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Abstract

Recent advances in the study of flocking behavior have permitted more sophisticated analyses than previously possible.
The concepts of ‘‘topological distances’’ and ‘‘scale-free correlations’’ are important developments that have contributed
to this improvement. These concepts require us to reconsider the notion of a neighborhood when applied to theoretical
models. Previous work has assumed that individuals interact with neighbors within a certain radius (called the ‘‘metric
distance’’). However, other work has shown that, assuming topological interactions, starlings interact on average with the
six or seven nearest neighbors within a flock. Accounting for this observation, we previously proposed a metric-
topological interaction model in two dimensions. The goal of our model was to unite these two interaction components,
the metric distance and the topological distance, into one rule. In our previous study, we demonstrated that the metric-
topological interaction model could explain a real bird flocking phenomenon called scale-free correlation, which was first
reported by Cavagna et al. In this study, we extended our model to three dimensions while also accounting for variations
in speed. This three-dimensional metric-topological interaction model displayed scale-free correlation for velocity and
orientation. Finally, we introduced an additional new feature of the model, namely, that a flock can store and release its
fluctuations.
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Introduction

Much has been learned about collective behavior from both

experimental and theoretical studies [1,2,3,4,5,6,7,8,9]. The

emergence of global order from local interactions is one of the

most intriguing phenomena in the study of collective behavior

[1,2,3,4,5]. It is well known that some animals move as a collective

when individuals gather [1,2,5,8]. It has been suggested that the

global coherence of flocking birds, schooling fish and marching

locusts emerges through local interactions [1,2,5]. Despite the lack

of either centrality or leaders in such groups, individuals move in

the same direction and react to their environment as a collective.

Furthermore, the collective behavior exhibits several subsidiary

behaviors, such as bending, exploding or splitting, depending on

the situation [10]. Although a number of these phenomena remain

unexplained, some underlying principles have been determined.

The emergence of global coherence in groups, for example, can be

described in terms of the following density-dependent property:

locusts and fish tend to move as a collective when their density

reaches a certain level [1,2]. These density-dependent collective

phenomena can be well explained by the self-propelled particle

(SPP) model proposed by Vicsek et al. The SPP model is

commonly used to explain collective behavior [11,12,13], and it

consists of two rules: (1) each individual in two-dimensional space

has a neighborhood with an interaction radius, and (2) each

individual attempts to match its direction to the average of the

other individuals in the neighborhood, modified by external noise.

The SPP model has been extended by many researchers. Huth

and colleagues, as well as many other researchers, proposed a

variant of the SPP model with attractive zones, which are areas in

which an agent is attracted to other agents, and repulsive zones,

which are areas in which an agent avoids other agents

[14,15,16,17,18,19,20]. These three interaction ranges make

flocking behavior more dynamic and sometimes produce nontriv-

ial properties in the flocking movement, such as collective memory

[16].

Despite many remarkable achievements in the study of

collective behavior, there has been little emphasis on determining

the inherent noise resulting from local interactions. This issue has

been neglected because the SPP model is sufficient to explain

collective behavior [21,22,23,24]. However, recent studies of real

flocking analysis raise questions about the selection of local

interactions and the causes of noise in the SPP model. Ballerini

and others, for example, found that birds interact with their seven

nearest neighbors rather than with neighbors within a fixed

radius, as in the SPP model [25,26]. They call this interaction

range the ‘‘topological distance’’ to distinguish it from the

interaction range of the SPP model, which is referred to as the

‘‘metric distance.’’ An important property of flocks using the

topological distance is their robustness. Ballerini and others

simulated flocking behavior using this topological distance and

showed that a flock that uses a topological distance is more robust

than a flock that uses a metric distance [25,26]. Their study

suggests that another model of interaction, not based on the SPP
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model, could play a critical role in elucidating flocking behavior

properties such as robustness.

Another important empirical advance is the concept of scale-

free correlation, as reported by Cavagna and others [27]. Based on

their experimental results, these authors show that the noise

distribution of a bird’s orientation or speed is not uniformly

applied to each bird. This observation indicates that the noise

(defined as a fluctuation vector) has an intrinsic, well-ordered

dynamic structure within a real flock. Cavagna and others

described a flock of birds as a set of velocity vectors using image

analysis in their experiment. They defined the fluctuation vector as

the difference between the average velocity vector of the flock and

each individual velocity vector. In real flocks, they found that the

distribution of the fluctuation vector showed several large

correlated sub-domains within a single flock. Furthermore, the

size of these correlated sub-domains was proportional to the flock

size. Although no individual knows the overall shape or size of the

flock, each bird can adjust its fluctuations to preserve the

proportionality between the size of the flock and the correlated

domain. This scale-invariant property of the fluctuation vector is

called scale-free correlation [27]. The authors claimed that scale-

free correlation cannot be explained by previous methods based

on the SPP model. Indeed, no one has yet succeeded in explaining

the phenomenon of scale-free correlation using the SPP method.

Therefore, the emergence of scale-free correlation is still an open

issue.

Because of these factors, we decided to reconsider the nature of

local interactions and noise for each individual using a flocking

model. In our previous work, we proposed a new interaction

model by uniting the two previously described components, the

metric distance and the topological distance [28,29]. We

constructed a metric-topological interaction (MTI) model based

on the interdependency of the metric and topological distances

[29]. In our model, an individual switches between metric and

topological interactions, selecting one of the two interactions

according to the behavior of its neighbors. Furthermore, with the

addition of a repulsive zone and an attractive zone to the

alignment zone for the metric interaction component of the MTI

model, it becomes possible for a flock to rapidly change its

direction without external noise [28]. Switching between the two

methods of interaction spontaneously creates noise-like behavior

for each individual, eliminating the need to impose external

noise. While testing the MTI model, we found that estimating the

noise strength in advance is not necessary, which suggests that the

noise in an MTI flock is never external but rather is always

inherent. In contrast, most flocking models use external noise to

explain their direction changes and flocking formations

[14,15,16,20].

The MTI model was previously proposed as an alternative

model for flocking behavior, and it succeeded in demonstrating

scale-free correlation in two-dimensional space [28]. In this study,

we expand our model to three-dimensional space by including

variations in speed for each individual. Our results indicate that

the three-dimensional MTI model shows scale-free correlation not

only for individual orientations but also for individual speeds.

Finally, we discuss the possibility of storing and releasing

fluctuations in a flock, which is a nontrivial interpretation of

fluctuations in the MTI model.

