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Clemens Wrzodek*, Finja Büchel, Georg Hinselmann, Johannes Eichner, Florian Mittag, Andreas Zell
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Abstract

DNA methylation of CpG islands plays a crucial role in the regulation of gene expression. More than half of all human
promoters contain CpG islands with a tissue-specific methylation pattern in differentiated cells. Still today, the whole
process of how DNA methyltransferases determine which region should be methylated is not completely revealed. There
are many hypotheses of which genomic features are correlated to the epigenome that have not yet been evaluated.
Furthermore, many explorative approaches of measuring DNA methylation are limited to a subset of the genome and thus,
cannot be employed, e.g., for genome-wide biomarker prediction methods. In this study, we evaluated the correlation of
genetic, epigenetic and hypothesis-driven features to DNA methylation of CpG islands. To this end, various binary classifiers
were trained and evaluated by cross-validation on a dataset comprising DNA methylation data for 190 CpG islands in
HEPG2, HEK293, fibroblasts and leukocytes. We achieved an accuracy of up to 91% with an MCC of 0.8 using ten-fold cross-
validation and ten repetitions. With these models, we extended the existing dataset to the whole genome and thus,
predicted the methylation landscape for the given cell types. The method used for these predictions is also validated on
another external whole-genome dataset. Our results reveal features correlated to DNA methylation and confirm or disprove
various hypotheses of DNA methylation related features. This study confirms correlations between DNA methylation and
histone modifications, DNA structure, DNA sequence, genomic attributes and CpG island properties. Furthermore, the
method has been validated on a genome-wide dataset from the ENCODE consortium. The developed software, as well as
the predicted datasets and a web-service to compare methylation states of CpG islands are available at http://www.cogsys.
cs.uni-tuebingen.de/software/dna-methylation/.
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Introduction

DNA methylation of differentiated cells in mammals occurs

almost exclusively at the C5 position in cytosine when it is

immediately followed by a guanine [1]. The methylation of the

59–CG–39 pair is related to chromatin remodeling effects andmostly

results in silencing of downstreamgenes [2,3]. CpGs are significantly

enriched in some parts of the genome, compared to the average CG

content of the whole genome. These CpG enriched genome parts

are called CpG islands [4]. CpG islands are usually detected

computationally, e.g., by applying certain constraints on the

occurrence of CpGs in a sequence window [5]. More recent

approaches try to include further data and conditions to get better

predictions of CpG islands in the genome [6]. Therefore, depending

on the chosen approach and constraints, the number of CpG islands

in the human genome varies. However, it is known that CpG islands

occur in 50 to 60 percent of all human promoters and in all

promoters of human housekeeping genes [7–9].

These CpG islands are mostly unmethylated and therefore

represent a markable exception to the almost globally methylated

genome [7,10]. Today, it is known that different tissues and cell

lines have specific methylation profiles [11–14]. These profiles are

inherited by epigenetic mechanisms which are not completely

understood [15]. Though, there are some recent evidences that

DNA methylation profiles during early development of cells is

probably mediated through histone modifications [10]. However,

not only different tissues exhibit a specific methylation profile but

also diverse diseases are suspected to have specific alterations of

the usual methylation profile [16]. Especially in cancer, DNA

methylation is supposed to play a key role for the repression of

tumor suppressor genes [17–19]. Due to the large amount of

different tumor types, cell lines and tissues with each having an

own methylation profile, many explorative approaches to de-

termine the DNA methylation status are required. A common way

to experimentally perform DNA methylation analyses by hand is,

to employ bisulfite sequencing and focus only on selected genomic

regions [20,21]. Prediction methods that extend data to the whole

genome can be employed to reduce the experimental costs and

speed up the methylation detection process [22–24]. But more

important, they can be used to gain insights of the DNA

methylation process. For example, they can reveal which features

are of influence for a specific methylation pattern of a particular

tissue or disease. These prediction methods need numeric features

to distinguish between methylated and unmethylated CpG islands.

