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Abstract

Predicting a particular cognitive state from a specific pattern of fMRI voxel values is still a methodological challenge.
Decoding brain activity is usually performed in highly controlled experimental paradigms characterized by a series of
distinct states induced by a temporally constrained experimental design. In more realistic conditions, the number, sequence
and duration of mental states are unpredictably generated by the individual, resulting in complex and imbalanced fMRI data
sets. This study tests the classification of brain activity, acquired on 16 volunteers using fMRI, during mental imagery, a
condition in which the number and duration of mental events were not externally imposed but self-generated. To deal with
these issues, two classification techniques were considered (Support Vector Machines, SVM, and Gaussian Processes, GP), as
well as different feature extraction methods (General Linear Model, GLM and SVM). These techniques were combined in
order to identify the procedures leading to the highest accuracy measures. Our results showed that 12 data sets out of 16
could be significantly modeled by either SVM or GP. Model accuracies tended to be related to the degree of imbalance
between classes and to task performance of the volunteers. We also conclude that the GP technique tends to be more
robust than SVM to model unbalanced data sets.
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Introduction

Two of the most fundamental questions in the field of

neurosciences are how information is represented in different

brain structures, and how this representation evolves over time.

Functional Magnetic Resonance Imaging (fMRI) is a powerful tool

to record brain activity and allows investigating these questions.

Functional MRI can map brain activity with a spatial resolution of

a few cubic millimeters and a typical temporal resolution in the

order of 1 or 2 seconds. Until recently, the methods used to

analyze such data focused on characterizing the individual

relationship between a cognitive or perceptual state and each

voxel, i.e. following a univariate approach. A well-known

univariate technique is Statistical Parametric Mapping [1],

detecting which voxels show a statistically significant response to

the experimental conditions. However, there are limitations on

what can be learned about the representation of information by

examining voxels in a univariate fashion. For instance, sets of

voxels considered as non-significant by the SPM analysis of one

experimental condition might still carry information about the

presence or absence of that condition if considered altogether.

Multivariate methods such as Multi-Voxel Pattern Analyses

(MVPA) allow an increased sensitivity to detect the presence of a

particular mental representation. These multivariate methods, also

known as brain decoding or mind reading, aim at associating a

particular cognitive, behavioral or perceptual state to specific

patterns of regional brain activity [2,3]. During the last years,

methods such as Support Vector Machines (SVM, [4]), Linear

Discriminant Analysis [5] or Gaussian Naı̈ve Bayes classifiers [6]

were applied to fMRI times series to predict, from individual brain

activity, the patterns of perceived objects [7–10], mental states

related to memory retrieval [11,12] or even hidden intentions

[13]. Gaussian Processes classifiers (GP, [14]), which provide a

principled probabilistic approach to kernel machine learning, have

been recently developed to allow for classifying more difficult data

sets, such as predicting subjective pain intensity [15]. In most of

these studies, the experimental design completely controlled the

nature, timing and duration of experimental trials, and temporally

isolated experimental conditions from one another. However, a

more realistic situation consists of simultaneous or rapidly

succeeding mental states. In order to improve brain decoding in

these adverse conditions, we tested and estimated the accuracy of

various classification schemes (namely SVM and GP combined

with feature extraction methods) on two fMRI sessions. In a first

well-controlled session, participants viewed a regularly paced series

of images of three classes displayed at specific screen positions

according to a pre-specified two-dimensional path. In a second

session, participants had to mentally retrieve short sections of this

path. The latter session implied uneven numbers of short events
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with possibly overlapping patterns of brain activity, leading to a

more complex classification problem.

The aim of this manuscript was thus to decode self-paced and

possibly overlapping multiclass events. Since this degree of

freedom was not achieved in the previous designs of decoding

experiments, we assessed the respective performance of several

classification procedures, as classification accuracy may depend

heavily on the data set [16].

Materials and Methods

Population
A group of 16 volunteers (8 females), aged between 19 and 29

years (mean 24.44), participated in the study. This study was

approved by the Ethical Committee of the Faculty of Medicine of

the University of Liège. All subjects were fully informed, gave their

written informed consent and were paid for their participation. All

included participants were non-smoking, healthy right-handed

students. The volunteers were screened for anxiety (Beck anxiety

inventory, [17]), depression (Beck depression inventory II, [18]),

sleep quality (Pittsburgh sleep quality index, [19]), chronotype

(Horne and Ostberg morningness-eveningness questionnaire,

[20]), excessive daytime sleepiness (Epworth sleepiness scale,

[21]), laterality (Edinburgh Inventory, [22]), amount and content

of daydreams (Imaginal Process Inventory- http://www.

themeasurementgroup.com/evaluationtools/ipi.htm). The sub-

jects presented no medical, traumatic, psychiatric or sleep

disorders. During the 7 days preceding the experiment, volunteers

followed a regular sleep schedule, verified by wrist actigraphy and

sleep diaries.

Experimental design
All volunteers underwent three successive fMRI sessions.