Results

The Concept of the Metric-Topological Interaction Model
The aim of this section is to clarify the primary motivation

underlying the MTI model [28,29]. The MTI model was

motivated, as mentioned before, by the goal of relating the two

interaction distances, the metric and topological distances, by

shedding light on their interdependent properties. An individual

using the topological distance, for example, interacts simulta-

neously with its 6–8 nearest neighbors. The notion of ‘‘nearest’’

requires a notion of ‘‘distance’’ to determine the order of distance

between individuals. An individual using the metric distance

interacts with those neighbors that are within a fixed distance. The

interaction distance, however, cannot be determined without

knowing the number of neighbors that any given individual

interacts with. Therefore, there is an interdependent relationship

between the metric and topological distances, and we argue that

the metric and topological interactions should not be treated

separately.

We now consider a more important aspect of the two

interactions, which is a cognitive aspect. We interpret the metric

and topological interactions as two different but interdependent

cognitions [29]. To explain these different types of cognitions, we

propose a cognitive method that is based on two different types of

cognition: class cognition and collection cognition. By class

cognition, we refer to the act of synthesizing one notion from

several different objects or abstracting a notion. By collection

cognition, we refer to the recognition of individually presented

objects. Let us consider the following example. First, we define a

set that is composed of colors, such as {red, wine red, red-orange,

blue}. We can detect the difference between any pair of colors.

However, sometimes we recognize different colors as the same

color. For example, if several similar colors, such as red-orange,

wine red and red, are presented, then we could call them simply

‘‘red’’ without thinking about the specific colors. In doing so, we

neglect the small differences between these three colors and take

one abstract notion of the color. Therefore, this operation

corresponds to class cognition. If instead we recognize the four

sample colors as different, then we use the collection cognition. We

can see that these two cognitions are interdependent because we

need the concept of color (class cognition) to distinguish between

different colors (collection cognition), and we need some sample

colors (collection cognition) to construct the concept of colors (class

cognition). The distinction between a pair of colors from these

examples strongly depends on the situation; for example, it could

depend on the amount of attention that a subject pays to the

colors. Therefore, the border between class and collection

cognition changes with the situation.

We can apply these two cognitions to the metric and topological

interactions. In this section, we examine how these cognitive

methods correspond to the metric and topological interactions. In

our simulation, we considered the individuals’ ‘‘direction,’’ which

characterizes their individual differences. We assumed that an

individual cannot distinguish between neighboring individuals

when their differences in direction are small. Therefore, we argue

that the metric distance corresponds to the class cognition because

an individual using a metric interaction obtains one impression

that is synthesized from the many individuals in its interaction

domain. Recall the fact that an individual using the metric

distance can, in principle, interact with any other individuals

within its neighborhood, regardless of how many individuals there

are. In practice, such interactions would exceed its capacity of

cognition. To resolve this conflict, the individual does not consider

other individuals separately but instead garners one impression

from the set of individuals by neglecting their differences. The

operation of ignoring the difference between individuals is the

definition of class cognition. Thus, we can regard the metric

distance as corresponding to class cognition. Collection cognition,

in contrast, corresponds to the topological distance. An individual
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using the topological distance fixes the number (1st–7th) of

individuals with whom it can interact. This individual considers

others as individuals, unlike users of the metric interaction, which

is why we regard the topological distance as corresponding to the

collection cognition.

In this model, an individual will use the metric distance if the

difference in the neighbors’ direction is small because a small

difference can be safely neglected. Alternatively, an individual will

use the topological distance if the difference in the neighbors’

direction is large because a large difference should not be

neglected. In the example of the color set described above,

whether an individual uses the metric or topological interaction is

context dependent and can be controlled by a threshold

parameter. Our model relies on the cognitive interdependency

of the metric and topological interactions. With this type of

interdependence, we can unite into one interaction method the

two different types of neighborhoods, which are those defined by a

metric distance and those defined by a topological distance. Each

individual in the MTI model chooses between the metric and the

topological interaction at each step. This unification is our primary

motivation for developing the MTI model [28,29].

The Algorithm of the Metric-Topological Interaction
Model

Figures 1A and 1B show rough sketches of the MTI model. An

individual following the MTI model determines its neighborhood

by switching between two different but related neighborhoods,

which are defined by the metric distance and the topological

distance. Figure 1A shows a topological neighborhood, and

Figure 1B shows a metric neighborhood. When the red individual

uses the topological distance, the central individual aligns its

direction to coincide with the average direction of the yellow

individuals. The yellow individuals comprise the topological

neighborhood around the central individual. In contrast, the

metric neighborhood (Figure 1B) is quite different. We added two

more zones, the attraction zone (colored blue) and the repulsion

zone (colored red), to the alignment zone (colored yellow). We

chose these interaction zones based on the model proposed by

Huth et al. and other researchers [14,15,16,17]. The attraction

zone is shown in blue, meaning that the central individual is

attracted to the blue individuals, who are in the blue area. A blue

individual, in other words, is a target of the central individual, who

attempts to approach him. The alignment zone is shown in yellow,

meaning that the central individual aligns himself with the yellow

individuals, who are in the yellow area. Although these two

interactions–the metric and topological interactions–are quite

different, an individual of the MTI model can switch between the

two depending on the behavior of its neighbors. In this section, we

first explain how to compute the two interactions. Next, we discuss

the switching algorithm of the MTI model and the variation in

speed for each individual.

First, we consider the topological interaction (Figure 1A). The

definition of the topological interaction is not yet settled. Ginelli

and Chaté, for example, define topological neighbors by following

Voronoi’s tessellation [30], whereas Bode et al. interpreted the

topological interaction as a limited interaction [31,32]. Sometimes,

the density-dependent interaction is also regarded as a topological

interaction [25,26]. In this study, we use the simple rule that each

individual can interact with its six nearest neighbors when that

individual is using the topological interaction. Thus, the direction

of the individual for the next step is given by the following

equation:

v̂vtz1
k ~v̂vt

kz
1

(nT )t
k

X
l[N{TOPt

k

v̂vt
l ð1Þ

In this equation, k is the index of each individual, and t is the

time step of the simulation. We described this condition by the

symbol ({)t
k. The variable v̂vt

k is the unit velocity vector of

individual k for time step t. N{TOPt
k is the set of individual k’s

topological neighbors, which are its six nearest neighbors at time t.

Here, (nT )t
k is the number of elements of the set N{TOPt

k. In this

paper, we set (nT )t
k = 6, and we define Equation (1) as the

topological interaction.