The search for features to predict the methylation status of CpG

islands started with Feltus et al. [25], who used general CpG island

attributes (such as CG content, CG observed/expected ratio, etc.)

and static sequence motifs as features. Das et al. [26] additionally
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introduced Alu coverage and general di- and trinucleotides as

features. Fang et al. [27] extended the prediction of transcription

factor binding sites from motifs to position frequency matrices and

used them as features. So far, only purely sequence based features

have been used. Bock et al. [28] were the first to introduce new

kinds of features. In addition to the features from previous

approaches, they used repeat frequencies and distributions, CpG

island frequencies and distributions, predicted DNA structure,

gene and exon distribution, evolutionary conservation, and SNPs.

Later approaches did not introduce more relevant features to the

prediction of CpG island methylation, except for Fan et al., who

successfully used histone modification marks for this task [29].

Apart from these methylation prediction approaches, several

research groups suggested some distinctive features based on their

studies. For example, the distance to the transcription start site,

periodic distributions of CpGs in methylated CpG islands, flanking

sequences of methylated CpGs, or tissue-independent correlation

of histone modification profiles and DNA methylation

[10,20,21,30,31].

In this study, we used data from the NAME21 consortium [21]

to assess the accuracy of different prediction algorithms (see

Table 1) and the predictive performance of different genomic and

epigenomic features (see Table 2 for a complete list). For this

purpose, we created and analyzed feature sets for four different cell

types, consisting of nearly all features from previous approaches,

new findings of recent studies, and completely new features.

Afterwards, we extended the given data from chromosome 21 for

HEPG2, HEK293, leukocytes and fibroblasts to a whole-genome

catalogue of DNA methylation in human and developed

a webservice that allows viewing the results and comparing them

between the different cell types. Furthermore, we validated our

method on a dataset from the ENCODE consortium [32] and

released a stand-alone application for generating the described

feature sets.

Results and Discussion

This study is based on data from Zhang et al., who

experimentally determined the methylation status of 190 CpG

islands on chromosome 21 using 297 amplicons [21]. We

extracted data for DNA methylation of CpG islands from this

dataset for four cell types: leukocytes, fibroblasts, HEPG2 and

HEK293. For each CpG island in each cell type, we calculated

values for the following feature classes separately as described in

the methods section: (1) distances to transcription start sites, (2)

CpG island-specific attributes (e.g., CG content, CG ratio), (3)

genomic attributes (e.g., number of surrounding exons, tran-

scripts), (4) repeat, Alu-Y and DNA/DNA alignment features, (5)

single nucleotide polymorphisms (SNPs), (6) periodic CpG

distances, (7) closest CpGs, (8) sequence - dinucleotides, (9)

sequence - tetranucleotides, (10) CpG flanking sequence, (11)

splice sites, (12) transcription factor binding sites, (13) DNA

structure, (14) evolutionary conservation, (15) histone modification

data. Using the complete set of features, we applied the following

machine learning algorithms to assess their performance on CpG

island methylation prediction: (A) decision trees (J48), (B) naive

Bayes, (C) k-nearest neighbor, (D) K* [33], (E) random decision

forest, (F) and support vector machines with Gaussian radial basis

function and (G) linear kernel. To ensure a fair comparison, all

analyses have been repeated ten times with a ten-fold cross-

validation. Model selections have been performed for each

classifier, if required. Using the most accurate classifier, we

evaluated the suitability of all 15 feature classes for predicting

DNA methylation of CpG islands. To this end, we trained and

evaluated support vector machines with RBF kernel for all 15

feature classes and four cell types separately and evaluated their

performance. With these results in hand, we extended the existing

methylation data to the whole genome, by predicting the unknown

methylation status of all CpG islands in the human genome. To

further evaluate the generalizability of our method, we took

a whole-genome DNA methylation dataset from the ENCODE

consortium [32] and trained our classifier on all CpG islands from

chromosome 21. We achieved an accuracy of 90%, while

predicting the remaining chromosomes and comparing the

predicted to the experimental methylation state.