During the first session, further referred to as the functional

‘localizer’, images of faces, buildings and animals were presented

in random order at the centre of the screen during 500 ms with an

inter-stimulus interval of 1500 ms (Figure 1.A). The purpose of this

session was both to identify brain areas responding specifically to

the three image types and to eschew novelty effects during

subsequent sessions. During the second session, referred to as

‘exploration’, the same images were displayed one at a time for

3 seconds, each image being assigned a specific location on the

screen. The order of presentation followed a predefined sequence

of contiguous screen positions in such a way that volunteers had

the impression of following a path throughout a bidimensional

maze (Figure 1.B). The complete maze consisted of three blocks of

27 consecutive images within which the 3 categories of images

were always presented in the same order (i.e. 9 faces, 9 buildings

and 9 animals). Between blocks, a fixation cross was displayed for

15–18 seconds. To ensure optimal encoding, the whole path was

repeated five times during the scanning session. Volunteers were

instructed to pay attention to each image, to their location on the

screen and to their succession. During the third session, further

referred to as ‘mental imagery’, volunteers were presented with 54

memory tests. During each test, two images, simultaneously

displayed on the screen for 4 seconds, represented the starting and

target positions of a path that the volunteers would have to follow

mentally (Figure 1.C). The mental trajectories included 3 to 6

images (average 4.5) of a same category. For each image that they

could conjure up during this mental travel, volunteers had to

signal by a key press whether it was a face, a building or an animal

(one finger and key per condition). However, subjects had the

possibility to skip a path if they could not remember any part of it.

The expected number of images of each type was perfectly

balanced between categories.

A memory test was finally performed outside the scanner, in

order to behaviorally assess the accuracy of the spatial knowledge

acquired by the volunteers. They were presented with the

previously seen pictures and 48 novel images in random order.

For each trial, an image was displayed on the screen at a specific

location and participants had to specify whether this image was

part of the maze and, if they believed it was, if it was displayed at

its correct location.

The classification procedures were only applied on the last two

sessions, i.e. the exploration and mental imagery. These were

designed such that the subject performed a totally controlled task

during the exploration session, whereas during mental imagery,

the pace and succession of mental representations were not

constrained by external stimuli but only to the volunteer’s capacity

to retrieve the learned stimuli and their location. A further

characteristic of the exploration session was that within a block, no

rest period was introduced at the transition between images of

different categories. As a consequence, fMRI signals of different

classes of events were expected to overlap, making correct

Figure 1. Illustration of the experimental setup for the two
sessions considered further for modeling. A Example of images of
faces, buildings and animals presented to the subject. In total, 81
different images were used. B Synoptic view of the maze, green areas
stand for images of faces, blue areas, buildings and red areas, animals.
The succession of three areas of each color is called a block. C A mental
path begins with the start and stop points being displayed on the
screen. The subject then travels mentally in the maze, mentally
visualizing all the images comprised in the path and pressing a key
every time he visualizes the required image.
doi:10.1371/journal.pone.0035860.g001
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classification more complex. Furthermore, during the mental

imagery session, the event duration was not fixed and depended

entirely on the speed at which each subject recalled the requested

images. This resulted in event durations varying between 200 ms

and 4000 ms, with most events during less than 2000 ms.

Data acquisition
Functional MRI time series were acquired on a 3T head-only

scanner (Magnetom Allegra, Siemens Medical Solutions, Erlan-

gen, Germany) operated with the standard transmit-receive

quadrature head coil. Multislice T2*-weighted functional images

were acquired with a gradient-echo echo-planar imaging sequence

using axial slice orientation and covering the whole brain (34

slices, FoV = 1926192 mm2, voxel size 36363 mm3, 25%

interslice gap, matrix size 64664634, TR = 2040 ms,

TE = 30 ms, FA = 90u). The three initial volumes were discarded

to avoid T1 saturation effect. The static field inhomogeneities were

measured using a field mapping sequence (32 slices,

FoV = 2206220 mm2, voxel size = 3.463.463 mm3, 30% inter-

slice gap, TR = 517 ms, TE = 4.92 and 7.38 ms, FA = 90u), using

the same brain coverage and slice orientation as for the EPI

sequence. Finally, a high-resolution T1-weighted image was

acquired for each subject (3D MDEFT [23]; TR = 7.92 ms,

TE = 2.4 ms, TI = 910 ms, FA = 15u, FoV = 25662246176 mm3,

1 mm isotropic spatial resolution).

Functional MRI data analysis
The classification techniques considered here are used in a

within-subject and binary way, i.e. the categories were compared

pairwise for each subject. Different (combinations of) techniques of

feature extraction and classification were tested. These included a

General Linear Model (GLM, multiple regression model that

considers the voxels in a univariate way [1]), Support Vector

Machines (SVM) and Gaussian Processes (GP). The selection of

these methods was inspired by previous works on pattern

recognition and brain decoding [5], [6] and [24].

Image preprocessing. The images were preprocessed using

SPM8 (www.fil.ion.ucl.ac.uk/spm). First, spatial deformations

induced by the field inhomogeneities were estimated using the

FieldMap toolbox [25]. The images were corrected for the

differences in slice acquisition time (slice timing correction to the

middle slice), then were simultaneously realigned and unwarped to

account for the subject movements in the scanner and for the

interaction between these movements and the spatial deforma-

tions. Finally, the images were smoothed using a Gaussian

function with a 4 mm FWHM kernel to reduce high spatial

frequency noise in the images.

Signal extraction. For exploration and mental imagery, the

whole time series of all voxels were extracted. A GLM was used to

regress out movement effects (estimated by realignment

parameters) and low frequency drifts (cutoff: 1/128 Hz). The

signal corresponding to stimulus onsets was then extracted,

considering a hemodynamic response function (HRF) delay of

6 seconds (according to [26]). To avoid decoding the signal linked

to motor activity in the mental imagery session, the scans selected

for further classification were the ones preceding the key presses

(after correction for HRF delay). Overlapping events were also

handled with care, preventing the inclusion of two different stimuli

in the same TR. The signal was finally averaged over specific time-

windows to increase the Signal-to-Noise Ratio (SNR; [9] and

[27]). For the exploration session, the average was performed over

the time the stimulus was presented (i.e. 3 seconds). For the mental

imagery session, this average was performed over the interval

between two key presses, with a maximum of 2 scans (i.e.

