel the cell in the same

direction as the wave [23]. It is possible therefore that elements of

motor cargo moving in both directions contribute to thrust in the

same direction. As a simple model for the generation of

longitudinal waves, let us assume that when an element of motor

cargo is pushed with the grain, the interior end of the subunit

moves in the direction transverse to the cell wall and the end

adjacent to the fluid moves in the longitudinal direction, figure 3G.

Simple geometry shows that the amplitude of the resulting

longitudinal wave can be significant. For example, if the subunits

make an angle of 60o with respect to the horizontal, and the length

of the subunits is approximately 30 nm, then the amplitude of the

longitudinal wave is about 14 nm. The magnitude of the fluid

velocity is the same for longitudinal and transverse waves but in

opposite directions [23]. Longitudinal compression waves traveling

from the rear of the cell to the front generate flows propelling the

cell in the same direction as transverse waves traveling from the

front of the cell to the rear. Longitudinal compression waves could

effectively double the speed of propulsion associated with

transversal waves alone.

Using the formula for the rotational and translational velocity of

a spheroid derived in [7] and a generalization of the classical result

of GI Taylor for a swimming sheet [14] we derive the formula for

a helical ribbon wrapping around the cell 2n{1 times

s~
g(n)

wf E=L sin (a(n))ð Þ sin (a(n))
ð3Þ

This formula relates the required speed of the motor cargo s to the

average spacing between elements of cargo L, the (average)

amplitude of the resulting ridges E, and the width of the helical

ribbon w, necessary to propel a prolate spheroid with major axis

1 mm and minor axis 0:5mm with a translational speed of 15 mm=s

and a rotational speed of 1 Hz. (See the Methods section for

details of the derivation.) The distance between successive ridges is

approximately l~L sin (a(n)). In this formula g(n)=w represents

the magnitude of a constant boundary velocity field along the

ribbon that would lead to the desired propulsive speed, and

f E=L sin (a(n))ð Þ is the ratio of the propulsive velocity of a waving

membrane to the wave speed. Values of g and a for n~2, 3, and 4

Figure 3. Model 2: Traveling motor model. (A) Deformations created by motor cargo traveling along the helical rotor are expressed as traveling
ridges due to sterical coupling of adjacent subunits in the S-layer. (B) Cross section of Model 2: Motor cargo (blue balls) move along the helical rotor
(black circle) and are not anchored to the peptidoglycan layer as in Model 1. Motor cargo moving with the grain of the S-layer creates a large
deformation while motor cargo moving with the grain creates a small deformation and possibly a compression/expansion wave. Due to the higher
drag of cargo moving with the grain the helical rotor is driven in the opposite direction. (C) Motor cargo moving against the grain (to the right in the
figure) causes a transversal deformation along the cell surface driving fluid in the direction of the wave. (D) Because of the tilt of the S-layer proteins,
an element of motor cargo moving with the grain (to the left in the figure) causes a local expansion of the membrane, making a wave traveling in the
direction opposite of the transversal waves shown in C. Although traveling in opposite directions, both waves create fluid flow in the same direction:
left to right. (E) Coupling between subunits in rows of the S-layer cause bumps formed by elements of cargo to create ridges in the S-layer. The
elements of cargo follow a diagonal line from the bottom left corner to the top right corner while the wave fronts move from left to right. (F) The 10th

order Taylor approximation to the ratio of the steady fluid velocity v to the speed c of a transversal wave along an infinite sheet. (G) Here a 16 nm
vertical displacement created of a 30 nm subunit at an angle of h~60o caused by motor cargo moving against the grain creates a transversal wave
with height of Dy = 20 nm when it rocks on end. If instead the subunit rotates in reaction to motor cargo moving with the grain, the maximum
longitudinal displacement would be Dx~14 nm.
doi:10.1371/journal.pone.0036081.g003
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were computed numerically and are given in table 1. Values of f
are given in figure 3F.