Machine Learning Algorithms
Table 1 summarizes the performance of each machine learning

algorithm. To ensure a fair comparison of different algorithms and

kernels, model and parameter selections have been implemented

for all algorithms, as required. All values are an average of ten

repetitions of ten-fold cross-validations. Support vector machines

(SVMs) outperformed other machine learning techniques in most

datasets. We could not measure a significant difference between

linear and radial basis function (RBF) kernels across all cell types.

Since the explanatory power of the accuracy relies strongly on the

underlying distribution (count of methylated and unmethylated

CpG islands), we used Matthews correlation coefficient (MCC) for

comparing the machine learning algorithms. The maximal

correlation coefficient achieved is 0.825 when predicting the

methylation status of leukocytes with a linear kernel. In general,

SVMs outperformed other machine learning approaches in our

comparison. However, we could not measure a significant

difference between RBF and linear kernels across all cell types.

The second best classifiers according to Table 1, are random

decision forest and the k-nearest neighbor (kNN) algorithm. In

essence, kNN is based on measuring the numerical distance of

feature values to methylated or unmethylated instances and

assigning the state of the closer instance. The good performance of

this algorithm indicates that certain features must be correlated to

DNA methylation. This again supports the assumption that there

are DNA- and sequence-related features that increase the

probability that cytosines are getting methylated. Furthermore,

Table 1 shows that K*, and naive Bayes are not suitable for good

DNA methylation predictions. Decision trees show a decent

performance in HEK293 and Leukocytes, but fail to predict the

Table 1. Machine learning algorithm performance.

HEPG2 HEK293 Leukocytes Fibroblast

LIBSVM (RBF
kernel)

0.54360.30 0.71660.01 0.80160.02 0.63560.19

LIBSVM (linear
kernel)

0.38260.24 0.74360.17 0.82560.14 0.56460.18

Random Decision
Forest

0.36360.28 0.66760.19 0.76560.18 0.33360.32

kNN 0.38360.27 0.65460.19 0.68360.21 0.40760.28

Decision tree (J48) 0.20460.24 0.52660.20 0.62960.26 0.21460.30

K* 0.12860.33 0.38160.36 0.39360.36 0.31260.40

Naive Bayes 0.05760.21 0.11760.26 0.14660.22 0.06460.24

Performance comparison of different machine learning algorithms for the task
of DNA methylation prediction. We measured Matthews correlation coefficient
(MCC) for every algorithm and every cell type using all features. The values
shown in this table are the average of ten repetitions using ten-fold cross-
validation.
doi:10.1371/journal.pone.0035327.t001
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other two cell types. Consequently, it is possible that they fail to

accurately predict DNA methylation on unknown datasets.

Features
To evaluate the predictive performance of our features and to

analyze, which conditions make cytosines more prone to getting

methylated than others, we divided the generated set of features.

One feature set was created for every cell type and every feature

class, resulting in 4.15= 60 feature sets. We performed each

experiment for every feature set using support vector machines

with RBF kernel. The performance for each class of features in

each cell type is shown in Table 2. Figure 1 gives an impression

which genomic and non-genomic features are correlated to DNA

methylation across all cell types. Taking the accuracy as a measure

of performance is not recommended, because the underlying data

is unbalanced. Thus, assigning all CpG islands the unmethylated

state would result in an accuracy between 60% and 74%. A better

measure is the MCC, since it takes both states (methylated and

unmethylated) equally into account and is thus independent of the

class distribution. An MCC of -1 denotes a perfect inverse

prediction, whereas an MCC of 1 denotes a perfect prediction. An

MCC of 0 corresponds to an average random prediction

independent of the underlying class distribution. In this section,

we are going to report and discuss all features in order of their

predictive power. This is the same order as they appear in the

referenced tables and figures.