4.080 seconds) to avoid the inclusion of episodes of task-unrelated

thoughts.

Feature selection. Reducing the number of features helps

data understanding, reduces the memory storage requirements

[28], and mitigates the effects of the ‘‘curse of dimensionality’’ [5],

while improving overall performance [24]. The feature extraction

techniques generally consist either in univariate methods such as

the General Linear Model (GLM) analysis or in multivariate

methods such as SVM. As these two kinds of techniques can be

combined to obtain an optimal subset of variables [24], we

considered both techniques separately then in combination.

The univariate feature selection chosen in the present work was

a GLM analysis. This technique seemed the most straightforward,

as it is the most common approach to analyze fMRI data in an

event-related experimental design, and was already proven a

useful feature selection method in previous works [6,10,27]. Using

a GLM analysis, the subset of ‘active’ voxels (i.e. whose activity

was statistically significantly correlated with the three conditions)

was determined [6]. From the resulting F maps, two voxel sets

were selected: (1) all voxels above an F-threshold of 0.5 (referred to

as ‘global GLM feature selection’) and (2) the 1000 most significant

voxels [10] (referred to as ‘specific GLM feature selection’). This

number of 1000 was chosen as the compromise between an under-

constrained space (dimensionality much larger than 1000), which

might lead to overfitting, and an over-constrained space

(dimensionality much smaller than 1000), which would make the

second feature selection step useless.

In the multivariate procedure, a binary SVM using linear

kernels was used to rank the voxels according to their

‘discriminating power’, which was computed from their specific

weights [6]. The voxels with the largest absolute weights were

selected for further modeling. The number of selected voxels

systematically varied from 5 (per condition and binary compar-

ison) to 150 at most, by increments of 25 (respectively nmin, nmax

and Dn on Figure 2). These parameters were fixed arbitrarily. At

each iteration the sum of the accuracy of the three binary models

on a left-out block was taken as a global accuracy measure. In

general, the addition of relevant features increases the accuracy of

the classification while adding irrelevant features leads to a

decrease in accuracy [5]. When recursively adding features, this

global accuracy measure is therefore expected to increase and then

decrease (when irrelevant features are being added to the relevant

ones). The set of voxels leading to the highest global accuracy (i.e.

when the global accuracy starts decreasing compared to the 2

previous iterations) was then selected for the classification analysis

(see Figure 2 for an illustration of the process). Features are thus

added recursively following a ‘Recursive Feature Addition’ (RFA)

procedure, in contrast to ‘Recursive Feature Elimination’ in which

features are recursively discarded [29]. RFA can then be

assimilated to a forward wrapper feature selection, with a cost

function based on the global accuracy as objective.

In all cases, feature selection was performed on the training set

only to ensure unbiased estimations of the accuracy with the test

set (see below).

Classification methods. Two modeling techniques were

considered to classify the data: SVM and GP. Because SVM is

widely used in the field of brain decoding ([13], [27–30]), it was

considered as the method of reference. SVM was computed using

linear kernels and a fixed regularization hyperparameter C = 1

([27], [31]).

GP was used to compute probabilities of classes, primarily with

the goal of improving overall classification accuracy on mental

imagery data. Furthermore, GP is presented as the generalization

of different classifiers (e.g. neural networks, [14]) and seemed
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therefore appropriate for our particular data, in which no

technique could easily be selected a priori. For GP classification,

we used the Expectation Propagation approximation of the

posterior mode [14], which recursively updates local parameters

of the distribution. The covariance matrix was modeled by an

inhomogeneous linear kernel matrix (k, [14]):

kx,x’~s02zxp x’

where Sp represents a general covariance matrix controlling for

the precision of the prior distribution and s0
2 accounts for a bias

term. In the present work, both Sp and s0
2 are expressed using

only one hyperparameter s, i.e. s2
0~s2 and Sp = s2I, I being the

identity matrix. The logarithm of s was initialized to 1. Before

training, the kernel matrix was centered, independantly for the

training and test sets.

Classification procedures and accuracy measures. The

different feature extraction, GLM and Recursive Feature Addition

(RFA), and classification (SVM and GP) methods were combined

in five distinct ‘procedures’ (Table 1), which were conducted as

follows:

– Procedure 1: The specific GLM feature selection method

identifies the 1000 most ‘active’ voxels in our experiment.

SVM binary classification is then performed for each pair of

image types.

– Procedure 2: The specific GLM feature selection method

identifies the 1000 most ‘active’ voxels in our experiment.

GP binary classification is then performed for each pair of

image types.

– Procedure 3: The global GLM feature selection method identifies

all ‘active’ voxels above the F-threshold of 0.5. Then, RFA is

performed with a range of selected features from 5 to 150 [10],

selecting the number of features leading to the best general-

ization accuracy. GP classification is then performed using this

number of selected features.

– Procedure 4: The specific GLM feature selection method

identifies the 1000 most ‘active’ voxels in our experiment.

RFA is then performed with a range of selected features from 5

to 150 [10], selecting the number of features leading to the best

generalization accuracy. GP classification is then performed

using this number of selected features.

– Procedure 5: The specific GLM feature selection method

identifies the 1000 most ‘active’ voxels in our experiment.

RFA is then performed with a range of selected features from 5

to 150 [10], selecting the number of features leading to the best

generalization accuracy. SVM classification is then performed

using this number of selected features.