Formula (3) is based on an approximation that assumes

E=L sin (a(n))ƒ0:126. We also assume that the ribbon’s width is

large in comparison with the amplitude of the ridges. The function

f attains a maximum value of 0.155 when E=L sin (a(n))~0:126.

We should note that this is a limitation on the analysis but not on

the mechanism itself. Allowance for higher amplitudes or shorter

wavelengths would lead somewhat lower values for the required

cargo speed s.
Sample calculation. Suppose, for example, that n~4 (so

that the ribbon wraps around the cell seven times), the average

amplitude is E~0:01mm (corresponding to a ridge height of

0:02mm), and that the ribbon width is w~0:1mm. These

parameters are depicted in the deformed spheroid in figure 3A.

If we take E=L sin a(4)~0:126 we have E~0:035L. There are

approximately 66 elements of motor cargo distributed along the

helical track with a spacing of 0:29mm. The width of each ridge is

approximately 0:35mm (formula 22). Using formula 3, the

necessary speed of the motor cargo is 800mm=s. This corresponds

to a wave speed of approximately 220mm=s which is consistent

with values found in [6] and [7]. Larger values of E=L sin a(4) than

those allowed by our analysis would lead to smaller required cargo

velocities. In our analysis the fluid velocity is 0.155 times the wave

velocity. Larger values of E=L sin a(4) could lead to fluid velocities

of perhaps 0.3 times the wave velocity in which case the required

motor cargo velocity would be 400m=s. If we allow for the

possibility of longitudinal waves being formed by motor cargo

moving along the return portion of the helical loop the estimated

velocities of the motor cargo could be halved.

Discussion

We have shown that the same helical rotor mechanism that

appears to propel myxobacteria gliding can be adapted to explain

the swimming of Synechococcus. The list of internal helical structures

in rod-shaped bacteria has grown to include most bacterial

cytoskeletal proteins. However, it was still startling to find that the

back-and-forth gliding of a myxobacterium was driven by a

rotating helical loop whose direction of rotation reversed in

synchrony with the direction reversals [1]. The helical rotor was

powered by a transmembrane ion-motive force via motors that

appeared to be related to the ubiquitous bacterial flagellar motor.

These motors appeared to run pole-to-pole carrying protein cargos

that could be tracked by florescent tagging. In these bacteria

gliding is always accompanied by secretion of highly viscous slime.

Thus the observation that motors accumulated in periodically

spaced ‘traffic jams’ on ventral led naturally to the idea that the

aggregations constituted ridges on the ventral surface that traveled

from leading to trailing pole as the helical rotor turned. These

moving surface ridges drove gliding much as the transverse waves

on snail mantles drives their crawling [26]. The authors speculated

that this mode of locomotion might be quite general amongst

gliding bacteria, and might even be adapted to the swimming of

Synechococcus. In this work we show mathematically just how this

adaptation could work when the bacterium swims through water,

whose viscosity is a thousandth that of slime.

The surface layer of proteins (S-layer) is essential to the

swimming mechanism of Synechococcus. Mutants lacking key surface

proteins, SwmA [12], fail to swim, although they continue to

rotate. Also, insertional inactivation of the gene encoding SwmB, a

giant cell-surface protein arranged in a punctate manner on the

cell surface, arrests swimming [13]. By contrast, an S-layer plays

no role in myxobacterial gliding, for the slime provides the

mechanical coupling between the wave crests and the substrate. In

order to swim at the observed velocities in a far less viscous

environment, the S-layer proteins are organized and coupled so

that the small amplitude of the rotor induced ridges are amplified

to provide a sufficient mechanical coupling to the water.

There is little evidence that Synechococcus reverses periodically as

does M. xanthus. Thus the helical rotor in Synechococcus may not

reverse its rotation direction. This raises the possibility that the

rotor motors may be anchored to the periplasm as they are in

flagella-driven bacteria such as E. Coli. Thus we investigated this

possibility as well as the Nan et al. model for moving motors. Both

could work in Synechococcus, and only experiments can distinguish

them at this point.

