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Abstract

Gram-negative bacteria naturally shed particles that consist of outer membrane lipids, outer membrane proteins, and
soluble periplasmic components. These particles have been proposed for use as vaccines but the yield has been
problematic. We developed a high yielding production process of genetically derived outer membrane particles from the
human pathogen Shigella sonnei. Yields of approximately 100 milligrams of membrane-associated proteins per liter of
fermentation were obtained from cultures of S. sonnei DtolR DgalU at optical densities of 30–45 in a 5 L fermenter.
Proteomic analysis of the purified particles showed the preparation to primarily contain predicted outer membrane and
periplasmic proteins. These were highly immunogenic in mice. The production of these outer membrane particles from high
density cultivation of bacteria supports the feasibility of scaling up this approach as an affordable manufacturing process.
Furthermore, we demonstrate the feasibility of using this process with other genetic manipulations e.g. abolition of O
antigen synthesis and modification of the lipopolysaccharide structure in order to modify the immunogenicity or
reactogenicity of the particles. This work provides the basis for a large scale manufacturing process of Generalized Modules
of Membrane Antigens (GMMA) for production of vaccines from Gram-negative bacteria.
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Introduction

Shigella spp. are Gram-negative bacteria that infect the intestinal

epithelium and cause dysentery. In 1999 the World Health

Organization estimated an annual burden of 164.7 million

shigellosis cases throughout the year of which 163.2 occur in

developing countries, including 1.1 million deaths, mostly in

children younger than 5 years of age [1]. Four serogroups have

been identified: S. dysenteriae (15 serotypes), S. boydii (20 serotypes),

S. flexneri (14 serotypes) and S. sonnei (1 serotype) [2]. No vaccine is

currently available. So far, vaccine candidates based on O antigen

conjugates and live attenuated strains have been shown in clinical

trials to protect against homologous strains [2–6]. Vaccines using

inactivated bacteria or subcellular components are at various

stages of development [3,6].

Gram-negative bacteria naturally shed outer membrane parti-

cles consisting of outer membrane lipids, outer membrane

proteins, and enclosed periplasmic proteins [7–9]. Unlike most

unilamellar biological vesicles, outer membrane particles are

formed by blebbing and not by invagination of the membrane.

Thus, the orientation of components in the membrane of the outer

membrane particles is the same as in the bacterial outer

membrane and the components in the outer face of the bacterial

outer membrane are also in the outer face of the outer membrane

particles [7]. Outer membrane particles are naturally shed at low

concentration. Mutations such as the deletion of gene gna33 in

Neisseria meningitidis [10] or modifications of the tol-pal pathway of

Escherichia coli, Shigella flexneri, and Salmonella enterica serovar

Typhimurium [11,12] can increase the level of shedding.

Especially, deletion of the tolR gene in E. coli has been shown to

result in substantial overproduction of outer membrane particles

without loss of membrane integrity [11,13]. Studies have

characterized the protein content of these outer membrane

particles [10,13], and unlike conventional detergent-extracted

outer membrane vesicles derived from homogenized bacteria they

are almost free of cytoplasmic and inner membrane components

and maintain lipoproteins. The outer membrane particles used for

those proteomic studies have been derived in small quantities from

cells grown to low cell density.
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It has been previously proposed that outer membrane particles

could be exploited for use as vaccines [10,12]. The immunoge-

nicity of outer membrane particles from a variety of Gram-

negative bacteria has been studied. Consistent with their high

content of stimulators of the innate immune system, e.g.

lipopolysaccharide (LPS) [7] and Toll-like receptor 2 (TLR2)

agonists [14], they are strongly immunogenic in the absence of

adjuvant. They have been shown to induce protection in mice

against multiple pathogens, including Salmonella enterica serovar

Typhimurium [15], Helicobacter pylori [16], Vibrio cholera [17,18], or

to elicit antibodies in mice with in vitro bactericidal activity, e.g. for

Neisseria meningitidis [19]. Recently, outer membrane particles from

Shigella flexneri 2a have been shown to confer protection in mice

after mucosal immunization [20]. Although these studies suggest

that outer membrane particles may form the basis of vaccines

[15,17,18], there remain several problems: their reactogenicity

and the difficulty of purifying them in the quantity and at costs

that would make them attractive as vaccines for the public sector

most impacted by diseases such as shigellosis.

The problem of reactogenicity is amenable to genetic manip-

ulation. A variety of strategies has been examined to attenuate the

pyrogenicity of LPS by modifying genes involved in lipid A

biosynthesis, e.g. msbB and htrB in Shigella and E. coli or lpxL in

Neisseria that are required for complete acylation and thereby

pyrogenicity of lipid A [21–24]. However, a major remaining

difficulty is developing a scalable method for the high volume and

low unit cost production of vaccines based on this method.

In this paper we show that high purity outer membrane

particles from Shigella sonnei mutant strains can be produced from

fermentation in chemically defined medium with high yield using a

simple purification process thus making production of inexpensive

vaccines feasible. We believe that this process will be widely

applicable for production of Gram-negative membrane antigens

and thus call it the ‘Generalized Modules for Membrane Antigens

(GMMA)’ process. In the literature, outer membrane particles that

are either naturally released or produced by genetically modified

strains are usually referred to as outer membrane vesicles (OMV).

The same term has also been used for the vesicles derived by

detergent-extraction of homogenized bacteria currently used as

vaccines, e.g. MeNZB, an outer membrane vesicle vaccine used to

control Neisseria meningitidis type B infections in New Zealand. In

order to differentiate the two substantially different types of OMV

[10] we chose the term GMMA to specify the particles released

from the surface of intact cells used in this study.

Methods

Construction of Shigella Sonnei 53G Mutants
Shigella sonnei 53G [25] was chosen as parent strain. The null

mutants tolR [13], galU [26], and msbB1 [21] were obtained by

replacing the gene coding sequence with a resistance cassette [27].

Kanamycin was used for tolR, chloramphenicol for galU and

erythromycin for msbB1. To achieve this, we used a three step

PCR protocol to fuse the gene upstream and downstream regions to

the resistance gene. Briefly, the upstream and downstream regions

of the gene were amplified from Shigella sonnei 53G genomic DNA

with the primer pairs gene.AB.500-5/gene.ABL-3 and gene.AB.L-

5/gene.AB.500-3, respectively (details of target ‘gene’, antibiotic

cassette ‘AB’ and sequence are reported in Table 1). The

kanamycin cassette was amplified from pUC4K [28] and the cat

gene from pKOBEG [29] using the primers ampli.AB-5/

ampliAB-3 (Table 1). Finally the three amplified fragments were

fused together by mixing 100 ng of each in a PCR reaction

containing the gene.AB.500-5/gene.AB.500-3 primers. The linear

fragment to delete tolR was used to transform recombination-

prone Shigella sonnei 53G carrying pAJD434 to obtain the

respective deletion mutant S. sonnei DtolR. Recombination-prone

S. sonnei DtolR was then transformed with the linear fragment for

the deletion of galU, resulting in mutant strain S. sonnei DtolR

DgalU. A clone of S. sonnei DtolR lacking the virulence plasmid,

S. sonnei –pSS DtolR, was selected by white appearance on congo

red agar. The curing of the virulence plasmid (pSS) was confirmed

by the absence of the origin of replication and the plasmid

encoded gene wzy using primers pS.so53G.oriF/pS.so53G.oriR

and pS.so53G.wzyF/pS.so53G.wzyR respectively (Table 1). Two

functional msbB genes are present in Shigella [21]. In the DtolR

background, the copy located on the virulence plasmid (msbB2)

was removed by curing the plasmid and the plasmid pDmsbBko::

ery was constructed to delete the gene msbB1 on the chromosome.