Next, we consider the metric interaction (Figure 1B). In

Figure 1B, there are three layers of interactions, denoted by the

repulsion, alignment and attraction zones. We sum all of the

directions that are determined by these three zones. Thus, the

direction of the individual for the next time step is given by the

following equation:

Figure 1. The image of the metric-topological interaction model. The image of the metric-topological interaction model. Figure 1A
corresponds to the topological interaction, and Figure 1B corresponds to the metric interaction. The red zone of Figure 1B corresponds to the
repulsion zone, the yellow zone of Figure 1B corresponds to the alignment zone, and the blue zone of Figure 1B corresponds to the attractive zone.
Each individual of the MTI model switches between these two interactions, which are shown in Figure 1A and 1B.
doi:10.1371/journal.pone.0035615.g001
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v̂vtz1
k ~v̂vt

kz
1

(nRep)t
k

X
l[(N{METRepulsion)t

k

xt
k{xt

l

xt
l{xt

k

�� ��
z

1

(nAlign)t
k

X
l[(N{METAlignment)t

k

v̂vt
l

z
1

(nAttra)t
k

X
l[(N{METAttraction)t

k

xt
l{xt

k

xt
l{xt

k

�� ��

ð2Þ

In this equation, k is the index of each individual, l is the index

of each interacting neighbor of individual k, and t is the time step

of the simulation. v̂vt
k is the unit velocity vector of individual k at

time step t, and xt
k is the position vector of individual k at time step

t. The notation {k k represents the norm of the vector. The

expressions (N{METRepulsion)t
k, (N{METAlignment)

t
k, and

(N{METAttraction)t
k are the sets of the individuals in the

repulsion, alignment, and attraction interaction zones, respective-

ly, and (nRep)t
k, (nAlign)t

k, and (nAttra)t
k are the numbers of elements

for each of these sets.

Next, we discuss the timing for switching between the metric

and topological interactions. An individual using the MTI model

can choose only one type of interaction, either topological or

metric, per time step. The switching operation is based on the

class-collection (metric-topological) interdependence of the MTI

model, which we discussed in the previous section. We can relate

this interdependency to the individual’s ability to transition

between the metric and topological neighborhoods because the

individual is affected by its past neighborhood, which determines

whether its interaction range is the metric or topological distance.

Therefore, we used a threshold parameter to determine whether

an individual would change its interaction domain.

The switching system is as follows. If an individual uses the

topological distance for a sufficient length of time, then the

individual will have almost the same direction as its nearest

neighbors because the topological interaction always leads him to

align with them (see Equation (1)). Therefore, we define a

threshold parameter, a. If the difference between the individual

directions of its neighbors and the average of the neighbors’

direction is less than the threshold parameter, the individual of

interest changes its interaction domain to the metric distance.

Thus, the condition for switching from the topological to the

metric interaction is as follows:

Vi[N{TOPt
k, cos{1 (Sv̂vt

i ,Sv̂vt
lTl[N{TOPt

k
T)va ð3Þ

where STN{TOPt
k

indicates the mean value for elements of a set

N{TOPt
k, and ,, . signifies the operator of the inner vector.

This equation represents individual transitions from collection

cognition to class cognition when the neighbors appear to behave

almost identically. This transition is consistent with the definition

of class cognition.

When an individual switches to a metric interaction, that

individual must determine the sizes of its interaction domains for

the metric interaction. These domains, which are the repulsion,

alignment and attraction zones, are determined by the distance

between the individual of interest and its topological neighbors.

First, we find the distance between the farthest neighbor, the sixth

neighbor in this case, and the individual of interest. The distance

between them determines the three interaction domains. Con-

cretely, each individual has three interaction zones, as follows:

#t
k~

½( xt
k{xt

s

�� ��{R2
min)=5�when xt

k{xt
s

�� ��{R2
minw0

0otherwise

(
ð4Þ

(R1)t
k~R1

minzr|#t
k

(R2)t
k~R2

minzal|#t
k

(R3)t
k~(R2)t

kzat|#t
k

ð5Þ

where #t
k is a positive integer determined by the distance between

the individual of interest (indexed k) and the farthest neighbor

(indexed s) and [] is the floor function. R1
min and R2

min are the

minimum range when #t
k is zero. The variables r, al, and at are

the parameters of the proportional constant. We fixed these

parameters as R1
min = 80, R2

min = 100, r = 3.0, al = 5.0 and at = 2.5.

Equation (5) corresponds to the three interaction zones. In other

words, the interval ½0,(R1)t
k� is the repulsion zone, ½(R1)t

k,(R2)t
k� is

the alignment zone, and ½(R2)t
k,(R3)t

k� is the attraction zone. There

is no attraction zone when # is zero.

Next, we consider the switching property for the metric

interaction. The individual always determines whether the metric

interaction is well defined by considering two of its neighbors, who

are randomly selected from among the individuals in its metric

neighborhood. Then, the individual assesses the difference in the

directions of these two neighbors. Here, we recall the definition of

class cognition. Class cognition was defined as the abstraction of a

single notion based on the differences of objects. The abstraction,

however, no longer fits its definition when objects in the notion

conflict with each other. Thus, an individual who uses class

cognition must always check its neighbors to verify whether the

class cognition is being used appropriately. A conflict between the

class and collection cognition corresponds to large differences in

direction between the neighbors that are being compared.

Therefore, we set the threshold parameter b in the case of the

class cognition. The individual switches its neighborhood to the

topological neighborhood when the difference between the

directions of two randomly selected individuals within its metric

neighborhood is greater than the threshold parameter b or, in

other words, when the individual can no longer keep the class

cognition under the threshold parameter. Thus, the switching

condition from the metric to the topological interaction is given as

follows:

Vi,j[(N{METRepulsion)t
k|(N{METAlignment)

t
k

(i and j are randomly selected from the set (N-METRepulsion)k
t or

(N-METAlignment)k
t )

cos{1 (Sv̂vt
i ,v̂v

t
jT)wb ð6Þ

After switching to the topological neighborhood, the individual

aligns its directions with the six nearest individuals to construct its

metric neighborhood again (using Equation (1)). We can tune these

parameters to observe various flocking behaviors. Tuning these

threshold parameters is equivalent to determining whether the

individual prefers to use collection or class cognition. In this paper,

we set these two parameters as one parameter, i.e., a = th, b = 2th.

Fluctuation-Driven Flocking Movement
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We set these parameters to fit the experimental results in the

following section.

Finally, we also add velocity variations to the three-dimensional

MTI model. Our previous study of the MTI model was refined

only for two-dimensional and constant-speed cases [28,29].

However, the most fascinating collective behaviors, such as

flocking birds or schooling fish, occur in three dimensions. By

adding velocity variations, we hope to gain deep insights into this

collective behavior. The definition of the velocity variation is very

simple and is given as follows:

vtz1
i ~V0{Vz cos (h) ð7Þ

whereht
i is the angle in the polar coordination (vt

i ,Q
t
i ,h

t
i ) for an

individual i at time t. Each velocity (scalar quantity) vtz1
i is

determined by the angle from the perpendicular axis. As a result,

the speed of each individual is affected by gravity. V0 shows the

velocity when the individual moves horizontally. The minimum

speed of each individual is given by V0{Vz when the individual

ascends perpendicularly. The maximum speed of each individual

is given by V0zVzwhen the individual descends perpendicularly.