When a swimming Synechococcus encounters a barrier to its

progress it frequently rotates conically about its leading pole at the

same frequency that it did when swimming. This too is explained

by the model presented here, for the helical rotor that drives

swimming loops at the poles providing a rotating ridge that

provides axial torque coupling to the barrier.

Finally, there are observations that beads placed on the surface

of Cytophaga or of M. xanthus move axially along the cell at velocities

comparable to their gliding velocities, which differ by an order of

magnitude [27], [28]. It is tempting to speculate that these

observations are also explained by the helical rotor model. All that

is needed is that the beads ‘surf’ on the surface waves generated by

the helical rotor. This would require that the beads stick to the cell

surface with a weak and nonspecific force, perhaps partially

electrostatic. Then the beads would be propelled along the surface,

reversing at the poles, leading to counter-propagating beads.

These are indeed observed.

While progressive surface waves have been the primary

candidate for the self-propulsion of Synechococcus since the 90’s

[6], [7], no mechanism for their generation has been found. We

have proposed and analyzed a concrete model for generation of

the waves based on a helical rotor that is consistent with the

experimental evidence. In particular, the model provides an

essential role for the S-layer which is known to be necessary for

motility [12].

Methods

Here we present the mathematical details of our models.

Synechococcus is a rod shaped bacterium approximately 2 mm in

length and 1 mm in diameter. It swims with velocity 15–25 mm/s

in seawater with viscosity m~10{2 g/cms and density

r = 1 g=cm3. The Reynolds number, Re~r‘v=m, where ‘ is a

characteristic length and v is a characteristic velocity, is on the

order of 10{4 so viscosity dominates over the effects of inertia.

Thus the appropriate equations of motion are the Stokes equations

0~m+2v{+p ð4Þ

Table 1. Computed values of g(n) and a(n), n~2,3,4.

n g(n) ª b a(n)

Arclength
(mm)

2 9.20 80:2o 10:6o 20:4o 8.59

3 5.54 80:0o 7:6o 17:6o 13.74

4 3.98 79:8o 6:0o 16:2o 18.81

doi:10.1371/journal.pone.0036081.t001
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+:v~0 ð5Þ

where v is the fluid velocity exterior to the cell surface S and p is

the pressure [23]. We apply no-slip boundary conditions vDS~V
where V is a vector field representing the instantaneous velocity of

the outer membrane of the organism. We assume that the fluid is

at rest at infinity. The force and torque associated with V exerted

on the surrounding fluid are given by

F(V)~

ð ð
S

s(V):ndS ð6Þ

t(V)~

ð ð
r|s(V):ndS ð7Þ

where r is a position on the cell membrane and

s~m(+vz(+v){){pI is the stress tensor [29].

The basic principle of low Reynolds number swimming is that,

at each instant, the net sum of the forces and torques exerted on

the surrounding fluid by a free swimming, neutrally buoyant

organism is zero. Let V be the vector field on S representing the

instantaneous velocity of the outer surface of the organism; then at

each instant F(V)~t(V)~0. This principal has profound

consequences for the self-propulsion strategies available to a

microorganism. For example, simple reciprocal motions provide

no net motion at low Reynolds number [30]. The time

independence of the Stokes equations imply that low Reynolds

number flows are reversible. Low Reynolds swimmers must

execute non-trivial loops in their shape space to self-propel [17].

For a neutrally buoyant, free swimming organism the vector

field V representing the instantaneous velocity of the outer surface

can be decomposed into a disturbance vector field (typically not

force and torque free) and a vector field VtranszVrot representing

the rigid motion of the organism necessary to enforce the zero

force and torque condition. In [7] formulas for these translational

and rotational velocities associated with an arbitrary boundary

vector field were derived using the Lorentz reciprocal theorem.