Upstream and downstream flanking regions of the msbB1 gene

were amplified by PCR with the XbaI.msbB.59.F/

EcoRV.msbB.59.R and EcoRV.msbB.39.F/XhoI.msbB.39.R prim-

ers, respectively. Both products were cloned into the pBluescript

(Stratagene) vector in Max EfficiencyH E. coli DH5aTM-T1R

(Invitrogen). The erm erythromycin resistance gene [30] was

amplified with primers EcoRV.Ery.F/EcoRV.Ery.R and was

inserted into the EcoRV site between the flanking regions

generating pDmsbBko::ery. Primers XbaI.msbB.59.F/

XhoI.msbB.39.R were used to amplify by PCR a linear fragment

from pDmsbBko::ery plasmid, containing the resistance cassette

flanked by msbB1 flanking regions that was used to transform the

recombination-prone plasmid-cured Shigella sonnei 53G DtolR strain

to generate the msbB knockout mutant. Recombination-prone

Table 1. Primers used in this study.

tolR.Kan.500-5 TCTGGAATCGAACTCTCTCG

tolR.Kan.L3 ATTTTGAGACACAACGTGGCTTTCATGGCTTACCCCTTGTTG

tolR.Kan.L5 TTCACGAGGCAGACCTCATAAACATCTGCGTTTCCCTTG

tolR.Kan.500-3 TTGCTTCTGCTTTAACTCGG

ampli.Kan-5 ATGAGCCATATTCAACGGGAAAC

ampli.Kan-3 TTAGAAAAACTCATCGAGCATCAAA

galU.Cm.500-5 AAAATCAACGGTTGCCAGAG

galU.Cm.L-3 CGAAGTGATCTTTCCGTCACATTAAATTCTCCTGGACTGTTC

galU.ext-5 GCCTGGTGCTTGATATTGC

galU.Cm.500-3 GCGCAGGCAAGAGAATGTA

galU.Cm.L-5 CAGTTATTGGTGCCCCATCCGTATCGGTGTTATCC

galU.ext-3 TCCTGGCTATTGCACAACT

ampli.Cm-5 TGTGACGGAAAGATCACTTCG

ampli.Cm-3 GGGCACCAATAACTGCCTTA

XbaI.msbB.59.F CTAGTCTAGAAGTGCTTTCAGTGGGTGACG

EcoRV.msbB.59.R AGCTTGATATCCCATGCTTTTCCAGTTTCGG

EcoRV.msbB.39.F AGCTTGATATCGGCGAAATCCAACCGTATAAG

XhoI.msbB.39.R CCGCTCGAGGGGGAAGTTGTTAAGACAGAC

EcoRV.Ery.F AGCTTGATATCAGAGTGTGTTGATAGTGCAGTATC

EcoRV.Ery.R AGCTTGATATCACCTCTTTAGCTTCTTGGAAGCT

pS.so53G.oriF CGTAACCGTAATTACAGCCG

pS.so53G.oriR GATTTCACCTTACCCATCCC

pS.so53G.wzyF CGTTGAGGTTTCACGTTTCT

pS.so53G.wzyR TTACCAATATACCCTCCGCA

doi:10.1371/journal.pone.0035616.t001
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Shigella sonnei 53G cells were produced by using the highly

proficient homologous recombination system as previously de-

scribed (red operon) [31] encoded on pAJD434 [32]. pAJD434 was

subsequently removed from the mutant strains.

Bacterial Strain Growth Conditions and Media
Shigella sonnei and E. coli strains were routinely cultured in

Luria-Bertani (LB) medium. When required, kanamycin (30 mg/

mL), chloramphenicol (20 mg/mL), trimethoprim (100 mg/mL),

or ampicillin (100 mg/mL) were added. Tryptic soy agar (30 g/L

tryptic soy broth, 15 g/L agar) supplemented with 150 mg/L

congo red was used to evaluate the presence of the virulence

plasmid in Shigella. GMMA were prepared from cultures grown

in flasks or in a 5 L fermenter (Applikon) in yeast extract

medium (HTMC) or Shigella sonnei defined medium (SSDM).

HTMC was prepared as follows: yeast extract 30 g/L, KH2PO4

5 g/L, K2HPO4 20 g/L, MgSO4*7H2O 1.2 g/L, glycerol 15 g/

L, polypropylene glycol (PPG) 0.25 g/L. SSDM was prepared as

follows: glycerol 30 g/L, KH2PO4 13.3 g/L, (NH4)2HPO4 4 g/

L, MgSO4*7H2O 1.2 g/L, citric acid 1.7 g/L, CoCl2*6H2O

2.5 mg/L, MnCl2*4H2O 15 mg/L, CuCl2*2H2O 1.5 mg/L,

H3BO3 3 mg/L, Na2MoO4*2H2O 2.5 mg/L,

Zn(CH3COO)2*2H2O 13 mg/L, ferric citrate 2 mM (unless

specified differently in text), thiamine 50 mg/L, nicotinic acid

10 mg/L, L-aspartic acid 2.5 g/L, PPG 0.25 g/L. For fermen-

tation, starter cultures were grown from glycerol stocks to OD

0.8 and subsequently transferred to the 5 L fermenter to reach a

starting OD of 0.02. Dissolved oxygen was maintained at 30%

saturation by controlling agitation and setting maximum

aeration. The pH was maintained at 7.2 in HTMC or at 6.7

in SSDM, with 4 M ammonium hydroxide by a pH controller

and temperature was kept constant either at 37uC or at 30uC.

From flask cultures, supernatants were collected by 10 min

centrifugation at 4000 g followed by 0.22 mm filtration or by

tangential flow filtration. The optical density (OD) of cultures

was measured at 600 nm wavelength.

Tangential Flow Filtration Purification
A 2-step tangential flow filtration (TFF) process was used to

purify GMMA. During the first TFF step, the culture superna-

tant which contains the GMMA was separated from the bacteria

using a 0.2 mm pore size cassette (Sartocon HYDROSART

0.2 mm, Sartorius). When approximately 80% of the starting feed

was recovered as filtrate, the remaining biomass (retentate) was

washed in five diafiltration steps with phosphate buffered saline

(PBS). The GMMA-containing culture supernatant and the

GMMA-containing filtrate of the diafiltration steps were com-

bined. In a modified process the diafiltration of the biomass was

omitted. Experiments performed without this diafiltration step

are specified in the text. In the second step, the combined filtrate

was micro-filtered using a 0.1 mm pore size membrane (Sartocon

SLICE 200 0.1 mm, Sartorius) in order to separate GMMA that

remain in the retentate from soluble proteins (filtrate). After five

diafiltration steps using PBS, the retentate containing the

GMMA was collected and sterile filtered using a 0.22 mm

ExpressTM PLUS stericup (Millipore).

Protein Quantification
Proteins were quantified by Bradford method, using bovine

serum albumin as standard. GMMA were boiled for 10 minutes in

3.0 M guanidine hydrochloride prior quantification.

Negative Staining Electron Microscopy
A drop of 5 mL of GMMA suspension was placed on copper

formvar/carbon-coated grids and adsorbed for 5 min. Grids were

then washed with few drops of distilled water and blotted with a

Whatman filter paper. For negative staining, grids were treated

with 2% uranyl acetate in ddH2O for 1 min, air-dried and viewed

with a CM100 transmission electron microscope (Philips, Eindo-

ven, the Netherlands) operating at 80 kV. Electron micrographs

were recorded at a nominal magnification of 600006.

Denaturing Mono-Dimensional Electrophoresis
GMMA were denatured for 3 min at 95uC in sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample

buffer containing 2% (wt/vol) SDS. 20 mg of proteins were loaded

onto 12% (wt/vol) or 4–12% (wt/vol) polyacrylamide gels

(BioRad, Hercules, U.S.A.). Gels were run in 3-(N-morpholino)-

propanesulfonic acid (MOPS) buffer (BioRad) and were stained

with Coomassie Blue R-250.

Two-Dimensional Electrophoresis
Two hundred micrograms of GMMA were separated by 2-

dimentional electrophoresis (2-DE) as previously described [10].

Briefly, proteins were separated in the first dimension on a non

linear pH 3–11 gradient and in the second dimension on a linear

4–12% polyacrylamide gradient unless specified in text. Gels were

stained with colloidal Coomassie G-250 [33].

Densitometry Analysis
SDS-PAGE and 2-DE gels were scanned with an Image Quant

400 (GE Healthcare). Images were analyzed with the software

Image master 2D Platinum 6.0 (Amersham Biosciences).