The best average performance is achieved when using all

features. This confirms a correlation of DNA methylation to

features from different categories. Nearly the same performance is

achieved when using exclusively the histone modification feature.

This indicates that DNA methylation of CpG islands is strongly

correlated to histone modifications as previously suggested by

several other studies [29,34,35]. This result is also a confirmation

of the proposed method, since recent studies have shown that the

basic DNA methylation profile during early development is

probably mediated through histone modifications [10,36].

Before establishing the tissue-specific DNA methylation profile,

some genomic regions are wrapped around nucleosomes that

contain methylated lysine 4 of histone H3 (mono-, di- or

trimethylation - H3K4me). Other nucleosomes contain unmethy-

lated H3K4. This methylated H3K4me mark prevents de novo

methylation of CpG islands in the embryo [10]. Since these

findings are tissue-independent, other researchers have detected

inverse relations between DNA methylation and H3K4me or

H3K27me for multiple cell types [37,38]. The histone modifica-

tion dataset used in this study (that includes separate data for

H3K27 and H3K4 mono-, di- and trimethylation) has been

measured in human CD4 T-cells. The strong predictive

performance of this feature class across all cell types supports

these recent findings and confirms that H3K4me marks dictates

methylation of CpG islands across several cell types. Another

strong correlation exists between DNA structure and methylation.

This has already been confirmed in other prediction approaches

[28,39]. Bock et al. report that the DNA rise (displacement

between two base pairs along the helix axis) increases generally in

CpG islands, compared to other genomic regions, while the DNA

twist (amount of rotation between two base pairs around the helix

axis) decreases. Methylated CpG islands seem to enhance this

effect and have a much higher difference in DNA rise/twist than

unmethylated CpG islands. Interestingly, this feature class per-

forms in all different cell-types nearly as well as histone

methylation marks.

Typical feature classes, that have already been used by the first

CpG island methylation prediction approaches, are DNA

Table 2. Single feature class performance.

Feature name HEPG2 HEK293 Leukocytes Fibroblast

ACC MCC ACC MCC ACC MCC ACC MCC

All features 0.85 0.54 0.87 0.72 0.91 0.80 0.87 0.64

Histone modification data 0.83 0.52 0.83 0.66 0.91 0.82 0.86 0.68

DNA structure 0.82 0.47 0.85 0.68 0.85 0.67 0.83 0.53

Sequence - dinucleotides 0.80 0.34 0.86 0.70 0.89 0.76 0.82 0.54

CpG island-specific attributes 0.79 0.41 0.86 0.69 0.87 0.71 0.81 0.50

Sequence - tetranucleotides 0.78 0.34 0.86 0.69 0.89 0.75 0.79 0.45

Genomic attributes 0.82 0.47 0.83 0.63 0.82 0.60 0.81 0.49

Transcription factor binding sites 0.81 0.41 0.80 0.58 0.85 0.65 0.82 0.48

Closest CpGs 0.82 0.43 0.78 0.52 0.81 0.56 0.82 0.45

Distances to transcription start sites 0.76 0.19 0.72 0.40 0.73 0.36 0.77 0.24

Periodic CpG distances 0.76 0.26 0.67 0.27 0.73 0.38 0.76 0.20

Single nucleotide polymorphism (SNP) 0.77 0.23 0.67 0.27 0.71 0.31 0.78 0.27

Splicing sites 0.80 0.35 0.65 0.19 0.72 0.34 0.77 0.15

CpG flanking sequence 0.79 0.32 0.68 0.29 0.65 0.13 0.78 0.28

Evolutionary conservation (PhastCons) 0.78 0.16 0.65 0.26 0.68 0.21 0.77 0.18

Repeat, ALU-Y and DNA/DNA alignment features 0.76 0.11 0.65 0.23 0.68 0.22 0.77 0.08