This formula indicates that the velocity change of an individual is

always related to its direction. Thus, it is natural to define the

magnitude of speed in a way that is connected to the change in

direction. Some researchers have considered this gravitational

effect on individuals in a flock [23,24].

Therefore, from Equations (1) - (7), the direction vector of each

individual is given as follows:

vtz1
k ~vtz1

k v̂vtz1
k ð8Þ

In this way, the next state of all individuals is determined. We

summarize the algorithm in the Materials and Methods section.

We chose periodic boundary conditions for our simulations.

However, we have checked that there are no essential differences if

we used reflection in the boundary instead.

Moving as One Flock Using the MTI Model
Figures 2A and 2B are snapshots of a set of individuals following

the MTI model. We fixed the threshold parameter at 0.05 radians

for the following simulations unless otherwise noted. The arrow in

both figures represents the velocity vector, which is projected onto

a two-dimensional plane. The length of each velocity vector

represents the amplitude of the individual’s speed. Figure 2A

shows a typical formation of the flocks observed using the MTI

model, in which individuals move in a straight line as one

collective. In Figure 2B, an MTI flock is about to change its

direction (Movie S1). The flock does not divide into multiple

groups but instead maintains its wholeness, although the shape of

the flock becomes distorted.

These dynamic movements of the flock, presented in Figure 2,

are implemented in the noise-like behavior of each individual with

respect to the traveling direction. This noise-like behavior is not

given externally but instead emerges from frequent switching

events between the metric and topological interactions. The

frequency of the switching events represents the proportion of

individuals switching between the two interactions in a flock per

step (for the data that we discuss later, we wait for the flock to

stabilize its motion in each case). We found that the frequency of

switching events is approximately 0:11(+0:04) per step. This

observation implies that 11% of the individuals change their

neighborhood in each step. The variety of different interactions in

the flock, which emerge through the switching events, causes the

fluctuations for each individual. This spontaneous fluctuation, or

noise, is one of the characteristic properties of the MTI model. We

also note that, in the MTI model, randomness emerges only from

an individual checking the metric interaction to determine

whether its metric neighborhood is used under the proper

conditions (satisfying Equation (6)).

Figure 2. Two examples of formations for the MTI model’s flock. Two examples of formations for the MTI model’s flock. The individual
number is fixed 100. The threshold parameter is 0.05 radians. The distribution of the velocity vectors is projected onto a two-dimensional plane. (A)
The flock moves one direction. The directions of individuals align are nearly uniform. (B) The flock shows a hard changing-direction and changes its
shape.
doi:10.1371/journal.pone.0035615.g002
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Figure 3A shows a time series of a flock’s absolute direction-

changing rate compared with the previous ten steps for a single

simulation. The flock’s direction is defined as the average direction

for all individuals in a flock. This graph shows that the absolute

direction-changing rate sometimes reaches 0.25 radians (in other

words, approximately 14 degrees). It can be observed that a flock

following the MTI model sometimes rapidly changes its direction

by using its spontaneous fluctuations.

Figures 3B and 3C show the positional relationship between

individuals in an MTI flock. Figure 3B shows the average distance

between an individual and its neighbor according to the

topological rank. This relationship demonstrates that the distance

to the nearest individual is approximately 85 L (L is the unit of

length, and 1 L indicates the length of the unit velocity vector in

the model space). This result is natural because we set the radius of

the repulsion zone as 80 L. There is a linear dependence between

the average distance between individuals and their topological

rank.

Figure 3C shows a graph of the probability distribution of the

nearest-neighbor distance. The probability peak is found at

approximately 80 L. This figure also shows that there is an

asymmetric existing probability, centered at 80 L. This asymmet-

ric relationship arises from the properties of the repulsion zone of

the metric interaction. If the nearest neighbor is positioned too

closely to the individual, then it has a high risk of being located in

the repulsion zone ((R1)t
k§80L, based on Equation (5)). Thus, an

individual avoids its neighbors within 80 L when it uses the metric

interaction. As a result, the possibility of the nearest neighbor

being located within 80 L is relatively low. This asymmetric

relationship was also observed in the model of Hildenbrandt et al.

[23] and experimentally by Ballerini et al. [25].

Scale-Free Correlation in the Flock
In an important empirical study performed by Cavagna et al.

[27], it was found that there are large correlated domains of

fluctuation within a flock. First, they described a flock of birds as a

set of velocity vectors, with each bird having both an orientation

and a speed. They defined the fluctuation vector by subtracting

the average velocity vector of the flock from each velocity vector.

Therefore, the fluctuation vector is as follows:

ui~vi{
1

N

XN

k~1

vk ð9Þ

Figure 3. Flock data. We set the number of individuals to 100. The graphs in Figure3B and 3C show an average of 100 simulations, where each
simulation consists of 4000 steps. The data were taken by waiting for each flock stabilized the motion. (A) The graph shows an example of a time
series for changing directions. We take the absolute value of the rate of change and plot its evolution over time. The vertical line corresponds to a
rate change (radian) compared with previous 10 steps. In this graph, the flock changes its direction up to 0.25 radians. (B) A graph showing the
average distance between an individual and its neighbor with the topological rank. There is a roughly proportional relation between the average
distance between individuals and its topological rank. (C) A graph showing the probability distribution for the nearest neighbor’s distance. The
probability distribution shows an asymmetric relation around its center, 80 L. This asymmetry comes from the difference property between the
repulsion of the metric interaction. The graph shows that a nearest neighbor is hard to exist within 80 L because of the repulsion zone.
doi:10.1371/journal.pone.0035615.g003

Fluctuation-Driven Flocking Movement

PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e35615



The fluctuation vector isui, and the velocity vector isvi. The

index of each individual is i. We can easily verify that the sum of all

fluctuation vectors is always zero from Equation (9). Cavagna et al.

also defined a correlation function to estimate the size of these

correlated sub-domains. The correlation function is given as

follows:

C(r)~
1

c0

PN
i,j ui

:ujd(r{rij)PN
i,j d(r{rij)

ð10Þ

The distance between each individual is given by rij (i and j are

indexes for each individual; rij represents rij~ xj{xi

�� ��). The delta

function is defined by d(r{rij)~1 ifr~rij ; d(r{rij)~0, otherwise.

We note that d(r) is not a precise delta function. The delta

function, in this paper, has a certain finite length interval r,rzdr½ �,
where dr sets the discrete scale of C(r) (for our simulation, we set

dr = 10 L; however, the value of dr does not affect our results).