In-Gel Protein Digestion and MALDI-TOF Analysis
Protein spots were excised from the gels and processed as

previously described [13]. Mass spectra were acquired on a

Ultraflex MALDI TOF-TOF mass spectrometer (Bruker Dal-

Figure 1. Comparison of Shigella sonnei GMMA from different strains and different conditions. A)25 ml of culture supernatants were
collected from (1) wild type S. sonnei 53G, (2) S. sonnei DtolR (3) S. sonnei DtolR DgalU, (4) S. sonnei –pSS DtolR, and (5) S. sonnei –pSS DtolR DmsbB
grown in flasks in chemically defined medium at 30uC. Proteins were precipitated from the supernatants and quantified using Bradford assay. 10 mg
of samples 2–5, respectively, and the total quantity of sample 1 obtained from 25 mL of supernatant were separated by SDS-PAGE (12%
polyacrylamide (PA)). All strains with deletion of the tolR gene show an extensive protein profile in the supernatant compared to wild type. B) GMMA
were purified by ultracentrifugation from flask cultures of S. sonnei –pSS DtolR grown in chemically defined medium with 100 mM iron at 37uC and
30uC. 10 mg of protein were separated by SDS-PAGE (12% PA). The protein pattern of GMMA obtained at the different temperatures is similar. Visible
differences are marked by arrows. C) S. sonnei 53G –pSS DtolR was grown in flasks in chemically defined medium with defined iron concentrations.
GMMA were purified by ultracentrifugation and GMMA proteins were separated by SDS-PAGE (4–12% PA). Three bands identified as FepA, IutA, and
colicin I receptor were shown to be repressed by high iron concentration. D) Densitometry analysis of GMMA preparation from strain S. sonnei DtolR
DgalU grown in a 5 L fermenter to OD 45. The most abundant proteins were identified by protein mass fingerprint and relative amounts were
determined by densitometry analysis. Of the highlighted proteins, all proteins with exception of TolB are predicted to be associated with the outer
membrane, indicating that approximately 69% of the total protein amount in GMMA is derived from abundant proteins linked to the outer
membrane.
doi:10.1371/journal.pone.0035616.g001
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tonics) in reflectron, positive mode, in the mass range of 900 to

3,500 Da. Spectra were externally calibrated by using a combi-

nation of standards pre-spotted on the target (Bruker Daltonics).

MS spectra were analyzed by Protein Mass Fingerprint (PMF)

with flexAnalysis (flexAnalysis version 2.4, Bruker Daltonics).

Monoisotopic peaks were annotated with flexAnalysis default

parameters and manually revised. Protein identification was

carried from the generated peak list using the Mascot program

(Mascot server version 2.2.01, Matrix Science). Mascot was run on

a database containing protein sequences deduced from seven

sequenced Shigella genomes, downloaded from NCBInr or from

the Wellcome Trust Sanger Institute database. Genomes used

were from strains Shigella sonnei 53G, Shigella flexneri 2a str. 301,

Shigella flexneri 2a str. 2457T, Shigella sonnei Ss046, Shigella boydii

Sb227, Shigella flexneri 5 str. 8401, Shigella boydii CDC 3083-94.

Search parameters, mass tolerance, known contaminant ions,

validation and handling of multiple matches were performed as

described previously [13].

Protein Precipitation and In-solution Protein Digestion
Proteins from supernatants or purified GMMA were precipi-

tated by adding TCA and deoxycholate to a final concentration of

10% and 0.04%, respectively. The precipitation was allowed to

proceed for 30 min at 4uC. The precipitate was recovered by

10 min centrifugation at 20,0006g at 4uC. The pellet was washed

once with 10% TCA (wt/vol) and twice with absolute ethanol,

dried with Speedvac (Labconco, Kansas City, U.S.A). For analysis

by SDS-PAGE, the precipitates were resuspended with 200 mM

Tris-HCl, pH 8.8, and quantified. For LC-MS/MS analysis 20 mg

of GMMA were precipitated and resuspended in 50 mL, 6 M

guanidinium chloride, 5 mM DTT, 200 mM Tris-HCl, pH 8.0.

Denaturation proceeded for 60 min at 60uC. Prior to digestion,

the solution was diluted 1:8 with a solution of 100 mM Tris-HCl,

pH 8.0, 5 mM DTT and 5 mg of trypsin (Promega) were added to

the diluted solution. Digestion was carried out over night at 37uC.

The reaction was stopped by adding formic acid to 0.1%. Peptides

were extracted using Oasis extraction cartridges (HLB 1cc (30 mg)

extraction cartridges, Waters, Milford, MA, USA) and analyzed by

LC-MS/MS.

Protein Identification by Nano-LC-MS/MS
Peptides were separated by nano-LC on a NanoAcquity UPLC

system (Waters) connected to a Q-ToF Premier ESI mass

spectrometer equipped with a nanospray source (Waters). Samples

were loaded onto a NanoAcquity 1.7 mm BEH130 C18 column

(75 mm625 mm; Waters) through a NanoAcquity 5 mm Symme-

try C18 trap column (180 mm620 mm; Waters). Peptides were

eluted with a 120 min gradient of 2–40% acetonitrile (98%), 0.1%

formic acid solution at a flow rate of 250 nL/min. The eluted

peptides were subjected to an automated data-dependent acqui-

sition using the MassLynx software, version 4.1 (Waters) where an

MS survey scan was used to automatically select multicharged

peptides over the m/z ratio range of 300–2000 for further MS/

MS fragmentation. Up to eight different peptides were individually

subjected to MS/MS fragmentation following each MS survey

scan. After data acquisition, individual MS/MS spectra were

combined, smoothed, and centroided using ProteinLynx, version

3.5 (Waters) to obtain the peak list file. The Mascot Daemon

application (Matrix Science Ltd., London, UK) was used for the

automatic submission of data files to in-house licensed Mascot,

version 2.2.1, running on a local server. The Mascot search

parameters were set to (i) 2 as the number of allowed missed

cleavages (only for trypsin digestion), (ii) methionine oxidation as

variable modifications, (iii) 0.05 Da as the peptide tolerance, and

(iv) 0.05 Da as the MS/MS tolerance. Only significant hits were

considered as defined by the Mascot scoring and probability

system.

Bioinformatics
Prediction of protein localization was carried out using

PSORTb v3.0 [34] and Lipo program [35].

Mouse Immunizations
Outbred CD1 mice (female, 4 to 6 weeks of age) received

three injections of GMMA via the subcutaneous route on days 0,

21, and 35. Each injection contained GMMA normalized to

0.2 mg or 2 mg of protein and formulated in PBS only, with

Freund’s adjuvant (FA), or adsorbed onto aluminum hydroxide

(alum), 2 mg/mL, in a final volume of 100 mL. If Freund’s

adjuvant was used, Freund’s complete adjuvant (FCA) was used

for the first immunization, Freund’s incomplete adjuvant (ICFA)

was used for the second and third immunization. Control mice

received either adjuvant or PBS alone. Blood samples were

collected before immunization and 14 days after the second and

third injection. The animal experiments complied with the

relevant guidelines of Italy and the institutional policies of

Novartis. The animal protocol was approved by the Animal

Welfare Body of Novartis Vaccines and Diagnostics, Siena, Italy,

approval number AEC 2009-05.

Western Blot
GMMA were boiled in loading buffer and loaded on 12% (wt/

vol) polyacrylamide-SDS gels (BioRad) or on 2D gels as described.

Gels were run in MOPS buffer (BioRad) and protein were

subsequently transferred onto nitrocellulose membrane using

Trans-blot transfer medium (BioRad). The membranes were

blocked in PBS containing 3% (wt/vol) powdered milk, then

incubated with mouse polyclonal antisera diluted (1:1000) in PBS

containing 3% (wt/vol) milk for 90 min at 37uC. Membranes were

washed three times with PBS containing Tween 20, 0.1% (vol/vol)

and then incubated with sheep anti-mouse horseradish peroxidase-

conjugated IgG (GE Healthcare, UK Limited), diluted (1:7500) in

PBS containing 3% (wt/vol) milk. Colorimetric staining was

performed, after washing the membranes, with SuperSignal West

Pico Chemiluminescent Substrate Kit (Pierce, Rockford, U.S.A.)

as described by the manufacturer. Positive signals were related to

the corresponding proteins by comparing the Western blot

membrane to the gel using Ponceau staining of the membrane

as a reference and aligning the images with Image master 2D

Platinum 6.0.

Enzyme-linked Immunosorbent Assay (ELISA)
To measure Shigella sonnei GMMA-specific immunoglobulin G

(IgG) in mice serum, Nunc Maxisorb 96-well plates were coated

over night at 2 to 8uC with 100 mL/well of a 0.5 mg/mL

suspension of Shigella sonnei 53G –pSS DtolR GMMA, purified from

defined medium with 2 mM ferric citrate in the same way as the

GMMA in the vaccine, diluted in phosphate-buffered saline (PBS).