With procedures 1 and 2, features are only selected by a GLM

analysis and accuracies were computed in terms of leave-one-

block-out cross-validations: at each step, one block containing m

data points (i.e. 27 consecutive images of faces, buildings and

Figure 2. Recursive Feature Addition (RFA) process and Cross-Validations (CV) used in procedures 3 to 5. The accuracy measure is
presented in the left box: from the outer CV, one block (containing m events) is left out which will be used later to test the final classification accuracy
and does not enter the feature selection process. The N-1 other blocks enter the RFA process (right box) to define the optimal set of features, which
will be used to build the model: the inner CV tests an SVM model built on N-2 blocks, leading to a value for the global accuracy (sum of the accuracies
obtained for each binary comparison). This inner CV loop is repeated until the accuracy curve starts to decrease and hence a maximum value of
global accuracy is reached, corresponding to an optimal subset of variables. N represents the number of blocks, nmin (respectively nmax,) represents
the minimum (respectively maximum) number of selected features and Dn, the step size.
doi:10.1371/journal.pone.0035860.g002

Table 1. Outline of the different combinations of features
extraction and classification methods used in the present
study.

Features Extraction Classification method

GLM RFA SVM GP

Procedure 1 specific X

Procedure 2 specific X

Procedure 3 global X X

Procedure 4 specific X X

Procedure 5 specific X X

doi:10.1371/journal.pone.0035860.t001
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animals for the maze exploration session, and all the mentally

represented images of 6 consecutive paths for the mental imagery

session) was left out as a test set while the others were used as a

training set to build the SVM or GP model. With procedures 3, 4

and 5, a double leave-one-block-out cross-validation was needed

(Figure 2) to ensure the independence of feature extraction and

classification [6,24]. The inner cross-validation is used to

determine the number of features to be selected by RFA and

therefore obtain an optimal SVM model on n-1 blocks while the

outer leave-one-block-out cross-validation tested the built SVM or

GP model. The outer cross-validation is performed on the same

folds for all procedures, which therefore allows their comparison.

To obtain one single accuracy measure for each subject (over all

the categories instead of three measures, one for each binary

comparison), an Error-Correcting Output Code approach

(ECOC, [32]) was considered, inspired from [31]: each class was

represented by a codeword of length n, n being the number of

binary classifications. Each classifier votes for the two classes that it

was built for, and for each class the votes of all the classifiers are

assembled so as to constitute a ‘codeword’ for each class, which

was further used for comparison with test points. For each test

instance, the distance between the vector computed from the

predictions of the set of classifiers and the correct codewords

associated to each possible class can then be computed and the

class characterized by the smallest distance from the predicted

vector is selected. In this work, three classes were considered (i.e.

faces, buildings and animals), leading to codewords of length three.

In procedures 1 and 5, the votes were defined using the +1/21

outputs of the SVM binary classifiers (table 2) and the final class of

a test point was attributed according to the smallest Hamming

distance between this vector and all the candidate class codewords

[31]. In procedures 2, 3 and 4, the codewords were defined in

terms of probabilities obtained from each GP binary classification

(table 2), and the distance was computed as the sum of the

differences between the table and the probabilities obtained from

each binary classifier. The difference between the two tables,

binary and probabilistic, lies in the precision of the distance

measure between the vector of predictions associated to a test

instance and the different codewords (see Appendix S1 for an

illustration).

Since each test point is attributed to a class, measures of

accuracy over categories can simply be computed as the total

number of test instances correctly classified divided by the total

number of test instances. Class accuracies can also be derived,

calculated as the number of test instances which were correctly

classified to the considered class, divided by the number of test

instances from this class. However, due to class imbalances in the

mental imagery session, balanced accuracy measures were

computed (as the mean of the class accuracies) to take the

different frequencies of the classes into account and therefore

replaced the over categories accuracy measure in this work. To

assess the significance of the classification of each procedure on

each subject, permutations of the training set labels were

performed (labels were permuted within each block to preserve

class frequencies in each temporally correlated block). P-values

were then associated to the balanced accuracy measure of each

subject, by comparing it to the balanced accuracy obtained when

shuffling the labels 100 times per cross-validation step (i.e. 1500

times for exploration and 900 times for mental imagery in total).

Permutations suited best this within-subject framework since it

avoided considering the CV folds (i.e. the blocks from a same

subject and session) as independent and identically distributed

[33].

Finally, the different procedures were compared using Fried-

man tests based on the balanced accuracy across subjects but also

on the accuracies for each class, which allowed a better insight on

the particularities of each modeling technique. In particular, the

proportions of Support Vectors (SV) for each class was computed

for the three SVM binary classifiers of procedure 5 to investigate

the effect of an unbalanced data set on the SVM technique and

establish their relation to class accuracies.

Softwares
The SVM implementation used is the LIBSVM toolbox (Chang

C. C. and Lin, C. J., http://www.csie.ntu.edu.tw/,cjlin/libsvm/)

with a PROBID interface (Andre Marquand and Janaina

Mourao-Miranda, http://www.brainmap.co.uk/). The choice of

LIBSVM, which does not employ different weights for class errors,

was driven by the wish to use SVM as a ‘reference’ method, and

therefore led to the selection of a standard implementation of a

classical SVM as is commonly employed in decoding neuroimag-

ing data. The GP implementation used is the compiled version

coded by C. E. Rasmussen and C. K. I. Williams (http://www.

gaussianprocess.org/gpml/) and interfaced in PROBID.

Results

Behavioral data
During exploration, 135 events were extracted for each

category, each one lasting 3 seconds. During mental imagery,

the number of extracted events and their corresponding duration

were variable depending on the volunteer’s ability to retrieve the

different images forming the requested mental path (Table 3). A

Friedman test showed an effect of category on the number of

events (p = 0.0016). Post hoc paired Wilcoxon signed rank tests

showed that the numbers of events in the faces and animals

categories was significantly larger than in the buildings category

(F-B: p = 0.0027, A-B: p = 0.0021, Bonferroni corrected for

multiples comparison) whereas no significant difference was

detected between faces and animals (p = 0.0877).