The variable c0 is a normalization factor. Cavagna et al. defined

the point at which the correlation function is zero as the

correlation length. The mathematical expression is the value of

j when C(r~j) equals zero. This correlation length was

consistent with the size of the correlated sub-domains that they

found. Furthermore, they defined not only a correlation function

of the orientation but also a function of the speed. First, we define

the fluctuation speed using the fluctuation vector as follows:

wi~ vik k{
1

N

XN

k~1

vkk k ð11Þ

where wi is the fluctuation speed obtained by subtracting the

average of all of the individual’s speeds from each individual’s

speed, i is the index of each individual and {k k indicates the

norm of the velocity vector. Thus, vik k~vi for our simulation.

Then, we obtain the correlation function of the speed as follows:

Csp(r)~
1

c0

P
ij wi

:wjd(r{rij)P
ij d(r{rij)

ð12Þ

Similarly, the correlation length for the speed is the point at which

the speed’s correlation function becomes zero. For a mathematical

expression, the speed’s correlation length is jsp when

C(jsp~r)~0.

We can also observe scale-free correlation in a flock when using

the MTI model. Figure 4A shows the distribution of the velocity

vector projected onto a two-dimensional plane. In this figure, the

flock moves to the upper side, and it appears that each individual

has almost the same direction. Next, we derive the fluctuation

vector from this picture. By subtracting the mean velocity vector

from each velocity vector, we obtain the distribution of the

fluctuation vectors of this flock (Figure 4B). Obviously, this flock

has some correlated sub-domains within itself, although each

velocity vector has a similar direction in the flock (the upper and

lower sides of the flock). We found that these correlated sub-

domains always exist within the flock and flexibly change their

shape at each time step. Next, we examine the relationship

between the correlation length and the flock size (the flock size is

given as the largest distance between flock members). In the

previous study, we only showed the orientation of the scale-free

correlation in two-dimensional cases [29]. In this study, we

investigate scale-free correlation of both the orientation and speed

using Equations (9) – (12). Figures 5A and 5B show graphs of the

relationship between the correlation function and the distance at a

single step. (This definition comes from the computing method of

Cavagna et al. They computed the correlation function at a single

instant in time. A single instant of time in real flocks corresponds to

a single step in an MTI model.) Both of the graphs show that the

correlation value tends to decrease when the distance becomes

large. This observation is reasonable when compared with the

empirical results. Furthermore, the correlation function of the

speed (Figure 5B) shows that its value abruptly increases to a

positive value when the distance becomes sufficiently large (not for

Figure 4. Fluctuation Vector. The two-dimensional projection of the velocity vectors (Figure 4A) and the fluctuation vectors (Figure 4B) of
individuals within the flock at one step. The number of individuals is 150. Figure 4A appears that the individuals that are represented by the velocity
vector align in nearly the same direction. However, if we take the fluctuation vector from Figure 4A, then we can observe two large correlated
domains in the flock (the upper and lower domains). The shape from these two large correlated domains is very similar to empirical flocks.
doi:10.1371/journal.pone.0035615.g004
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all cases). This property has also been observed empirically; thus, it

appears that the simulation results of the correlation function

match the empirical results. Other graphs are given in the

Supporting Information. Figures 5C and 5D show the propor-

tional relationships between the correlation length and the flock

size. The red points show the correlation with the orientation

(Figure 5C), and the blue points show the correlation with the

speed (Figure 5D). We ran 100 simulations for flocks with 100,

200, and 300 individuals. Both of the characteristics examined

(speed and orientation) exhibit scale-free correlation. The gradi-

ents of these graphs are 0.36 (orientation) and 0.35 (speed). This

result almost matches the experimental result (the experimentally

derived slopes are 0.35 for the orientation and 0.36 for the speed)

[27]. Thus, even without knowledge of the overall shape of the

flock to which an individual belongs, each individual in the three-

dimensional MTI model constantly adjusts its fluctuation vector to

make the correlation sub-domains maintain the proper size.

Storing and Releasing the Fluctuation
Thus far, the threshold parameter th has been fixed at 0.05

radians. We investigate, in this section, the flocking behavior of the

MTI model when th is tuned. We can observe another aspect of

internal fluctuations in the flock of the MTI model by tuning th,

although the property of scale-free correlation in the flock would

disappear.

Here, we re-examine the relation between th and the method of

using two interactions, which are the metric and the topological

interaction. For example, when th is high, each individual is more

likely to use the metric interaction because it is difficult for an

individual to switch from the metric interaction to the topological

interaction (see Equations (3) and (6)). This preference of using the

metric interaction is derived from the fact that each individual

tends to neglect the differences between individual directions

within its neighborhood. In contrast, an individual in the MTI

model is more likely to use the topological interaction from

Equations (3) and (6) when th is small.

In this section, we observe how the behavior of the flock and the

individual’s fluctuation change with decreasing and increasing th.

Before we begin this simulation, we must estimate the degree of

noise-like behavior of the MTI individual because we never

introduce external noise to each individual. We use the method

illustrated in Figure 6. The idea behind this method is that the

Figure 5. Scale-Free Correlation. Figures5A and 5B show the relationship between the correlation function and distance. The number of
individuals is 200. The blue dots show the correlation function for the orientation (using Equation (10)). The red dots show the correlation function of
the speed (using Equation (12)). Both values gradually decrease as the distance becomes large. Especially the value of the speed correlation function
suddenly rises up to positive values. In this case, the correlation lengths are j = 370 L (orientation) and jsp = 320 L (speed). Figures 5C and 5D show
the relationship between the flock size and the correlation length. We ran simulations 100 times for flocks with 100, 200, and 300 individuals,
respectively, and averaged the results over a certain interval (100 L on the horizontal axis). The error bars indicate the SD. The three-dimensional MTI
model shows a scale-free correlation in both cases. The red dots correspond to the orientation in Figure 5C, and the blue dots correspond to the
speed in Figure 5D. Both are well correlated (correlation coefficients of 0.87 for the orientation and 0.78 for speed). The gradients of both graphs are
given as 0.36 (orientation) and 0.35 (speed).
doi:10.1371/journal.pone.0035615.g005

Fluctuation-Driven Flocking Movement

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e35615



noise is measured in the context of the SPP model. In other words,

the degree of noise present estimates the difference between the

individual’s direction in the MTI model and the direction

determined by the SPP model (recall that alignment in the SPP

model is determined by the average direction within an

individual’s neighborhood coupled with external noise).

We set the imaginary fixed neighborhood (the blue dotted circle)

for each individual as in the SPP model. The radius of this

imaginary circle is set to 100 L. We then determine the direction

from the SPP model (the blue colored arrow). Each individual has

a direction that is determined by the MTI model (the red colored

arrow). We calculate the angle between the red and the blue arrow

for each individual, and we call this value the ‘‘fluctuation degree’’

(FD).