Plates were then washed three times with 300 mL/well of

phosphate-buffered saline containing 0.05% (vol/vol) Tween 20

(PBST) and blocked with PBS containing 1% (wt/vol) BSA for

60 min at 37uC. Serial dilutions of reference and sample sera were

prepared in PBST, 1% (wt/vol) BSA in a separate dilution plate,

and 100 mL/well of each serial dilution was transferred to the

coated plate, incubated for 2 hours at 37uC, and then washed as

described above. Bound antibody was detected using a goat anti-

mouse IgG conjugated to alkaline phosphatase, diluted in PBST,

Shigella Outer Membrane Particles Production
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Table 2. Shigella sonnei DtolR DgalU GMMA-associated proteins identified by proteomics.

A B C D E

Outer membrane

1 3 outer membrane channel protein [S. flexneri 2a str. 301] tolC gi|56480244

2 3 outer membrane porin protein C [S. sonnei Ss046] ompC gi|74312736

3 3 outer membrane protein A [S. sonnei Ss046] ompA gi|74311514

4 3 outer membrane protein induced after carbon starvation [S. flexneri 5 str. 8401] slp gi|110616891

5 3 outer membrane protein X [S. flexneri 2a str. 301] ompX gi|56479734

6 2 outer membrane protein assembly factor YaeT [S. Flexneri 2a str. 301] yaeT gi|24111612

7 2 outer membrane protein C [S. boydii CDC 3083-94] ompC gi|187733369

8 2 outer membrane receptor FepA [Shigella sonnei Ss046] fepA gi|74311118

9 2 ferrichrome outer membrane transporter [Shigella sonnei Ss046] fhuA gi|74310771

10 2 colicin I receptor [Shigella sonnei Ss046] cirA gi|74312677

11 2 maltoporin [Shigella flexneri 2a str. 301] lamB gi|56480532

12 4 putative ferric siderophore receptor [S. sonnei Ss046] iutA gi|74313972

13 2 outer membrane protein W [Shigella sonnei Ss046] yciD gi|74312394

14 2 serine protease [S. flexneri 2a str. 301] sigA gi|24114232

Outer membrane Lipoproteins

15 3 murein lipoprotein [S. flexneri 2a str. 301] lpp gi|24113066

16 2 outer membrane lipoprotein LolB [S. flexneri 2a str. 301] lolB gi|24112608

17 3 peptidoglycan-associated outer membrane lipoprotein [S. flexneri 2a str. 301] pal gi|56479690

18 1 entericidin B membrane lipoprotein [S. flexneri 2a str. 301] ecnB gi|24115506

19 1 hypothetical protein S2067 [S. flexneri 2a str. 2457T] yedD gi|30063370

20 1 hypothetical protein S4565 [S. flexneri 2a str. 2457T] yjeI gi|30065519

21 1 hypothetical protein SF0398 [S. flexneri 2a str. 301] ybaY gi|24111837

22 1 RpoE-regulated lipoprotein [S. flexneri 2a str. 301] SF2485 gi|24113773

23 1 hypothetical protein SSON_2966 [S. sonnei Ss046] SSON_2966 gi|74313380

24 1 lipoprotein [S. flexneri 2a str. 2457T] nlpB gi|30063856

25 2 entry exclusion protein 2 [S. sonnei Ss046] exc gi|145294038

26 2 LPS-assembly lipoprotein RplB [S. dysenteriae Sd197] rplB gi|82775909

27 2 putative pectinesterase [S. sonnei Ss046] ybhC gi|74311310

28 4 outer membrane protein assembly complex subunit YfiO [Shigella sonnei Ss046] SSON_2721 gi|74313154

29 3 outer membrane lipoprotein [S. flexneri 2a str. 301] yraP gi|24114441

30 3 DNA-binding transcriptional activator OsmE [S. flexneri 2a str. 301] lipo osmE gi|24112862

31 1 outer membrane protein [S. flexneri 2a str. 301] slyB gi|24113033

Periplasmic

32 3 FKBP-type peptidyl-prolyl cis-trans isomerase [S. Flexneri 2a str. 301] fkpA gi|24114611

33 3 histidine-binding periplasmic protein of high-affinity histidine transport system [S. sonnei Ss046] hisJ gi|74312826

34 3 serine endoprotease [S. flexneri 2a str. 301] htrA gi|24111599

35 3 translocation protein TolB [S. flexneri 2a str. 2457T] tolB gi|30062097

36 1 molybdate transporter periplasmic protein [S. flexneri 2a str. 301] modA gi|24111968

37 1 peptidyl-prolyl cis-trans isomerase A (rotamase A) [S. flexneri 2a str. 301] ppiA gi|24114628

38 1 peptidyl-prolyl cis-trans isomerase SurA [S. flexneri 2a str. 301] surA gi|24111499

39 1 periplasmic oligopeptide binding protein [S. flexneri 2a str. 2457T] oppA gi|30062764

40 1 periplasmic protein [S. flexneri 2a str. 2457T] osmY gi|30065614

41 2 arginine 3rd transport system periplasmic binding protein [S. sonnei Ss046] artJ gi|74311404

42 2 bifunctional UDP-sugar hydrolase/59-nucleotidase [S. sonnei Ss046] ushA gi|74311061

43 2 cystine transporter subunit [S. sonnei Ss046] fliY gi|74311733

44 2 glucan biosynthesis protein G [S. flexneri 5 str. 8401] mdoG gi|110805056

45 2 thiosulfate transporter subunit [S. sonnei Ss046] cysP gi|74312961

46 2 hypothetical protein SBO_2040 [Shigella boydii Sb227] ycdO gi|82544504
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1% (wt/vol) BSA to 1:5000 and incubated for 2 hours at 37uC.

After a wash with PBST, 100 mL/well of p-nitrophenyl phosphate

substrate dissolved in diethanolamine buffer (1 M, pH 9.8) was

added, and after 20 minutes optical densities were measured with

a plate reader (ELx800, BioTek) at 405 and 490 nm wavelength.

Absorbance at 490 nm was subtracted from the absorbance at

405 nm. Results are expressed in arbitrary ELISA units relative to

a standard serum raised against GMMA from S. sonnei 53G DtolR

DgalU. One unit equals the reciprocal of the dilution of the

standard serum giving an OD405–490 of 1 in the assay. All samples

were measured in duplicate.

Statistical Analysis
Antibody levels (ELISA units) in different groups after the third

immunization were compared by non-parametric Kruskal-Wallis

and Mann-Whitney tests. A p value of 0.05 was considered to be

significant. For multiple comparisons the p value considered to be

significant in each of the comparisons was adjusted according to

the number of analyses.

Results

Generation of a Shigella Sonnei 53G Strain Capable of
Overproducing Modified GMMA

The first aim of the study was to investigate if Shigella sonnei 53G

could be developed as a strain suitable to overproduce GMMA

through modification of the Tol-Pal system. A null mutation of the

tolR gene was introduced as this has previously been demonstrated

to result in overproduction of GMMA in E. coli [11,13]. The

mutation in the tolR gene led to the release of large amounts of

GMMA from the surface of S. sonnei 53G as assessed by SDS page

(Fig. 1A). The deletion of tolR had no detectable influence on

bacterial growth (data not shown). In addition, to test if GMMA

overproduction is also feasible in strains with additional genetic

modifications we removed the O antigen of the LPS, either by

deletion of galU [26] or by curing the virulence plasmid from strain

S. sonnei 53G DtolR as the biosynthesis genes for the O antigen in

Shigella sonnei are encoded on the plasmid [36]. GMMA obtained

from S. sonnei DtolR DgalU showed a similar protein profile to

GMMA obtained from S. sonnei DtolR with minor differences in the

37 kDa to 50 kDa range and proteins smaller than 30 kDa

appeared to be less abundant in S. sonnei DtolR DgalU (Fig. 1A).

Also GMMA obtained from the plasmid-cured S. sonnei DtolR

mutant (S. sonnei –pSS DtolR) showed a nearly identical protein

pattern to GMMA from S. sonnei DtolR (Fig. 1A).