These formulas only require solutions to the Stokes equations for

rigid motions of the average shape of the cell, see also [31]. If we

specialize to the case of a prolate spheroid

(x=a)2z(y=a)2z(z=b)2~1 translating along the z axis with speed

uz and rotating about the z-axis with angular speed Vz these

formulas are

uz~{
1

4pa2b

ð ð
S

(n:r)(ez
:V)dA ð8Þ

and

Vz~{
3

8pa4b

ð ð
S

(n:r)(ez
:(r|V))dA ð9Þ

where r is the position vector on the surface of the spheroid and ez

is a unit vector in the z direction. These formulas allow the

translational and rotational velocity associated with longitudinal

compression waves to be computed directly without further fluid

mechanics. In the present case we are interested in motions

created by transverse waves, and this requires knowledge of the

fluid velocity near the cell boundary in order to compute

derivatives in transversal directions.

0.1 Fixed motor model
Here we assume that the helical rotor rotates creating a high

frequency, small amplitude helical wave along the outer surface.

Mathematically, we model Synechococcus as a prolate spheroid that

propels itself using a traveling helical wave passing from the front

of the cell to the rear.

Pitch of the helical rotor. Using equations (8) and (9) we can

determine the constant velocity field on the surface of a prolate

spheroid cell that would lead to the observed combination of

rotational and translational velocities. From this constant velocity

field we can estimate the angle the helical wave should make with

respect to a line of longitude along the cell and the number of

times the crest of a helical wave would wrap around the cell. To

this end, consider a constant velocity field V~pewzqeh where

(h,w) are spherical coordinates with w being the azimuthal angle.

Synechococcus is approximately 2b~2mm in length and 2a~1mm in

diameter and swims with velocity 10–20 mm=s while rotating

about its long axis at about 1 Hz. With these parameters

p~11{22mm=s and q~2:7mm=s. The velocity field makes an

angle between 7o (for 20mm=s) and 14o (for 10mm=s) measured

with respect to a line of longitude along the cell. The crest of a

helical wave generating this velocity field would wrap around the

cell between 5 and 10 times.

Frequency of the helical rotor. To estimate the rotational

frequency of the helix let us consider the simpler case of a axially

symmetric waves on a sphere where explicit solutions to the

swimming problem are available. From these solutions we can

approximate the rotational frequency of the helical rotor by

matching the resulting wave speed to the wave speed necessary to

propel the cell at observed speeds. A helical wave with a small

pitch will generate velocity components leading to both rotation

and translation but those leading to translation are much larger

than those leading to rotation. On the other hand, an elongated

cell will require a somewhat smaller frequency since more of the

cell body is parallel to the axis of translation.

Here we assume that the wave is transversal to the cell wall so

we need a formula for the velocity analogous to that found in [6]

and [7] for purely longitudinal traveling waves. Unfortunately,

transversal waves are much more difficult to deal with since, unlike

the longitudinal wave case full solutions to the Stokes equations

with boundary data prescribed on a sphere are required when time

averaging the fluid velocities over a swimming stroke, cf. [17]. (For

longitudinal deformations, only solutions corresponding to rigid

rotations and translations of the cell body are required [7].)

Fortunately, a complete solution for the swimming of a sphere in

terms of a basis of Legendre functions is available [15], [16], [17].

For our purposes we need only change the basis to a Fourier basis.

Assume a traveling wave on a sphere of radius R given by

rm~R(1zE sin (kw{vt)) ð10Þ

where rm is the radius of a material point on the deformed sphere.