FDt
k~ cos{1 (Sv̂vtz1

k ,
1

(nim)t
k

X
l[N{IMt

k

v̂vt
lT) ð13Þ

We define a set for an individual k as

N{IMt
k~ l[N 0v xt

k{xt
l

�� ��v100
��� �

and the number of ele-

ments of N{IMt
k is (nim)t

k. v̂vtz1
k is individual k’s next unit velocity

vector. In addition, we can compute the average of all of the

fluctuation degrees as follows:

AFDt~
1

n

Xn

k~1

FDt
k ð14Þ

We call Equation (14) the average fluctuation degree (AFD). The

fluctuation degree (FD) asymptotically approaches zero when all

individuals use the topological interaction because the interactions

of the SPP and the topological interaction use only alignment. As a

result, the AFD, which is the average of all of the FDs, also

becomes small. Therefore, when th is small (when nearly all of the

individuals are using the topological interaction), the AFD has a

very small value.

Figure 7A shows the result when th is tuned. We began tuning th

1,000 steps after the point at which the individuals formed and

stabilized a single flock. The number of individuals is fixed at 100.

th increases or decreases by 0.01 radians every 100 steps. We

started by tuning th from 1.0 radians to 0 radians (Figure 7A (i))

and then reversed th from 0 radians to 1.0 radian (Figure 7A (ii)).

We define this set of the process as a single simulation. The blue

dots in Figure 7A correspond to a decreasing th, while the red dots

correspond to an increasing th. The value of AFD for each dot is

averaged for 100 steps of th tuning.

Figure 7A shows an asymmetric relationship between the

decreasing phase (blue) and the increasing phase (red). Specifically,

there is a point at which the AFD suddenly increases in the

decreasing phase. At this point, the flock explodes (see Figure 7B

and Movie S2). Several flocks in our simulations exploded and

divided completely into different flocks. Such explosions have been

observed empirically, for example, in schools of fish [34].

Previously, there was no model that could replicate this property.

On the other hand, the flock with an increasing phase never

explodes, as when th decreases (Movie S3). Instead, in the

increasing phase, the value of AFD stays high in the high th region.

We repeated this type of simulation 50 times and obtained the

same results (an asymmetric relationship) for all simulations. The

difference between these 50 simulations is only the timing of the

explosion. Here, we define a sequence to investigate the absolute

variation of ADF when th increases or decreases by 0.01 radians,

which corresponds to one step in Figure 7A. We can replace this

consecutive process by a sequence (si
1,si

2,:::,si
100) for decreasing th

and increasing th. The variable i is an index of the simulation (in

this case, 1ƒiƒ50), and sj denotes the value of ADF at th = 0.01j

radians for increasing or decreasing th. For example, a sequence in

the increasing phase in Figure 7A is (0.0002, 0.00362, …, 0.0797).

Then, we take the absolute variation of ADF at every step. In other

words, we define a sequence ( si
2{si

1

�� ��,:::, si
jz1{si

j

��� ���,:::, si
100{si

99

�� ��),
briefly (d)i. To distinguish decreasing and increasing th, we denote

(ddec)iand (dinc)i, respectively. In particular, the maximum

(minimum) value in the sequence (d)i is denoted as

maxf(d)ig(minf(d)ig). By using these definitions, we can obtain

statistical quantities for the time variation of ADF to compute the

mean value of 50 sequences (d)i. We denote the mean maxf(d)ig
(minf(d)ig) for 50 trials as maxf(d)g(minf(d)g).

Figure 7C (7D) shows a graph of the mean maximum

(minimum) absolute variation of ADF, which represents

maxf(d)g(minf(d)g). The increasing th is colored gray, and the

decreasing value is colored light gray. Both figures suggest that

there will be differences in the fluctuation of the flock when th is

decreasing versus increasing. In Figure 7C, maxf(ddec)g is 3.5

times larger than maxf(ddec)g(t-test: p,0.001). The explosion of

the flock causes this high variance in the AFD for the decreasing th.

In contrast, in Figure 7D, minf(ddec)g is 0.2 times minf(dinc)g(t-
test: p,0.001). This small variance in the AFD arises from the

interval, which corresponds to th decreasing from 1.0 to 0.5

radians (see Figure 7A). From these results, we conclude that there

is an essential difference in a flock’s fluctuation based on the tuning

direction of its threshold parameter.

Here, we introduce two figures to investigate the details of the

behavior of fluctuations in the flock in Figure 7A. Figure 7E shows

the proportion of individuals using the topological interaction

averaged for 100 steps with th tuning. Figure 7F shows the

frequency of individuals switching between two interactions

averaged for 100 steps with th tuning. The colors in Figure 7E

and 7F correspond to those of Figure 7A.

First, we consider the decreasing phase. The characteristic

phenomenon in the decreasing phase is a sharp peak, correspond-

ing to the flock’s explosion at approximately 0.10 radians.

Figure 7E suggests that all individuals in the flock use the metric

interaction when th is in the interval [0.15,1.0] in the decreasing

phase. However, the proportion of individuals using the topolog-

ical interaction suddenly increases to 0.7 at th = 0.10 radians. At

this point, the switching frequency between the two interactions

(Figure 7F) also increases.

Figure 6. Definition of Fluctuation Degree. An image for
computing the ‘‘fluctuation degree’’. The blue, dotted circle is an
imaginary neighborhood, and the blue arrow is the direction that is
determined by using the interaction of SPP model on the imaginary
neighborhood. The red arrow indicates the direction that is determined
by the MTI model. We take an angle between the red and blue direction
(Equation (13)).
doi:10.1371/journal.pone.0035615.g006
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This sudden increase in the proportion of individuals using the

topological interaction provides an explanation for the flock’s

explosion. In high th regions, such as [0.4,1.0], the fluctuation of

each individual rarely satisfies Equation (6). Indeed, no switching

occurs (Figure 7F). However, the probability of satisfying Equation

(6) would become large in a low th region such as [0,0.2]. Then,

once the metric neighborhood of an individual is disrupted by

satisfying Equation (6), the individual will attempt to form a new

neighborhood by switching between the two interactions, as shown

in Figure 7F. This behavior increases the fluctuation. The

increased fluctuation of this individual would provoke its neighbors

to break their metric neighborhood. In this way, the neighborhood

disruption process instantly spreads throughout the flock. In other

words, individuals in the flock nearly simultaneously switch from

the metric interaction to the topological interaction. This event

triggers the flock’s explosion.