Furthermore, the genes msbB1 and msbB2 involved in lipid A

biosynthesis were deleted since these deletions have previously

been reported to decrease LPS toxicity in Shigella [21]. As the gene

msbB2 is encoded on the virulence plasmid and thus absent in

S. sonnei –pSS DtolR we deleted the chromosomal gene msbB1 in

this strain to generate a mutant strain lacking msbB1 and msbB2.

For simplicity the DmsbB1DmsbB2 mutant is referred to as the

DmsbB mutant. The DmsbB mutant was selected at 37uC on LB

plates and grew in LB and yeast extract at 37uC with a duplication

time of about 55 min compared to a duplication time of about

28 min for the single DtolR mutant. In the defined medium

developed for fermentation, the plasmid-cured DtolR DmsbB

mutant strain (S. sonnei –pSS DtolR DmsbB) was able to grow to

high optical density (OD) at 30uC, but grew poorly at 37uC. Thus,

Table 2. Cont.

A B C D E

47 2 hypothetical protein SFV_2968 [S. flexneri 5 str. 8401] yggE gi|110806822

Cytoplasmic

48 3 chaperonin GroEL [S. flexneri 2a str. 301] groEL gi|24115498

49 3 dihydrolipoamide dehydrogenase [S. flexneri 2a str. 301] lpdA gi|56479605

50 1 purine nucleoside phosphorylase [S. flexneri 2a str. 2457T] deoD gi|30065622

51 1 succinyl-CoA synthetase subunit beta [S. flexneri 2a str. 301] sucC gi|24111996

52 2 PTS system glucose-specific transporter subunit [S. flexneri 2a str. 301] crr gi|24113762

53 2 molecular chaperone DnaK [S. flexneri 2a str. 301] dnaK gi|24111463

54 1 pyrroline-5-carboxylate reductase [S. flexneri 2a str. 301] proC gi|24111764

55 2 hypothetical protein SF1022 [S. flexneri 2a str. 301] SF1022 gi|24112431

Inner membrane

56 1 hypothetical protein SSON_1546 [S. sonnei Ss046] ydgA gi|74312061

Unknown

57 3 putative receptor [S. sonnei Ss046] SSON_1681 gi|74312191

58 2 hypothetical protein SSON_1556 [S. sonnei Ss046] ydgH gi|74312071

59 2 hypothetical protein SSON_3340 [S.sonnei Ss046] yrbC gi|74313729

60 2 putative lipoprotein [Shigella dysenteriae Sd197] ybjP gi|82777619

61 1 hypothetical protein S3269 [S. flexneri 2a str. 2457T] ygiW gi|30064374

GMMA were purified by 2-step TFF from S. sonnei DtolR DgalU grown in HTMC at 37uC to an OD of 45. GMMA-associated proteins were separated by SDS-PAGE or nano-
LC and identified by mass spectrometry. 61 GMMA-associated proteins were identified. The columns show: A) position in list, B) method used to identify each protein
(‘19: identified from total digestion LC/MS-MS, ‘29: identified from 2D SDS-PAGE PMF, ‘39 identified from LC/MS-MS and 2D SDS-PAGE PMF, ‘49 identified from 1D SDS-
PAGE PMF), C) annotation, D) gene name, E) accession number. The entries are divided by predicted location. All proteins were analyzed by PSORTb 3.0 and Lipo. If a
prediction as lipoprotein was obtained, the protein is listed as lipoprotein irrespective of its PSORTb prediction. Only lipoproteins predicted to be located in the outer
membrane have been identified. The other proteins are listed in sections corresponding to their location predicted by PSORTb. For 5 proteins no prediction was
obtained by PSORTb or Lipo. These are listed as ‘unknown’.
doi:10.1371/journal.pone.0035616.t002
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for generation of GMMA from S. sonnei –pSS DtolR DmsbB

cultivation in chemically defined medium at a growth temperature

of 30uC was chosen. GMMA from S. sonnei –pSS DtolR DmsbB

produced under these conditions showed a similar protein pattern

to GMMA generated by S. sonnei –pSS DtolR and S. sonnei DtolR

with only minor variation in relative amounts of proteins visible by

SDS-PAGE in the 45–75 kDa range (Fig. 1A). In order to test if

the lower temperature would change the GMMA composition we

compared GMMA derived from S. sonnei –pSS DtolR at 30uC or

37uC. Only few differences were detected as highlighted in Fig. 1B,

indicating that GMMA can be generated at 30uC without major

effects on the composition. In conclusion, deletion of tolR greatly

enhanced GMMA release while additional genetic modification of

the strain or a change in growth temperature only had minor

effects on the protein composition visible by SDS-PAGE.

High Density Cultivation of Shigella Sonnei
To investigate the feasibility to produce GMMA at large scale,

S. sonnei 53G DtolR DgalU, S. sonnei 53G –pSS DtolR, and S. sonnei

53G –pSS DtolR DmsbB were tested for their capacity to grow to

high densities in a 5 liter reactor. Starter cultures were grown in

flasks to OD 0.8 and were then transferred to the 5 L fermenter

to reach a starting OD of 0.02. Dissolved oxygen was maintained

at 30% saturation. The pH was maintained at 7.2 in HTMC or

at 6.7 in SSDM and the temperature was kept constant either at

37uC or at 30uC when S. sonnei 53G –pSS DtolR DmsbB was used.

Under these conditions, cultures with optical densities of 45 to 80

were obtained.

Iron-regulated proteins have previously been shown to be

important in vaccine formulations against Pasteurella and Salmonella

[37,38]. Thus, we evaluated if the GMMA process would allow the

upregulation of iron-regulated proteins. Growth of S. sonnei 53G –

pSS DtolR with 0.2 mM iron concentration in chemically defined

medium led to the induction of iron-regulated proteins but

hindered high density cultivation of bacteria. The addition of

2 mM iron to the medium was sufficient to allow optimal growth

and the induction of three iron-regulated proteins visible by SDS-

PAGE (Fig. 1C), identified by protein mass fingerprint as FepA

(gi|74311118), IutA (gi|74313972) and Colicin I receptor

(gi|74312677). The expression of these proteins was reduced

when bacteria were grown in 200 mM iron (Fig. 1C). In bacteria

grown in HTMC the iron-regulated proteins are expressed to a

similar level as in chemically defined medium with 200 mM iron

(data not shown). Their presence was confirmed by protein mass

fingerprint analysis of GMMA generated from S. sonnei DtolR

DgalU grown in HTMC (Table 2, proteins 8, 10, 12). Growth of

S. sonnei 53G –pSS DtolR DmsbB at 30uC in defined medium with

2 mM iron also enhanced expression of FepA and IutA. Colicin I

receptor (marked in Fig. 1C) was less expressed than in GMMA

from S. sonnei 53G –pSS DtolR prepared from cultures grown at

37uC (data not shown).

Purification of GMMA from High Density Culture
Supernatant

So far, GMMA have always been purified from flask cultures by

ultracentrifugation [13]. Cultures were centrifuged at low speed

(4000 g) to separate biomass from supernatant which was

subsequently filtered through a 0.22 mm filter. GMMA present

in the supernatant were collected by ultracentrifugation, washed,

and then resuspended and stored in PBS [10,13]. Since this

technique is not suitable for large volumes we developed a scalable

purification method to purify GMMA from high density cultures

using tangential flow filtration (TFF). In TFF, also known as

crossflow filtration, the feed stream is pumped tangentially across

the surface of the membrane rather than into the filter as in

conventional ‘dead-end’ filtration. A proportion of the soluble

components and particles smaller than the membrane’s pores

penetrates the filter (filtrate/permeate). The remainder (retentate)

is circulated back to the reservoir and over the filter again. In this

way, the larger particles do not build up at the surface of the filter

but are swept away by the tangential flow allowing smaller

molecules to continuously reach and pass through the membrane.

This feature makes TFF an efficient process for size separation,

concentration and diafiltration.