Unmethylated instances [%] 0.74 0.60 0.65 0.74

Comparison of predictive performances of single feature classes. All values are taken from SVM predictions with feature files that only contain features belonging to the
given class. Each prediction is an average of a ten-fold cross-validation with ten repetitions. The table shows the accuracy (ACC) and Matthews correlation coefficient
(MCC) for each cell type and each feature class and is sorted by average MCC. Please note that the underlying data is imbalanced (because CpG islands tend to be
unmethylated) and the average accuracy when assigning all CpG islands the unmethylated state is 0.71.
doi:10.1371/journal.pone.0035327.t002
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sequence (di- or tetranucleotides) and CpG island specific

attributes (such as CG content, CG observed/expected ratio,

etc.) [25,26]. They have been proven to be good features for

discriminating between methylated and unmethylated CpG

islands. Using just the dinucleotides, classification of methylated

CpG islands in some cell types is even superior to the DNA

structure feature class. This again confirms the strong correlation

between DNA sequence and methylation. Genomic attributes and

transcription factor binding sites also have a good correlation to

DNA methylation. Genomic attributes include, e.g., the number of

exons overlapping with the CpG island and it has been shown that

exons tend to be higher methylated than introns [40,41]. Thus,

this is an evident feature for DNA methylation predictions. Using

Transcription factor binding sites (TFBS) to predict DNA

methylation of CpG islands has been introduced by Fang et al.

[27]. We calculated the binding scores of 1539 potential

transcription factors in all CpG islands of our input dataset. 456

of those had significant binding scores. Those have been taken to

calculate the features and measure their correlation to DNA

methylation. We observed that there are no single transcription

factors with a high correlation to DNA methylation, whereas the

entirety of all TFBS in this class has a good prediction score. TFBS

are typically modeled by creating position frequency matrices for

target sequences of a transcription factor. As a result, TFBS mainly

depend on the underlying DNA sequence. Thus, having in mind

that DNA sequence, in general, is a good discriminator for CpG

island methylation, it is possible that the correlation between DNA

methylation and TFBS is simply due to the underlying DNA

sequence.

The periodic CpG distances features are based on hypotheses of

Jia et al. and Zhang et al. [21,30]. Both reported that if CpGs inside

a CpG island occur at distances of approximately x.9 base pairs

(1ƒxƒ5), the CpG island tends to be methylated. Based on these

findings, we added features reflecting this hypothesis. But our

research shows that this hypothesis is not suitable to discriminate

between methylated and unmethylated CpG islands. We further

investigated this hypothesis by adding a novel, more generalized

feature class, i.e., the average distance between CpGs in CpG

islands. These features perform slightly better than considering

only multiples of nine, but should still be combined with other

feature classes to get overall good predictions. Another hypothesis-

driven feature class is the noticeable hypomethylation when

approaching transcription start sites (TSS). Eckhardt et al. reported

an almost unmethylated core region of about 61000 bps of each

TSS [20] and Zhang et al. propose that CpG islands, overlapping

a TSS, are mostly unmethylated in differentiated cells [21]. Our

research shows that this feature is not generalizable. This means

that a CpG island is more likely to be unmethylated when it is

close to a TSS, but it does not mean anything if it is not. Probably

just like this feature class, other feature classes only come into play

in special conditions but are not eligible for predicting the

methylation status of CpG islands genome-wide.

Figure 1. CpG island methylation predictions with individual feature classes reveal, which features are correlated to the
epigenome. The figure shows the predictive performances of feature classes, averaged across HEPG2, HEK293, leukocytes and fibroblasts. It reveals,
which features are correlated to DNA methylation and which are unlikely to be related to DNA methylation. Each value is an average of a ten-fold
cross-validation with ten repetitions. The figure shows the accuracy (ACC), Matthews correlation coefficient (MCC) and the area under the receiver
operating characteristic curve (AUC) and is sorted by average MCC.
doi:10.1371/journal.pone.0035327.g001
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Furthermore, we investigated correlations between DNA