This fact suggests that the flock stores its fluctuations in such a

way that the flock will break if all of the individuals keep using the

metric interaction. The storing of fluctuations implies that the

fluctuation of each individual, which emerges from switching

between the two interactions, is prevented from spreading by using

the same metric interaction.

This result shows why the flock does not explode in the

increasing th phase. When th increases in a low th region, all of the

individuals tend to use the topological interaction (Figure 7E) and

continue to switch between the two interactions (Figure 7F). The

preference of using the metric interaction is not observed here.

Instead, the fluctuation, which is emerged from these active

switching events between the two interactions, shown in Figure 7F,

is hard to reduce its power in a high th region, compared with the

decreasing phase. In contrast to the decreasing th, this high

fluctuation (or AFD) in an increasing phase, shown in Figure 7A,

means that the fluctuation in the flock is not stored but is released

by switching between the two interactions.

We also demonstrate that variations in speed do not affect our

results, including explosions. In other words, we can obtain an

asymmetric relationship, including an explosion with th, in the

MTI model without speed variations (without using Equation (7)

and (8)).

Discussion

In this study, we proposed a new flocking model, the MTI

model, that accounts for recent empirical observations. By tuning

Figure 7. ADF with th variation. (A) The graph shows the value for AFD as the threshold parameter changes. The number of individuals is fixed
at 100. The threshold parameter, th, decreases or increases 0.01 radians every 100 steps. The red dots are the increasing phase, and the blue dots
are the decreasing phase. The value of AFD for each dot is averaged for 100 steps with th tuning. The arrows and the number indicate the order
of the process. There is an asymmetric relationship between the deceasing phase and the increasing phase. (B) The example of the explosion of
the flock, projected onto a two-dimensional plane. Each individual spreads out in a radical pattern. Several steps later, the flock has divided into
three sub-flocks. (C) A graph of the mean max (d)i

� �
, or max (d)f g, for 50 times simulations from Figure 7A. Themax (dinc)f g(increasing phase) is

colored gray, and the max (ddec)f g(decreasing phase) is colored light gray. Error bars are SD. (D) A graph of the mean min (d)i
� �

, or min (d)f g, for
50 times simulations from Figure 7A. Themin (dinc)f g(increasing phase) is colored gray, and themin (ddec)f g(decreasing phase) is colored light
gray. Error bars are SD. (E) The proportion of individual’s using the topological interaction averaged for 100 steps with th tuning in Figure 7A. All
color and dots precisely correspond to Figure 7A. It can observe that there is a sharp peak at th = 0.1 radians (the point of flock’s explosion). The
inset graph shows the enlarged figure in the interval th[[0.4,1.0]. (F) The frequency of individual’s switching between two interactions averaged
for 100 steps with th tuning in Figure 7A. All color and dots precisely correspond to Figure 7A. The inset graph shows the enlarged figure in the
interval th[[0.4,1.0]. The switching events between two interactions in the increasing phase are more longstanding than one in the decreasing
phase.
doi:10.1371/journal.pone.0035615.g007
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the threshold parameter, a flock based on our model displays

various behaviors, such as turning, splitting and exploding. We

observed that switching between two types of interactions, metric

and topological, causes individuals to create inherent noise. The

word ‘‘inherent,’’ in this study, refers to noise that is not added to

the model externally. Unlike previous models, our model does not

require such external noise for each individual.

We showed that this inherent noise leads to a special property,

called scale-free correlation, with respect to the orientation and

speed when an appropriate threshold parameter is set. Further-

more, the shape of the correlation function for both the orientation

and speed agrees with experimental data in spite of the inclusion of

several noisy graphs (such as Figure S1). This result indicates that

the correlation function shows a slow decay in the flock. Scale-free

correlation requires individuals to change their behavior (orien-

tation and speed) in context. To explain this flexibility, a

spontaneous judgment of the orientation and speed is required

for each individual. If we provide the noise externally, then the

model must find the proper noise intensity for each case. Several

researchers consider this type of inherent noise to be an important

issue when studying collective behavior [8,33]. Although Hemel-

rijk’s model can also explain scale-free correlation, it only applies a

scale-free correlation to the orientation [24]. Scale-free correlation

for the speed and the shape of the correlation function has not

been previously demonstrated. Our model satisfies all of the

desired properties (scale-free correlation of the speed, orientation

and shape of the correlation function), which is the main

achievement of our study.

In the previous section, we observed that various flocking

behaviors (including explosion) were obtained by tuning the

threshold parameter. Let us interpret this observation in the

context of class and collection cognition. In our model, we

correlate the metric interaction to class cognition and the

topological interaction to collection cognition. Recall that the

class cognition corresponds to the cognition of ‘‘sameness’’ (or

neglecting differences) and that the collection cognition relates to

the cognition of ‘‘difference’’ (or distinguishing differences).

Switching between class and collection cognition requires that

each individual checks ‘‘the difference’’ and re-constructs ‘‘the

sameness’’ of its neighbors’ behavior. This switching operation

causes each individual to fluctuate, and this fluctuation is not

sufficient to collapse the flock. However, if the class cognition is

dominant, ‘‘the difference’’ never disappears but instead continues

to exist within the flock because a switching event does not occur.

We observed that the flock explodes if these neglected differences

are recognized simultaneously. In this sense, it can be considered

that the flock stores fluctuations and that the power of these

fluctuations causes the flock to collapse. In contrast, the difference

would not be neglected and would be eliminated by each

individual if the collection cognition was dominant. Such a

difference would not be maintained within the flock. In this sense,

the flock does not store the fluctuation but instead releases it. We

note that this discussion also applies to general collective behavior

(such as schooling fishes) because variations in speed do not affect

our results.

The biological significance of the difference between class and

collection cognition emerges as a sense of quality (class) and

quantity (collection) [34,35]. However, distinguishing between

quality and quantity is very difficult in principle [29,36]. Our

model suggests that this difficulty in distinguishing between the two

cognitions has a significant effect on the collective movement. The

phenomenon of storing and releasing fluctuations does not emerge

from only one of the two cognitions but instead occurs through

both cognition states. This result means that the difficulty in

distinguishing between the two cognitions can cause the flock to

continue to use the same cognition. We considered the case in

which class cognition was maintained and observed that this

constraint is the cause for an explosion. Our switching model

provides an interpretation of fish school explosions from a

cognitive perspective.

Our model can induce inherent noise, which shows scale-free

correlation, for each individual from the perspective of switching

between the class and collection cognitions. Some flocking models

include noise without considering the individual’s context

[11,12,13,14,15,16,17,18,19,20]. Therefore, the origin of the noise

remains vague. Compared with this type of model, our model

shows that switching between the two cognitions inevitably

generates noise. Other models have many biological or environ-

mental restrictions [21,22,23,24]. In these types of models, it is

difficult to focus on what is important for the collective behavior

because there are many parameters. Our model is based on the

minimal assumption that each individual uses two cognition states

and adjusts between them according to the environment. We

believe that this cognitive perspective will play an important role in

understanding collective phenomena.