Figure 2. GMMA enrichment and purity after TFF. GMMA were
purified from a 5 L fermentation culture of S. sonnei DtolR DgalU grown
in HTMC at 37uC to OD 45 using 2-step TFF. In the first step, the culture
supernatant which contains the GMMA was separated from the bacteria
using a 0.2 mm filter. The biomass was subjected to 5 diafiltration steps
and all filtrates were combined with the initial supernatant to obtain
the total permeate. To determine the amount of GMMA in the
permeate, GMMA were separated from soluble proteins by ultracentri-
fugation. After ultracentrifugation, the pellet (GMMA) was resuspended
in the initial volume of the centrifuged material to normalize all samples
to fermentation volume. Equivalent volumes of the 0.2 mm filtrate
before ultracentrifugation (1), the resuspended GMMA pellet (2), and
the supernatant of the ultracentrifugation (3) were separated by SDS-
PAGE (12% PA) and showed a large amount of soluble proteins (3) in
comparison to GMMA-associated proteins (2) to be present in the post
0.2 mm TFF permeate. In the second TFF step, GMMA were separated
from soluble proteins using a 0.1 mm filter. The retentate (4) was
analyzed by ultracentrifugation as described above and was found to
contain almost exclusively GMMA (5) as determined by the strong
reduction of soluble proteins (6).
doi:10.1371/journal.pone.0035616.g002
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GMMA were purified from fermentation cultures in a 2-step

TFF process. In the first step, the culture supernatant that contains

the GMMA was separated from the bacteria using a 0.2 mm filter.

In this step, the bacteria remained in the retentate and GMMA

transferred into the filtrate. In the second filtration step using a

0.1 mm filter, GMMA were separated from soluble components

present in the culture supernatant, including proteins secreted by

the bacteria or released by lysis. In this step, GMMA were retained

by the filter and collected and concentrated in the retentate

whereas soluble proteins passed through the filter. We tested this

purification process under two slightly different conditions. Firstly,

when the fermentation culture of S. sonnei DtolR DgalU reached OD

45, the culture was transferred directly from the fermenter to the

first TFF and the culture supernatant containing the GMMA was

collected. The retained biomass was washed with 5 volumes of

PBS buffer (diafiltration) to recover remaining GMMA and the

filtrate containing these GMMA was combined with the culture

supernatant. In the slightly modified purification process tested,

this diafiltration step was omitted. Proteins were quantified by

Bradford method. In the purification performed with diafiltration

of the biomass the total protein content of the TFF 0.2 mm filtrate

was approximately 1.5 g/L of fermentation culture of which 15%

was GMMA-associated as determined by separation of the soluble

components from the high molecular weight portion (GMMA) via

an ultracentrifuge step (Fig. 2 and Table 3). In the second TFF

step, GMMA were concentrated in the retentate and washed with

five volumes of PBS to remove remaining soluble proteins. As TFF

is usually performed under non-sterile conditions, the final

retentate was sterilized by filtration through a 0.22 mm filter. An

aliquot of the sterilized retentate was subjected to ultracentrifu-

gation to determine the content of GMMA as above. As shown in

Fig. 2 most of the proteins in the retentate are GMMA-associated.

Protein quantification of the retentate, of the GMMA fraction, and

of the supernatant of the ultracentrifugation step (soluble proteins)

determined that 90% of all protein present in the retentate was

GMMA-associated (Table 3). Thus, soluble proteins were

efficiently removed in this step (Fig. 2). GMMA recovery after

the 0.1 mm TFF step was 56% of the quantity present after the

0.2 mm cassette. The final yield of GMMA was 120 milligrams of

proteins per liter of fermentation (Table 3). In two subsequent tests

of the purification method with S. sonnei DtolR DgalU without

diafiltration of the biomass, a lower amount of GMMA was

obtained in the 0.2 mm TFF filtrate (Table 3). However, recovery

of GMMA in the second TFF step (0.1 mm) was enhanced

resulting in an overall similar yield of GMMA with equivalent

purity (Table 3 and suppl. figures Fig. S1, Fig. S2). This suggests,

firstly, that washing of the biomass increases the recovery GMMA

from the fermentation culture, and secondly, that a higher starting

concentration might be beneficial for the second TFF step. The

0.1 mm TFF step can likely be optimized to take advantage of the

larger amounts of GMMA obtained by diafiltration of the biomass.

Fermentations of S. sonnei –pSS DtolR DmsbB resulted in yields of

140 mg/L from a culture at OD 65 (2.2 mg/L/OD) and 230 mg/

L from a culture at OD 80 (2.9 mg/L/OD), demonstrating that

the yield of GMMA can be further improved by growing the

culture to a higher OD.

The preparation of GMMA generated from S. sonnei –pSS DtolR

DmsbB obtained after the second TFF step was subjected to

electron microscopy analysis, revealing the presence of well-

organized membrane vesicles with a diameter of about 30–60 nm

(Fig. 3) which is consistent with the reported average size of

Table 3. Yield, purity, and recovery rate of GMMA by the high yield production process.

Fermentation A OD 45 Fermentation B1 OD 30 Fermentation B2 OD 39

Protein content [mg/L fermentation]

0.2 mm TFF permeate

Total protein* 1465 1237 797

GMMA-associated protein 214 143 138

Soluble protein 1251 1094 659

0.1 mm TFF retentate

Total protein# 108 144 118

GMMA-associated protein 120 127 114

Soluble protein 14 5 3

GMMA-associated protein per OD 2.7 mg/L/OD 4.2 mg/L/OD 2.9 mg/L/OD

Purity of GMMA after 0.1 mm TFF [%]

GMMA (GMMA-protein/total protein) 90 88 97

Soluble protein (sol. protein/total protein) 10 3 3

Recovery of GMMA by 0.1 mm TFF [%]

GMMA-protein after 0.1 mm TFF/0.2 mm 56 89 83

*Total protein amount calculated as sum of GMMA-associated protein and soluble protein.
#Total protein amount measured directly by Bradford assay.
S. sonnei DtolR DgalU was grown in HTMC in a 5 L fermenter to high densities of OD 45 (A), OD 30 (B1) and OD 39 (B2) and GMMA were purified using 2-step TFF.
Purification from fermentation A was performed including 5 diafiltration steps of the biomass, for GMMA purification from fermentations B1 and B2 the biomass was not
subjected to diafiltration. The GMMA content in the permeate of the 0.2 TFF step (culture supernatant) and the retentate of the 0.1 mm TFF (purified GMMA) were
determined by separation of GMMA from soluble protein by ultracentrifugation. Protein was quantified using Bradford assay. All samples were normalized to amount
per liter fermentation broth. To compare the yields from different ODs, yields are also expressed as amount per liter fermentation per OD.
doi:10.1371/journal.pone.0035616.t003
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40620 nm of outer membrane particles produced by E. coli tol-pal

mutants [11].

Characterization of GMMA Protein Content
GMMA purified by TFF from S. sonnei 53G DtolR DgalU grown

in high density culture were characterized to confirm their

integrity and to analyze their protein content. One- and two-

dimensional SDS-PAGE of GMMA and densitometry analysis

(Fig. 1D and Fig. 4) were used to determine the protein profile and

to study relative protein quantities of the most abundant proteins.

Most of the Coomassie blue-stained bands and spots were

identified using peptide mass fingerprint (Table 2). OmpA and

OmpC are known to be among the most abundant proteins

present in the outer membrane. In fact, densitometry analysis of

GMMA from S. sonnei DtolR DgalU grown in HTMC and analyzed

by 1D SDS-PAGE indicated that OmpA and OmpC together

contribute for 45% of the total protein; OmpX, 9%; Slp, 6%;

YfiO, 5.6%; TolB, 2.3%; TolC 1.4%; and YaeT, 1.8% (Fig. 1D).

With the exception of the predicted periplasmic protein TolB, all

of these proteins are predicted to be associated with the outer

membrane. YfiO is predicted to be an outer membrane

lipoprotein. OmpA, OmpC, OmpX, Slp, TolC, and YaeT are

predicted to be outer membrane proteins. Thus, the seven most

abundant outer membrane-associated proteins account for

approximately 69% of the protein amount in GMMA. Further

densitometry analysis after 2D SDS-PAGE determined that there

are approximately equal quantities of OmpA and OmpC

(OmpA:OmpC is 1:0.83 by densitometry of a Coomassie blue-

stained gel). In order to identify the diverse and less expressed

proteins, GMMA were studied by proteolytic digestion and reverse

Figure 3. Electron microscopy of Shigella sonnei DtolR DgalU GMMA. GMMA were isolated from the culture supernatant of S. sonnei –pSS
DtolR DmsbB by TFF, prepared for negative staining, and viewed by electron microscopy revealing the presence of well-organized membrane vesicles
with a diameter of about 30–60 nm. Bar length = 100 nm.
doi:10.1371/journal.pone.0035616.g003

Shigella Outer Membrane Particles Production

PLoS ONE | www.plosone.org 10 June 2012 | Volume 7 | Issue 6 | e35616



phase liquid chromatography coupled to MS/MS. 61 proteins

were identified in total (LC-MS/MS, 1D and 2D SDS-PAGE

PMF) (Table 2), with 31 of these proteins predicted to be

associated with the outer membrane (Fig. 5). Of these, 14 proteins

were predicted to be outer membrane proteins and 17 to be outer

membrane lipoproteins. In addition, 16 proteins were predicted to

be periplasmic, 8 to be cytoplasmic, 1 to be located in the inner

membrane, and for 5 proteins no prediction could be obtained. No

inner membrane lipoproteins were predicted. Thus, GMMA

generated by the high yield production process are mostly

composed of outer membrane-associated and periplasmic proteins

as previously seen for outer membrane particles release from

cultures at the early logarithmic phase [10,13].