These findings were consistent with the results of the memory

test conducted outside the scanner (Table 4): the percentage of

Table 2. Codewords using predictions (left part) and probabilities (right part) of the binary classifier.

Codewords using predictions (SVM) Codewords using probabilities (GP)

F-B F-A B-A F-B F-A B-A

Faces 1 1 0 1 1 0.5

Buildings 21 0 1 0 0.5 1

Animals 0 21 21 0.5 0 0

The lines correspond to the considered classes while the columns represent the different binary comparisons (F: faces, B: buildings and A: animals).
doi:10.1371/journal.pone.0035860.t002
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correct answers is significantly lower (Friedman test: p = 3.2*1026,

Post hoc Wilcoxon tests, p,0.05, Bonferroni corrected for

multiple comparisons) for the buildings category than for the

other categories. The absolute differences in performance between

categories were the largest between faces and buildings and

between animals and buildings. This result potentially affected the

classification based on fRMI data as they rely on binary

comparisons.

However, no interaction could be detected betweent the

performances of the subject and the number of events in each

category (correlations: p.0.05).

Feature extraction
The ‘global GLM feature selection’ option considered in

procedure 3 led to about 35,000 selected voxels for both sessions

(range: 30,372–40,527, mean: 36,203 for the exploration session;

range: 29,996–38,541, mean: 34,172 for the mental imagery

session).

The number of features extracted by RFA in procedures 3, 4

and 5 are summarized in Table 5, respectively. Procedure 3

identified 342.95 optimal features (302.11 for mental imagery,

mean across blocks and across subjects) while procedures 4 and 5

selected 310.92 features (270.17 for mental imagery), the

difference between procedures being significant (Friedman test,

p,1024) for exploration. Standard deviations in the number of

voxels selected indicate a high variability across blocks for mental

imagery, independently of the procedure. This high variability

across blocks, precluding from any conclusion at the procedure

level, is directly linked to the design of the session. For exploration,

the variability across blocks is small for both procedures,

suggesting that the computation of a GLM for each LOO-CV

does not induce much variability in the subset of voxels selected

(Friedman test on the residuals, p = 0.7276). Procedure 5 being

Table 3. Number of events of each category extracted from the mental imagery session and corresponding percentages, for each
subject.

Number of events in each category during mental imagery

Subject index Faces Buildings Animals

S1 69 (44.23%) 30 (19.23%) 57 (36.54%)

S2 52 (30.41%) 43 (25.15%) 76 (44.44%)

S3 76 (55.07%) 11 (07.97%) 51 (36.96%)

S4 47 (30.32%) 58 (37.42%) 50 (32.29%)

S5 63 (37.72%) 50 (29.94%) 54 (32.34%)

S6 74 (39.36%) 42 (22.34%) 72 (38.30%)

S7 65 (39.39%) 43 (26.06%) 57 (34.55%)

S8 70 (41.42%) 36 (21.30%) 63 (37.28%)

S9 43 (40.19%) 31 (28.97%) 33 (30.84%)

S10 67 (38.29%) 44 (25.14%) 64 (36.57%)

S11 18 (21.69%) 32 (38.55%) 33 (39.76%)

S12 37 (45.68%) 20 (24.69%) 24 (29.63%)

S13 69 (41.07%) 31 (18.45%) 68 (40.48%)

S14 51 (44.74%) 22 (19.30%) 41 (35.96%)

S15 55 (32.54%) 58 (34.32%) 56 (33.14%)

S16 77 (38.89%) 53 (26.77%) 68 (34.34%)

Mean 58.31 (38.81%) 37.75 (25.35%) 54.18 (35.84%)

The reference percentage is 33%, corresponding to three perfectly balanced classes.
doi:10.1371/journal.pone.0035860.t003

Table 4. Percentage of correct answers during the memory
test session outside the scanner.

% of correct answers: Dif in %:

Subject index Faces Buildings Animals F-B F-A B-A

S1 48.9 35.6 46.7 13.3 02.2 11.1

S2 55.6 11.1 28.9 44.4 26.7 17.8

S3 55.6 42.2 64.4 13.3 08.9 22.2

S4 75.6 53.3 68.9 22.2 06.7 15.6

S5 68.9 51.1 73.3 17.8 04.4 22.2

S6 62.2 31.1 46.7 31.1 15.6 15.6

S7 77.8 55.6 75.6 22.2 02.2 20.0

S8 77.8 42.2 68.9 35.6 08.9 26.7

S9 71.1 57.8 71.1 13.3 00.0 13.3

S10 51.1 22.2 51.1 28.9 00.0 28.9

S11 55.6 42.2 64.4 13.3 08.9 22.2

S12 53.3 08.9 35.6 44.4 17.8 26.7

S13 55.6 42.2 57.8 13.3 02.2 15.6

S14 40.0 15.6 48.9 24.4 08.9 33.3

S15 62.2 42.2 51.1 20.0 11.1 08.9

S16 64.4 42.2 46.7 22.2 17.8 04.4

Mean 61.0 37.2 56.2 23.75 08.9 19.0

The results are displayed in terms of percentage of correct answers for each
category as well as the difference in percentage between categories. F-
B = faces-buildings, F-A = faces-animals, B-A = buildings-animals.
doi:10.1371/journal.pone.0035860.t004
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identical to procedure 4 in terms of feature selection, Table 5

displays the sizes of the selected subsets of features for both

procedures.