The wavelength is 2pR=k and the wave speed is c~vR=k. By

expanding (10) in terms of Legendre polynomials

rm~R 1zE
X?
j~0

aj(t)Pj( cos (w))

 !
ð11Þ

we can apply Blake’s result for the velocity of a squirming sphere

[16], see also [15], for the velocity of propulsion
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v~
2pRE2

v

X?
j~2

ð2p=v

t~0

{2j2z2jz1

(2jz1)(2jz3)
aj _aajz1

� �
dt: ð12Þ

If we fix k~16 corresponding to 8 cycles between the north and

south poles of the sphere the velocity of propulsion is

v~82:2E2c: ð13Þ

We remark that a truncation of the series is not necessary since

only three terms in the expansion of (11) are sequential; only three

terms of the series are therefore non-zero. This approximation is

valid when 16Evl. A closed form formula analogous to that for

tangential waves found in [6] is only available in the limit of high

wave numbers for transverse waves. The velocity of propulsion is

asymptotic to

v~
p

8
k{1

� �
cE2: ð14Þ

for large wavenumbers n. For a small wave number like that

considered here, it is best to simply compute the coefficient for the

special case.

Take R~1mm and assume the cell swims with velocity

15mm=s. The required wave speed c is 456mm=s for E~0:02
and 73mm=s for E~0:05. If the wave is generated by a rotating

helical rotor (with 8 wraps making the distance between wave

crests l), the required frequency of rotation would be c=l which is

1169 Hz for E~0:02 or 186 Hz for E~0:05. While the helical

wave will also have a component leading to rotation of the cell,

this calculation gives an indication of the required rotational

velocity of the helix.

0.2 Traveling cargo model
In this model, elements of PMF driven motor cargo travel along

a helical track creating a train of traveling ridges on the cell

surface. The traveling ridges are confined to a helical ribbon on

the cell surface, figure 4A.

We derive the formula

s~
g(n)

wf E=L sin (a(n))ð Þ sin (a(n))
ð15Þ

relating the speed of the cargo s to the number of number of turns

of the helix 2n{1, the average spacing between elements of cargo

L, the (average) amplitude of the resulting ridges E, and the width

of the helical ribbon (projected onto the long axis) w, necessary to

propel a prolate spheroid with major axis 2 mm and minor axis

1mm with a translational speed of 15 mm/s and a rotational speed

of 1 Hz. Here all spatial dimensions are in mm. The angle between

the helical track and the ridges is a(n), see figure 3B. The distance

between successive ridges is approximately l~L sin (a(n)). In this

formula the quantity g(n)=w represents the magnitude of a

constant boundary velocity field along the ribbon that would lead

to the desired propulsive speed, and f E=L sin (a(n))ð Þ is the ratio of

the propulsive velocity of a waving membrane to the wave speed.

Values of g and a for n~2, 3, and 4 were computed numerically

and are given in table 1. Values of f , also computed numerically,

are given in figure 3F.

The following is an outline of the derivation of formula 15:

1. Determine the components of a velocity field, constant in time,

along the helical ribbon representing the surface velocity that,

when taken as the boundary condition would lead to a

translational velocity of 15 mm/s and a rotational velocity of

1 Hz.

Figure 4. Geometry of the traveling cargo model. (A) Because the proteins of the S-layer are appropriately coupled, motor cargo creates a train
of ridges along a ribbon above the helical track of sufficient amplitude to move the fluid media and generate thrust. (B) Geometry of the traveling
cargo model: elements of motor cargo spaced at intervals of L along the helical track (blue line) create transversal ridges represented by the green
lines.
doi:10.1371/journal.pone.0036081.g004
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2. Determine the parameters of a high frequency small amplitude

traveling wave that would generate a local velocity matching

that found in step 1. We start with Taylor’s classical result for

the translational velocity for a waving sheet [14]. The geometry

of the proposed mechanism leads to relatively small wave-

lengths so we require more terms in the power series expansion

for the fluid velocity than were obtained by Taylor. The

necessary terms are obtained using Mathematica.

3. Relate the parameters found in step two to the speed and

spacing of elements of motor cargo along the helical track.

This method of approximating the swimming velocity, some-

times referred to as the tangent plane approximation [17]. It is

explored in more detail in [32] where the method is shown to well

approximate the swimming velocity as computed directly for a

spherical organism.