GMMA Immunogenicity
Groups of 8 CD1 mice were immunized 3 times with GMMA

(2 mg of total protein) obtained from S. sonnei 53G –pSS DtolR and

S. sonnei 53G –pSS DtolR DmsbB, both grown in defined medium

with 2 mM iron, and S. sonnei 53G DtolR DgalU grown in HTMC.

GMMA from S. sonnei 53G –pSS DtolR DgalU, S. sonnei 53G –pSS

DtolR and S. sonnei 53G –pSS DtolR DmsbB were also administered

in combination with Freund’s adjuvant (FA). Freund’s complete

adjuvant was used in the first immunization and Freund’s

incomplete adjuvant was used in the second and third immuni-

zation. In addition, a lower dosage of 0.2 mg of GMMA from

S. sonnei 53G –pSS DtolR DmsbB was tested. Serum samples were

obtained 2 weeks after the second and third doses and analyzed

individually. Mice immunized with GMMA showed very high IgG

responses to all 3 types of GMMA that were tested. No difference

was found between groups immunized with different GMMA or

between groups receiving the same GMMA with or without FA

(Fig. 6). Adsorption of GMMA onto alum as adjuvant also did not

have an effect on the IgG response (data not shown). Control mice

immunized with PBS or FA alone had very low levels of anti-

GMMA antibodies (Fig. 6). The 10-fold lower dosage of GMMA

from S. sonnei 53G –pSS DtolR DmsbB (0.2 mg) resulted in a

statistically significant, approximately 3-fold reduction in the IgG

response compared to the group immunized with 2 mg of the same

GMMA. However, the IgG response to the lower dosage still

showed an approximately 8000-fold increase compared to

preimmune sera (Fig. 6).

To investigate which components of GMMA were responsible

for the reactivity of the sera, 2D Western blots were performed. As

GMMA from S. sonnei 53G DtolR DgalU were characterized best in

respect to their protein content, sera from mice immunized with

the GMMA from S. sonnei DtolR DgalU were used to probe blots of

2D SDS-PAGE of GMMA from the same strain. Reactive

proteins were identified by protein mass fingerprint. Several

proteins were detected by the sera (Fig. 4 B) of which OmpA gave

the strongest response. OmpC which is as abundant in GMMA as

OmpA was not detected. Not all of the visible reactive proteins

could be identified.

Discussion

Recent advances in genomics and reverse vaccinology have

identified promising protein targets for vaccines [39]. In many

cases, suitable candidate antigens for Gram-negative bacterial

vaccines are outer membrane proteins and these pose particular

challenges in their expression and purification and in serotype

variability. An ideal delivery system especially for bacterial

vaccines for developing countries will encompass multiple antigens

and enable vaccines to be rapidly tailored to local and changing

antigenic serotypes. Ideally, it will also be inexpensive to

manufacture. We propose a platform for rapid development and

delivery of vaccines against Gram-negative bacteria. The ap-

proach is based on the production of outer membrane particles we

have named GMMA by genetically modified bacteria. Using

genetic manipulation, it is possible to increase their yield, to

remove immunodominant structures, to overexpress certain

Figure 4. 2D gel electrophoresis of Shigella sonnei DtolR DgalU GMMA and immunoblot. A)200 mg of proteins from S. sonnei DtolR DgalU
GMMA were separated in the first dimension on a non linear pH 3–11 gradient, and in the second dimension on a 4–12% polyacrylamide gradient.
Visible bands were identified by protein mass fingerprint. OmpA and OmpC were quantified with Image master 2D Platinum 6.0. B) Sera from mice
immunized with GMMA from S. sonnei DtolR DgalU were used to study the subset of proteins present in GMMA that are able to raise antibodies. A 2D
gel containing 20 mg of GMMA protein from S. sonnei DtolR DgalU was blotted and the membrane was incubated with sera from immunized mice
with GMMA from S. sonnei DtolR DgalU in combination with Freund’s adjuvant. Several reactive proteins were identified. The numbers behind the
names refer to the position of the proteins in Table 2. C) To verify that the signal observed in the 2D Western blot was due exclusively to antibody
raised upon immunization with GMMA, 10 mg of GMMA were separated by 1D SDS-PAGE (12% PA) and stained with Coomassie (1) or transferred to a
membrane. Western blots were developed using (2) sera raised against GMMA from S. sonnei DtolR DgalU as used for the 2D Western blot in B, (3)
preimmune serum, (4) sera raised in mice immunized with Freund’s adjuvant or (5) PBS, or (6) secondary antibody only. A signal could only be
observed when sera raised against GMMA were used (2).
doi:10.1371/journal.pone.0035616.g004
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antigens, and to reduce the endotoxic activity

[10,13,19,21,26,40,41]. GMMA could potentially be a safe,

effective and low cost vaccine but need a practical way of

manufacture at scale.

Shigella sonnei 53G was chosen for a first approach to develop a

scalable process and a null mutation of the tolR gene was

introduced to overproduce GMMA as previously described for E.

coli [13]. To verify that the process is applicable to produce

GMMA harboring modified lipid A, which would be more suitable

for use as vaccine, and/or lacking the O antigen of the LPS we

grew high density cultures of S. sonnei DtolR DgalU, S. sonnei –pSS

DtolR (cured of the virulence plasmid pSS), and S. sonnei –pSS

DtolR DmsbB in a 5 L fermenter in complex (HTMC) or

chemically defined medium. Chemically defined medium was

used to avoid contamination from proteins present in complex

media and to have the possibility to regulate iron concentration.

Bacteria were removed from the culture supernatant by a

tangential flow filtration step using a 0.2 mm membrane. A second

tangential flow filtration step with a 0.1 mm membrane was used to

concentrate GMMA and to remove soluble proteins. This choice

of appropriate molecular weight membranes allowed the purifi-

cation of GMMA in an easy, efficient, and scalable process. After

purification, approximately 90% of all protein was consistently

GMMA-associated with reproducible yields of more than 100 mg

of GMMA-associated protein per liter fermentation volume from

OD 30–45 cultures of S. sonnei DtolR DgalU. The integrity of

GMMA obtained by this process was confirmed using electron

microscopy. The purity and yield can likely be increased as

indicated by fermentations with S. sonnei –pSS DtolR DmsbB to

densities of 65 and 80. Furthermore, first results obtained by

quantitative amino acid analysis of different types of GMMA

indicated an at least two-fold higher protein amount in the

GMMA preparations than determined by the Bradford assay used

in this study (data not shown). Still, assuming an average yield of

100 mg/L fermentation and a dosage of 25 mg as used for the

MeNZB outer membrane vesicle meningococcal vaccine, at least

400,000 doses could be obtained from a 100 L fermenter.

A proteomic approach confirmed that Shigella sonnei 53G DtolR

DgalU-derived GMMA are composed mostly of outer membrane

and periplasmic components. They conserve lipophilic polypep-

tides. Only a small number of cytoplasmic components and one

inner membrane protein were predicted. Thus, the proteomic

analysis of GMMA obtained from an OD 45 culture revealed a

similar composition as previously seen in proteomic analyses of

outer membrane particles that were obtained from cultures at

early logarithmic phase to avoid impurities by cytoplasmic proteins

[10,13].