For both sessions and all procedures, the selected voxels were

mostly comprised in the ventral visual path (primary areas,

Fusiform Face Area), parietal regions linked to spatial features and

hippocampus related to navigation. Activation in these areas

represented properly the different aspects of both tasks.

Classification
We first modeled the exploration session, before considering the

mental imagery session. In the following sections, the results for

both sessions and the four procedures are expressed for each

category in terms of balanced accuracy (mean across blocks and

significance for each subject, Figures 3–4).

Procedure 1. For exploration, the mean balanced accuracies

were all above chance level, ranging from 54.57 to 89.88%

(p,0.05). For mental imagery, mean balanced accuracies ranged

from 26.59 to 67.01%. Low accuracy measures led to non

significant results for subjects S6, S11, S14 (p = 0.07) and S15

(p.0.05).

Procedure 2. For exploration, GP classification provided

mean balanced accuracies ranging from 56.05 to 90.12%

(p,0.05). For mental imagery, mean balanced accuracies were

comprised between 24.09 and 63.48%. The classification was not

significant for subjects S2, S3 (p = 0.07), S11, S12, S14 and S15

(p.0.05).

Procedure 3. For exploration, mean balanced accuracies

obtained using the RFA feature selection ranged from 55.56 to

90.12% (p,0.05). For mental imagery, mean balanced accuracies

ranged from 25.94 to 61.65%. These results were not significant

for subjects S2, S6, S11, S12, S14 and S15 (p.0.05).

Procedure 4. For exploration, the optimal subsets of features

defined by GLM and RFA were associated with mean balanced

accuracies ranging from 55.80 to 90.86% (p,0.05). For mental

imagery, mean balanced ranged from 32.98 to 69.78%. However,

non significant results were found for subjects S11, S12, S14 and

S15 (p.0.05).

Procedure 5. For exploration, the optimal subsets of features

defined by GLM and RFA were associated with mean balanced

accuracies ranging from 53.33 to 89.63% (p,0.05). For mental

imagery, mean balanced accuracies ranged from 32.05 to 67.50%,

leading to non significant results for subjects S2, S6, S9 (p = 0.07),

S11, S12 (p = 0.06), S14 and S15 (p = 0.06).

Overall mean balanced accuracies for the exploration session

were significantly above chance for all the subjects and all

procedures. For the mental imagery sessions, mean balanced

accuracies were not significant for some subjects and some

procedures: S2 (procedures 2, 3 and 5), S3 (procedure 2), S6

(procedures 1, 3 and 5), S9 (procedure 5), S11 (all procedures), S12

(procedures 2, 3, 4 and 5), S14 (all procedures) and S15 (all

procedures).

Comparison of procedures
Balanced accuracy. For exploration, the Friedman test on

the over categories accuracy measures revealed significant

differences (p,1024) between procedures. Paired Wilcoxon

signed rank tests showed that procedures 1 and 5 (SVM

classification) performed significantly worse than procedures 2, 3

and 4 (p,0.05, Bonferroni corrected for multiple comparisons,

Figure 5.A.I).

Table 5. Number of RFA selected features for procedures 3, 4 and 5.

Procedure 3 Procedures 4 and 5

Exploration Mental Imagery Exploration Mental Imagery

Subject Mean Std Mean Std Mean Std Mean Std

S1 369 5 220 142 337 65 254 173

S2 225 100 256 205 307 91 218 176

S3 360 66 385 149 277 88 258 150

S4 369 3 191 134 274 76 272 185

S5 324 88 351 245 310 78 314 164

S6 341 89 357 274 326 67 297 163

S7 363 55 266 249 338 66 290 172

S8 375 4 349 262 365 29 278 204

S9 234 100 225 256 216 88 217 134

S10 354 89 346 153 314 103 306 190

S11 364 54 258 168 313 65 148 185

S12 352 58 509 201 366 28 304 222

S13 344 85 313 108 333 40 294 183

S14 353 51 295 237 282 83 341 212

S15 391 45 272 139 291 109 326 227

S16 370 30 241 201 327 67 205 165

All 342.95 57.67 302.11 206.28 310.92 71.28 270.17 180.27

The optimal subset of variables is represented for each subject by its average size (second and fourth columns) and standard deviation (third and fifth columns) across
blocks for the exploration (second and third column) and mental imagery (fourth and fifth) sessions. The last line gives the mean and standard deviation across subjects.
Results are presented in terms of mean and standard deviation across the number of features obtained after each cross-validation step.
doi:10.1371/journal.pone.0035860.t005
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Similarly, for mental imagery, a Friedman test on the balanced

accuracies showed a significant effect of procedure (p = 0.0012).

The paired Wilcoxon signed rank tests showed that procedure 4

performed significantly better than procedure 3 (p = 7.76*1024)

and better than all other procedures (p,0.05, but does not survive

Bonferroni correction for multiple comparisons). Procedure 3 also

tended to perform worse than procedure 1 (p = 0.0437, not

significant after Bonferroni correction, Figure 5.B.I).

Class accuracy. For exploration, there was an effect of

procedure on the class accuracy measures only for the animal

category (F: p = 0.0672, B: p = 0.1594 and A: p = 0.0017). Paired

Wilcoxon signed rank tests showed that procedures 1 and 5 tended

to perform worse than procedures 2, 3 and 4 for the animal

category (p,0.05, corrected for multiple comparisons using

Bonferroni correction, Figure 5.A.II).

For mental imagery, Friedman tests showed a significant effect

of procedure on the classification of faces and buildings (p,1023).