The velocity field along the propulsive ribbon. Assume

for now that the cell can generate a surface velocity field along a

helical ribbon on its surface, the velocity field being zero off of the

ribbon. The goal of this section is to determine a surface vector

field that is constant in time which, taken as a boundary condition

on the spheroid, would lead to a translational velocity of 15 mm=s
and a rotational velocity of 1 Hz.

We represent the cell as the prolate spheroid 4x2z4y2zz2~1
where x, y, and z are measured in mm. The cell is to swim along

the zz-axis. Parameterize the helical ribbon by

W(C,y)~
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

y

2pn
zC

� �s
cos y,

 

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

y

2pn
zC

� �s
sin y,Cz

y

2pn

! ð16Þ

with {(2n{1)pƒyƒ(2n{1)p and {w=2ƒCƒw=2, figure 4A.

The ribbon wraps around the spheroid 2n{1 times. The width of

the ribbon, when projected onto the z-axis, is w. Let

ey~{Wy=DDWyDD and eC~{WC=DDWCDD be unit vectors in the y
and c directions. We seek constants p and q such that the velocity

field peyzqeC along the ribbon leads to a translational velocity of

15mm=s in the z-direction and a rotational velocity of 1 Hz about

the z-axis.

Setting V~peyzqeC, a~1=2, b~1, uz~15, Vz~2p, and

noting that ez
:(r|eC) = 0 in formulas 8 and 9, we have

p~{p2 3

ð ð
S

(n:r)(ez
:(r|ey))dA

� �{1

ð17Þ

and

q~
{ 15pzp

Ð Ð
S

(n:r)(ez
:ey)dA

� �Ð Ð
S

(n:r)(ez
:eC)dA

� � ð18Þ

Values of p and q for the special case where the helical ribbon

wraps around the spheroid 5 times (n~3) are given in table 2. The

third and fifth columns of the table give the values of p and q
multiplied by the (projected) width of the ribbon w. We can see

from the data that to good approximation p~5:3=w and

q~1:0=w.

In computing the resultant direction and magnitude we first

note that the unit vectors ey and eC are not orthogonal: the vectors

eC are tangent to meridians but the vectors ey are aligned with the

ribbon and are not perpendicular to eC. For simplicity, let us use

the average angle, c, between these vectors. For the special case

n~3, c~80:0o. The resultant velocity vector V then makes an

angle of b~7:6o with respect to a line of latitude and has

magnitude 5:5=w, see figure 3B. In general, the magnitude and

direction of the resultant depend on n:

DDVDD~
g(n)

w
:

Table 1 gives values for for g, the required angles, as well as the

arc length of the center of the helical ribbon for the cases of

interest: n~2, 3 and 4.

The next step is to determine the wavelength, amplitude, and

speed of a traveling train of waves along the ribbon that generates

this velocity in the adjacent fluid.

The traveling wave. Here we determine the parameters of a

traveling wave necessary to generate a local fluid velocity of with

magnitude g(n)=w and relate these parameters to the speed and

spacing between the elements of cargo creating the wave.

To estimate the local fluid velocity associated with the traveling

ridges we appeal to the classical result of G.I. Taylor [14] for the

fluid velocity generated by small amplitude traveling waves along

an infinite planar sheet. This is a rough estimate since the ribbon is

neither planar nor of infinite extent. On the other hand, the

oscillatory components of the fluid velocity attenuate as e{z=l

where z is the normal distance from the sheet [23] and l is the

wavelength. For our model, the wavelength l is much smaller than

the radius of curvature of the spheroid so we can expect that the

local steady fluid velocity is well approximated by assuming that

the local geometry is planar.

The waving sheet. Here we generalize the classical result of

Taylor [14] by obtaining higher order terms. We do this to

accommodate the smaller wavelengths (relative to the amplitude)

needed for our model. For convenience we maintain the notation

used in the original paper; the parameters of the waving sheet will

be matched to those of the traveling wave on the spheroid in the

next section. Consider an infinite sheet lying in the xy-plane in

xyz-space deforming according to

z~f (x,y,t)~b sin (mx{vt):

Waves of amplitude b and wavelength l~2p=m travel to the right

with angular frequency v. The wave travels with speed c~v=m.