In accordance with previous reports [15,17] GMMA were

highly immunogenic in mice with titers around 1:100,000 after

administration of 2 mg of GMMA with and without adjuvant. A

10-fold lower dosage of GMMA (without adjuvant) resulted in

only a 3-fold reduction and still very high antibody titers

suggesting that low amounts of GMMA might be sufficient for

vaccination. GMMA from the msbB mutant S. sonnei strain did not

show a difference in immunogenicity which was expected due to a

recent report that the resulting lipid A modification does not affect

LPS recognition in mice [42]. Immunoblots confirmed that

antibodies to proteins, including outer membrane proteins OmpA,

OmpX, and YaeT, strongly contributed to the reactivity of the

sera. Interestingly, the outer membrane protein OmpC which

represents about 20% of protein in GMMA was not detected by

sera raised against GMMA. Previously, an immunoproteomic

analysis of isolated outer membrane proteins of Shigella flexneri 2a

[43] also failed to detect OmpC as immunogenic protein. This

could suggest that either OmpC is not immunogenic or that

epitopes potentially recognized by antibodies are not maintained

after SDS-PAGE. This might also apply to other membrane

proteins that were not found by the Western blot analysis even

though not all reactive proteins could be identified.

The msbB mutant strain of Shigella lacking the genes msbB1 and

msbB2 [21] was generated to investigate if the production process

was applicable to GMMA with modified lipid A. A previous

report [21] had shown that these deletions result in the synthesis

of a penta-acylated lipid A instead of a hexa-acylated lipid A in

Shigella [21]. While the S. sonnei –pSS DtolR DmsbB mutant grows

in rich media at 37uC temperature, its growth is impaired in the

chemically defined medium developed for fermentation at 37uC
but shows a normal growth in this medium at 30uC. Previously,

Figure 5. Shigella sonnei DtolR DgalU GMMA proteome. The 61
GMMA-associated proteins that were identified are grouped into
families based on their predicted cellular location, according to
bioinformatic prediction by PSORTb v3.0 [34] and Lipo program [35].
The ‘outer membrane’ column comprises outer membrane proteins
(identified by PSORTb) and lipoproteins predicted to be located in the
outer membrane (identified by Lipo). No lipoproteins associated with
the inner membrane were identified. The distribution shown is based
on the number of identified proteins predicted to be located in a
certain compartment. It does not reflect the protein amount. As
analyzed by densitometry (Fig. 1D), the outer membrane fraction
contains at least 69% of the total protein present in GMMA.
doi:10.1371/journal.pone.0035616.g005
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a Shigella flexneri 5a msbB mutant and an E. coli msbB mutant in

the K-12 background were reported not to show any growth

defects [21,23]. In contrast, an msbB mutant of the clinical isolate

E. coli H16 formed filaments when grown at 37uC but not at

30uC or when functionally complemented by the cloned msbB

gene [44]. The S. sonnei –pSS DtolR DmsbB mutant strain used in

this study does not form filaments. The reason for the slower

growth at 37uC, especially in defined medium, is not clear and

could be a result of the background of the strain, the

combination of the tolR and msbB mutation, or a suboptimal

composition of the defined medium that can likely be optimized.

Importantly, a comparison of the protein pattern of GMMA

generated from S. sonnei –pSS DtolR at 37uC and 30uC showed

only minor differences in the protein profile visible by SDS-

PAGE indicating that the change in temperature does not have

major effects on GMMA composition.

In summary, we have identified an easy process to produce large

quantities of GMMA from high density culture. GMMA purified

from fermentation are extremely pure particles composed almost

exclusively of outer membrane and periplasmic components. The

simplicity and high yield of the process support its applicability for

large scale manufacturing. We have also shown that this process

can be used with strains genetically modified to reduce reactoge-

nicity or to remove immunodominant antigens, e.g. the O antigen.

While this work focused on Shigella sonnei, we believe that this

technology is an innovative platform for efficient vaccine

manufacturing for Gram-negative bacteria.

Supporting Information

Figure S1 GMMA enrichment and purity after TFF
without diafiltration of the biomass. GMMA were purified

from a 5 L fermentation culture of S. sonnei DtolR DgalU grown in

HTMC at 37uC to OD 39 (fermentation B2 in Table 3) using 2-

step TFF. In the first step, the culture supernatant which contains

the GMMA was separated from the bacteria using a 0.2 mm filter

without further diafiltration of the biomass. To determine the

amount of GMMA in the permeate GMMA were separated from

soluble proteins by ultracentrifugation. After ultracentrifugation,

the pellet (GMMA) was resuspended in the initial volume of the

centrifuged material to normalize all samples to fermentation

volume. Equivalent volumes of the 0.2 mm filtrate before

ultracentrifugation (1), the resuspended GMMA pellet (2), and

the supernatant of the ultracentrifugation (3) were separated by

SDS-PAGE (12% PA) and showed a large amount of soluble

proteins (3) in comparison to GMMA-associated proteins (2) to be

present in the post 0.2 mm TFF permeate. In the second TFF step,

GMMA were separated from soluble proteins using a 0.1 mm

filter. The retentate (4) was analyzed by ultracentrifugation as

described above and was found to contain almost exclusively

GMMA (5) as determined by the strong reduction of soluble

proteins (6). The high recovery rate of 83% in this process (see

Table 3) is reflected in the similar strength of the visible protein

bands in lane 2 (GMMA in the 0.2 mm TFF filtrate) and lane 5

(GMMA in the 0.1 mm retentate).

(TIF)

Figure S2 Reproducibility of purity and protein com-
position of GMMA obtained by the high yield production
process. S. sonnei DtolR DgalU was grown in HTMC at 37uC in a

5 L fermenter to high densities of OD 30 (B1) and OD 39 (B2) and

GMMA were purified using 2-step TFF. To determine the amount

of GMMA in the retentate of the 0.1 mm TFF (purified GMMA)

GMMA were separated from soluble proteins by ultracentrifuga-

tion. After ultracentrifugation, the pellets (GMMA) were resus-

pended in the initial volume of the centrifuged material to

Figure 6. ELISA analysis of sera reactivity against GMMA. Groups 1–6 received 2 mg of GMMA with or without Freund’s adjuvant (FA), group
1) GMMA from S. sonnei DtolR DgalU (grown in HTMC, 37uC), 2) GMMA of group 1 plus FA, 3) GMMA S. sonnei –pSS DtolR (defined medium, 37uC), 4)
GMMA of group 3 plus FA, 5) GMMA from S. sonnei –pSS DtolR DmsbB (defined medium, 30uC), 6) GMMA of group 5 plus FA. Group 7 received 0.2 mg
of GMMA from S. sonnei –pSS DtolR DmsbB. Control groups were immunized with PBS alone (group 8) or FA alone (group 9). Sera from individual
mice obtained 14 days after the third immunization and pooled preimmune sera from each group respectively were assayed in dilutions of 1:1000,
1:10,000, and 1:100,000 on GMMA from S. sonnei 53G –pSS DtolR as coating and arbitrary units were calculated. Data are presented as scatter plots of
ELISA units determined in individual mice (groups 1–9) or of the pooled preimmune sera (pre). The horizontal lines represent the geometric mean.
ELISA units of groups 1–6 receiving 2 mg of GMMA were analyzed using the non-parametric Kruskal-Wallis test to compare the immunogenicity of the
different GMMA to each other and with and without FA. No statistically significant differences were found (n.s.). Reduction of the immunization
dosage of S. sonnei –pSS DtolR DmsbB GMMA to 0.2 mg (group 7) resulted in statistically significant reduction of ELISA units in the sera of the
immunized animals compared to sera of mice immunized with 2 mg of the same GMMA (group 5) as determined by Mann-Whitney test (p = 0.0047).
All groups receiving GMMA showed higher S. sonnei –pSS DtolR-specific antibody responses than groups immunized with PBS or FA alone (Mann-
Whitney, p#0.003). For all comparisons a p value smaller than 0.05 was considered to be significant.
doi:10.1371/journal.pone.0035616.g006
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normalize all samples to fermentation volume. Equivalent volumes

of the retentate before ultracentrifugation (1), the resuspended

GMMA pellet (2), and the supernatant of the ultracentrifugation

(3) were separated by SDS-PAGE (12% PA). The retentates were

found to contain almost exclusively GMMA (2) as determined by

the strong reduction of soluble proteins (3). In addition, the protein

pattern in GMMA from the 2 fermentations was very similar

suggesting good reproducibility of the process. Minor differences

in the visible amount of proteins are highlighted by arrows.

(TIF)
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