Materials and Methods

The outline of the MTI model algorithm is as follows. All

symbols that are used for equations from (1) to (8) are given an

explanation as follows.

t : the time step

i, k, s, … : the index of the individual

N: a set of individuals

n: the number of elements of set N

th: a threshold parameter

R1
min: a minimum length of repulsion zone

R2
min: a minimum length of alignment zone

V0: the standard speed

Vz: the variation of speed.

The symbol that is listed below is different for each time

(indexed t) and each individual (indexed k). We added to all

symbols as ({)t
k. This symbol means that the quantity of – for the

individual k at time t

x: a position vector of each individual

v: a velocity vector of each individual

v: a velocity (or norm of the velocity vector v) of each individual

N{TOP: a set of the topological neighbors

nT : the number of elements of the set N{TOP

R1: a length of the repulsion zone

R2: a length of the alignment zone

R3: a length of the attraction zone

N{METRepulsion: a set of individuals on the repulsion zone

N{METAlignment: a set of individuals on the alignment zone

N{METAttraction: a set of individuals on the attraction zone

nRep: the number of element of the set N{METRepulsion

nAlign: the number of element of the set N{METAlignment

nAttra: the number of element of the set N{METAttraction

Each velocity vector can be also represented in the polar

coordinate(vt
k,Qt

k,ht
k).

x-coordinate: (vt
k)x~vt

k cos (Qt
k) sin (ht

k)

y-coordinate: (vt
k)y~vt

k sin (Qt
k) sin (ht

k)

z-coordinate: (vt
k)z~vt

k cos (ht
k)
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Start the Algorithm
First, Each individual is allocated space and given a direction at random.

The algorithm at time t:

for from k~1 to k~nð Þf

if individual k uses the topologica linteractionð Þf

v̂vtz1
k ~v̂vt

kz
1

(nT )t
k

X
l[N{TOPt

k

v̂vt
l

:N{TOPt
k: l[N rank(l)ƒ(nT )t

k

��� �
:(nT )t

k~Num(N{TOPt
k)

:rank(l) : the order of the distance between xt
k and xt

l :

vtz1
i ~V0{Vz cos (h)

vtz1
k ~vtz1

k v̂vtz1
k

if (Vi [ N{TOPt
k, cos{1Sv̂vt

i ,Sv̂vt
lTl[N{TOPt

k
Tvth)f

#t
k~

½( xt
k{xt

s

�� ��{R2
min)=5�when xt

k{xt
s

�� ��{R2
minw0

0 otherwise

(

(R1)t
k~R1

minzr|#t
k

(R2)t
k~R2

minzal|#t
k

(R3)t
k~(R2)t

kzat|#t
k

:½ � is a floor function:

:
v,wis an inner product:

:
vwS is an average of the individuals0 direction

on a set S:

:the individual indexed s is 6th neighbor from the

individual indexed k:

:The individual k uses the metric interaction for

the next step:

g

elsef

The individual k uses the topological interaction

for the next step:

g

gEnd topological interaction for an individual k
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if individual k uses the metric interactionð Þf

vfor repulsion zonew

(v̂vRepulsion)t
k~{

1

(nRep)t
k

X
l[(N{METRepulsion)t

k

xt
l{xt

k

xt
l{xt

k

�� ��
:(N{METRepulsion)t

k: l[N 0v xt
k{xt

l

�� ��v�� (R1)t
k

� �
: nRep

� �t

k
~Num((N{METRepulsion)t

k)

vfor alignment zonew

(v̂vAlignment)t
k~

1

(nAlign)t
k

X
l[(N{METAlignment)t

k

vt
l

vt
l

�� ��
:(N{METAlignment)

t
k: l[N (R1)t

kv xt
k{xt

l

�� ��v�� (R2)t
k

� �
: nAlign

� �t

k
~Num((N{METAlignment)

t
k)

vfor attractive zonew

(v̂vAttraction)t
k~

1

(nAttra)t
k

X
l[(N{METAttraction)t

k

xt
l{xt

k

xt
l{xt

k

�� ��
:(N{METAlignment)

t
k: l[N (R2)t

kv xt
k{xt

l

�� ��v�� (R3)t
k

� �
: nAttrað Þtk~Num((N{METAttraction)t

k)

Then;

v̂vtz1
k ~v̂vt

kz(v̂vRepulsion)t
kz(v̂vAlignment)t

kz(v̂vAttraction)t
k

vtz1
i ~V0{Vz cos (h)

vtz1
k ~vk

:v̂vtz1
k

if (Vi,j[(N{METRepulsion)t
k|(N{METAlignment)

t
k, cos{1 (Sv̂vt

i ,v̂v
t
jT)w2th)f

:i and j are randomly selected from the set (N{METRepulsion)t
k or (N{METAlignment)

t
k

The individual k uses the topological interaction for the next step:

g

elsef

The individual k uses the metric interaction for the next step:

The interaction domains, which are (R1)t
k, (R2)t

k, (R3)t
k

are preserved for next step:

g

gEndmetric interaction for a individual k

gEnd update all individuals

Then back to the algorithm, which is for (from k = 1 to k = n){–}, and repeat the same process to all individuals.

End All Algorithm
Here we set the parameter of MTI model. The threshold

parameter th is fixed at 0.05 radians unless otherwise noted. This

parameter determines the switching property of each individual. If

th sets a small value, the individual tends to use the topological

interaction. Or if th sets a large value, the individual tends to use
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the metric interaction. The number of individuals for the

topological interaction is fixed at six through this study. V0 = 3.0

and Vz = 2.0. Thus the minimum speed is 1.0 and the max speed

is 5.0. R1
min = 80 and R2

min = 100. The proportional constants are

r = 3.0, al = 5.0, at = 2.5. These values selected to match with

experimental data. If these value change, the slope of Figure. 5C

and 5D will change or correlated relations would disappear. The

space is set as width3. The size of the space is fixed at width = 2,000.

Supporting Information

Figure S1 We listed three examples of the correlation
function. Almost correlation functions of the MTI flock show

slow decay with distance (L). There are some cases that are the

rugged slop like example 3. However this case is rare (about 5%).

Example 1 and 2 show that the correlation function of speed does

not always rises up to the positive value for far distance like

Figure 5B.

(TIFF)

Movie S1 MTI flock is about to change its direction.
(MOV)

Movie S2 The flock’s explosion in decreasing phase.
(MOV)

Movie S3 The flock’s movement in increasing phase.
(MOV)
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