If we assume that the region zw0 is filled with a viscous fluid, the

sheet swims to the left. The speed of propulsion v relative to the

wave speed c is

Table 2. Computed values of the velocity components for
the case n~3.

w p pw q qw

0.05 106.53 5.31813 19.4864 0.974321

0.09 59.2036 5.31993 10.8314 0.974828

0.13 41.0092 5.3228 7.50486 0.975632

0.17 31.3838 5.32684 5.74555 0.976744

0.21 25.4312 5.33214 4.65801 0.978183

0.25 21.3893 5.33889 3.9199 0.979975

0.29 18.4683 5.34739 3.38678 0.982167

doi:10.1371/journal.pone.0036081.t002
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v

c
~f

b

l

� �
~

1

2

2pb

l

� �2

{
19

32

2pb

l

� �4

z
41

64

2pb

l

� �6

{
16913

24576

2pb

l

� �8

z
36629

49152

2pb

l

� �10

{
3187937

3932160

2pb

l

� �12

zO
b

l

	 
13

:

ð19Þ

The first two terms were obtained by Taylor [14]. The additional

terms were obtained by automating Taylor’s calculations on

Mathematica and retaining higher order terms. Representative

values are given in figure 3F.

To apply this analysis to our model we need a sense of how large

b=l can be without serious error. We follow Taylor’s suggestion

that the last term be a quarter as large as the sum of the previous

terms. For the given expansion this occurs when

b

l
~0:126: ð20Þ

Thus the wave length should be at least 0:126{1~7:9 times the

amplitude for the approximation to be valid. The analysis can, in

principal, be carried out to obtain terms of higher order In in this

case, a lower bound (0.75 times the calculated value) on the

maximum velocity of the sheet v relative to that of the speed of the

wave c is

v

c
~0:155: ð21Þ

This ratio could be increased to perhaps 0.25 if the traveling wave

is allowed to have both longitudinal and transversal components

and possibly somewhat higher (but less than 0.5) if b=l were

allowed to exceed the limit of our analysis; see [20].
Width of the helical ridges. The length of the ridges y is

related to w by

y&
w sin (c)

sin (90ozb{c)
ð22Þ

(see figure 4B). For instance, in the case of n~3 where the ribbon

wraps around the spheroid 5 times the length of the ridges y is

related to the (projected) width of the ribbon w by y~3:85w.

Required speed of the motor cargo. Combining the results

from the previous two sections, the required wave speed along the

ribbon necessary to propel the cell at 15 mm=s is

c~
g(n)

wf (b=l)
ð23Þ

where the values of f are given in figure 3F and the values of g are

given in table 1. A traveling wave of with wave velocity c mm=s,

amplitude b mm, wavelength l mm, along a helical ribbon of

(projected) width w mm will propel the spheroid with major axis of

length 1 mm and minor axis of length 0.5 mm with a translational

speed of 15mm=s and a rotational speed of 1 Hz.

The last step is to relate this formula to the motion of the cargo

along the helical track. We assume that the (average) spacing

between elements of motor cargo is L mm and that they travel with

speed s mm=s creating traveling ridges of length y with average

amplitude E. The ridges make an angle of a~90o{bzc with

respect to the helical track, see figure 3B. The length between

successive ridges is approximately l&L sin (a) and the wave speed

is c&s sin (a). To propel the cell with translational velocity

15 mm=s and rotational velocity 1 Hz elements of motor cargo

travel with speed given by equation 15.

Supporting Information

Figure S1 Stereo electron microgram showing the paracrystal-

line structure of the S-layer.

(TIF)

Video S1 Stereo animation of the helical rotor.

(GIF)
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