Figure 3. Exploration: Mean balanced accuracies obtained in the different procedures for all subjects. Procedure 1: specific GLM feature
selection and SVM classification. Procedure 2: specific GLM feature selection and GP classification. Procedure 3: global GLM and RFA feature selections
and GP classification. Procedure 4: specific GLM and RFA feature selections with GP classification. E Procedure 5: specific GLM and RFA feature
selections with SVM classification. All results are significant.
doi:10.1371/journal.pone.0035860.g003

Figure 4. Mental imagery: Mean balanced accuracies obtained in the different procedures for all subjects. Procedure 1: specific GLM
feature selection and SVM classification. Procedure 2: specific GLM feature selection and GP classification. Procedure 3: global GLM and RFA feature
selections and GP classification. Procedure 4: specific GLM and RFA feature selections with GP classification. E Procedure 5: specific GLM and RFA
feature selections with SVM classification. Significant classification accuracies are marked by stars *.
doi:10.1371/journal.pone.0035860.g004

Decoding Semi-Constrained Brain Activity in fMRI

PLoS ONE | www.plosone.org 8 April 2012 | Volume 7 | Issue 4 | e35860



Paired Wilcoxon signed rank tests on the class accuracy for faces

showed that procedure 1 performed significantly better than

procedure 3 (p = 0.0027), and better than procedures 2 and 4

(p,0.05, does not survive Bonferroni correction, Figure 5.B.II).

Trends also indicated that procedure 5 led to higher accuracies

than procedures 2 and 3 (2–5: p = 0.0295, 3–5: p = 0.0085, do not

survive Bonferroni correction). The paired Wilcoxon signed rank

tests on the class accuracy for buildings showed that procedure 4

performed significantly better than procedures 1, 3 and 5 (p,0.05,

Bonferroni corrected for multiple comparisons). Trends showing

better performance of procedure 3 over procedures 1 and 5, and of

procedure 4 over procedure 2 were also noticed but not significant

(1–3: p = 0.0327, 3–5: p = 0.0166, 2–4: p = 0.0131 do not survive

the Bonferroni correction, Figure 5.B.III). No other significant

differences in class accuracies were noted.

This result is illustrated in Figure 6, comparing the class

accuracies obtained for each subject with procedures 1 and 4

(Figure 6.A). It was observed that procedure 4 performed always

better than procedure 1 to classify buildings. Figure 6.B assessed

the significance of this difference in performance between

procedure 1 and procedure 4. Only the building classification

was significantly different, i.e. worse for procedure 1 compared to

procedure 4. Similar results were obtained when comparing

procedures 4 and 5 in terms of buildings accuracy (not shown).

Support Vectors proportion. Procedures 1 and 5 showing

no significant difference in balanced or class accuracies, support

vectors (SV) proportions were computed from each SVM binary

classifier of procedure 5 (percentage of faces SV for the F-B and F-

A comparisons and percentage of animals SV for the B-A

comparison).

For exploration, a significant effect of the binary classifier on the

proportions of SV was assessed (p,0.05): post hoc Wilcoxon tests

revealed that the proportion of SV in the faces category (F-B

classifier) was significantly higher than in the faces category for the

F-A classifier and in the animals category for the B-A classifier

(p,0.05, Bonferroni corrected). Whilst the proportions of faces SV

in the F-B and F-A classifiers differed significantly from 50% (F-

B.50%: p = 0.0084, F-A,50%: p = 0.0045), no significant

correlation could be found between the SV proportions and the

class accuracies (0.0735,p,0.8309). Moreover, the sign of some

correlation coefficients were not consistent with the expected effect

on class accuracy (for example, a positive correlation was found

between the proportion of faces SV and the class accuracy of

buildings, while one would expect the class accuracy of buildings

to decrease when increasing the proportion of faces SV).

For mental imagery, a Friedman test also showed an effect of

the binary classifier on the proportions of SV (p = 6.81*1024). Post

hoc Wilcoxon signed rank tests revealed that the proportions of SV

in the faces (for the F-B classifier) and in the animals (for the B-A

classifier) categories were significantly higher than in the faces

category for the F-A classifier (p,0.05, Bonferroni corrected). SV

proportions in the faces (F-B) and animals (B-A) categories were

significantly higher than 50% (faces in F-B: p = 0.0151 and

animals in B-A: p = 0.0013). Significant anti-correlations were

found between the class accuracy of buildings and the proportion

of faces SV in the F-B classifier (p = 0.0145), and the proportion of

animals SV in the B-A classifier (p = 0.0190). Although no other

significant correlation was assessed between class accuracy and SV

proportions, the signs of all correlation coefficients were consistent

with the expected effects.

Effect of behavioural data
Number of events. When considering the classification of

mental imagery using all procedures (i.e. accuracies have been

averaged across procedures), a significant effect of the number of

events could be detected for the faces and buildings category

(correlations, faces: rho = 0.5341, p = 0.0331, buildings:

rho = 0.5117, p = 0.0428). When investigating the procedures

individually, significant correlations were found between the

number of faces events and the classification of faces in

procedures 1 and 5 (SVM classifier). All procedures showed a

significant correlation between the number of buildings events and

the classification of images of that category (p,0.05).
Behavioural performances. No significant correlations

were found between the accuracy of all classifiers and the

performance of the subjects at the test session led outside the

scanner. However, for mental imagery, trends still indicated an

effect of the total number of correct answers on the balanced

accuracy (p = 0.0867) as well as a correlation between the

classification of buildings and the number of correct answers in

the buildings category (p = 0.0575). In particular, procedures 2

and 3 (resp. 3, 4 and 5) showed significant correlation between the

Figure 5. Schematic comparisons between procedures. The full arrows represent a significant difference (p,0.05, survives Bonferroni
correction multiple comparisons) in performance between the two procedures linked, the arrow pointing to the best. The dashed arrows represent
trends (p,0.05, but does not survive Bonferroni correction). A.I Exploration: differences in balanced accuracy. Procedures 2, 3 and 4 (GP) perform
best. A.II Exploration: differences in animals class accuracy. B.I. Mental imagery: differences in balanced accuracy. Procedure 4 tended to perform best.
B.II. Mental imagery: differences in faces class accuracy. Procedures 1 and 5 (SVM) tended to perform best. B.III. Mental imagery: differences in
buildings class accuracy. Procedures 3 and 4 (tended to) perform best.
doi:10.1371/journal.pone.0035860.g005
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subjects’ performances and the balanced accuracy over the three

categories (resp. for the buildings category). The other procedures

still showed trends, but the correlations were not significant (over

categories: p(P1) = 0.1367, p(P4) = 0.0560, p(P5) = 0.092,

buildings: p(P1) = 0.0509, p(P2) = 0.0686).

Discussion

We tested the performance of different classification procedures

on two separate fMRI time series. Whereas the experimental

design of the exploration session imposed a paced and regular

succession of stimulus categories, the mental imagery session was

characterized by imbalanced numbers of trials between categories,

a self-paced succession of individual trials and subject related task

performance. The uneven number of events across categories was

related to the disparity in individual memory performance,

pictures of buildings being significantly less well remembered than

the two other classes of stimuli. In addition, the succession of

events of variable durations, sometimes beyond temporal resolu-

tion of fMRI, put a further strain on classification procedures. The

best combinations of techniques (namely procedures 1 and 4) were

able to classify accurately, i.e. significantly above chance level, the

mental images from 12 out of the 16 subjects.

Methodological implications
When classifying the well-controlled session, results indicated

that SVM performed significantly worse than GP. No effect of the

feature selection (either specific GLM, global GLM and RFA or

specific GLM and RFA) could be detected, which does not

correspond to what was reported in the literature [6,27–29]. This

result indicates that for this well-controlled experiment, using a

GLM filter or a RFA embedded wrapper leads to the same

performances.

However, when considering the mental imagery session,

performance of the considered procedures indicates that GP

might be more sensitive to the addition of irrelevant features than

SVM. This hypothesis is supported by the fact that a univariate

feature extraction by a specific GLM substantially improved

classification accuracy. Indeed, procedure 4 (specific GLM-RFA-

GP) achieved better accuracies than procedure 3 (global GLM-

RFA-GP), which needed more computational time for significantly

poorer results. While the authors of [27] suggested that such a

univariate feature selection step ‘may improve’ the accuracy of

intrasubject classification, we show that this improvement is

significant for the considered GLM contrasts and data sets. In

addition, combining a specific GLM with a second multivariate

step further improved feature selection, as indicated by the higher

accuracy achieved by procedure 4 relative to 2 (specific GLM-GP).

This result is in agreement with [6], [28] and [29], which stated

that the combination of a univariate selection of ‘active’ voxels

combined to a multivariate selection of ‘discriminant’ voxels led to

the best performances of classifiers. Since the main difference

between the two classification techniques considered lies in the

sparseness of SVM [14], one plausible explanation for this result

could be that GP overfits the data by using all the data points to

define the separating function. This overfitting can then be

reduced via a two-level feature selection approach. However,

procedures 1 and 5 (specific GLM-RFA-SVM) showed similar

performances, suggesting that the RFA step did not bring further

relevant information to the SVM classifier. Furthermore, it

allowed higher accuracies to be reached when permuting the

labels, which led to non-significant results for 7 subjects out of 16.

Once the optimal subset of features was defined, the

performances of GP and SVM classifiers showed only slight

differences (trend that procedure 4 performs better but not

significant). However, GP seems more robust than SVM for

classifying imbalanced data sets, as the former achieved a

significantly better accuracy for the least represented class (i.e.,

buildings in the current study). This result might be explained by

the sparseness of SVM since significantly different proportions of

support vectors between the binary classifiers, which correlated

with the obtained class accuracies, were revealed.

Functional significance of classification results
The two behavioural measures computed in this work (i.e. the

number of events in each category and the performances to a

memory test led outside the scanner) correlated significantly with

the performances of the procedures, especially for the least

represented class. The small number of observations precludes any

Figure 6. Class accuracies obtained by the procedures 1 and 4 for all subjects. The faces category is represented in black, the buildings
category, in dark brown, and the animals category, in light brown. A Comparison of the accuracy values. x-axis: class accuracies obtained using
procedure 1. y-axis: class accuracies obtained using procedure 4. Most points corresponding to class accuracies of buildings (represented by dark
brown circles) are above the 45u line, meaning that the buildings were better classified using procedure 4. B Average difference in class accuracy
between procedures 1 and 4. This figure shows that the difference in buildings classification is significant across subjects, while this is not the case for
the faces and animals categories.
doi:10.1371/journal.pone.0035860.g006
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definitive conclusion. However, these findings suggest that the

ability to reinstate category-specific activity patterns within specific

occipito-temporal areas supports memory retrieval.

Conclusions
The results show that for fMRI time series which include

complex, unbalanced self-generated mental states, best accuracies

are obtained by a feature selection combining a specific GLM and

a recursive feature addition. Whilst the advantage of GP over

SVM to classifying this type of data is small (in terms of balanced

accuracy), the former seems more appropriate for markedly

imbalanced data sets, and thus preferable for more realistic

experimental setups.
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