methylation and single nucleotide polymorphisms (SNPs) and

conclude that there is no general relation between those. The same

holds true for correlations between DNA methylation and splicing

sites. But, for SNPs, it might be possible to use them as specific

predictors for DNA methylation, if the data is obtained from the

same samples (see, e.g., Bell et al. [42]). Evolutionary conservation

is a feature which seems to be correlated to DNA methylation,

because CpG islands are evolutionarily conserved regions. This

feature is probably more appropriate to detect CpG islands itself,

but not for the methylation state. The so called PhastCons, which

have previously been included by other groups [28,39], did not

perform well in our study. Another controversial hypothesis-driven

feature is the flanking sequence preference of DNA methylating

proteins. Several groups reported different flanking sequence

preferences of CpGs that makes them more prone for getting

methylated [21,31,43]. In our studies, trying to predict the DNA

methylation status by flanking sequence preference does not lead

to good results. However, this does not mean that there is no

flanking sequence preference. For example, Oka et al. [44]

experimentally confirmed the results by Handa et al. [31] and

detected a flanking sequence preference of DNMT3A. Overall,

one has to consider that de novo methylation of DNA is performed

by the DNA methyltransferase enzymes DNMT3A and DNMT3B

complexed with DNMT3L [10]. Comparing this low number of

DNA methylating enzymes with the number of CpGs in the

human genome, one can imagine that it is very hard to derive

specific flanking sequences to discriminate between methylated

and unmethylated CpGs. Because, even when trying to derive

flanking sequences for every enzyme separately, one would have to

divide the set of all CpGs in only three classes: methylated by

DNMT3A, methylated by DNMT3B and unmethylated. Hence,

our studies show that there is no general flanking sequence, which

makes certain CpGs more prone to methylating proteins than

others.

Table 2 shows that the absolute predictive performance of some

feature classes varies between different cell types. This could be

due to technical reasons, like the variability in the number of

training instances between the different cell types, or the varying

ratios between methylated and unmethylated CpG islands. It is

also possible that these deviations come from biological reasons,

e.g., in some cell types, different features are more correlated to

DNA methylation than in others. But, Table 2 also shows that the

relative predictive performance of all feature classes is fairly

consistent for all cell types. Thus, in case of DNA methylation

predictions for novel datasets, we recommend a union of the best

performing feature classes: histone modification data is always

recommended, but might sometimes not be available. The DNA

structure feature set can be calculated from the sequence alone,

same holds true for the dinucleotides, CpG island specific

attributes and Closest CpGs. These attributes, together with the

genomic attributes features, form a good set for novel predictions.

All features sets below Closest CpGs (see Table 2) are not

recommended, because they are too inaccurate. The tetranucleo-

tides are redundant to the dinucleotides. The transcription factor

binding sites might be included in novel feature sets, but they are

slower and more difficult to calculate, compared to the other

sequence-based features.

Prediction of CpG Island Methylation Status
We downloaded the coordinates of all CpG islands in the

human genome from UCSC [45]. With the whole feature dataset

for every cell type, we trained SVMs and took the best parameters

to predict the methylation status of all CpG islands in the human

genome. The methylation landscape of each cell type across the

whole genome is visualized in Figure 2. We have set up

a webservice at http://www.cogsys.cs.uni-tuebingen.de/

software/dna-methylation/that allows users to select one or two

cell types, a chromosome number and then view or compare the

methylation status of CpG islands. This webservice includes all

experimental data in the NAME21 and HEP datasets. Addition-

ally, all predicted data for the cell types measured in the NAME21

data have been included. The webservice allows users to compare

the CpG island methylation status of two cell types by

distinguishing between CpG islands that are methylated, un-

methylated and differentially methylated in both cell types. The

data can be visualized using the UCSC genome browser [46]. An

approximate score is generated for each prediction that represents

the certainty of the prediction. In other words, this score represents

the distance to the SVM hyperplane as per mille of the maximum

predicted distance.

Validation
To further assess the generalizability of our method (SVMs with

RBF kernel, using all described features), we evaluated it on

a whole-genome DNA methylation dataset from the ENCODE

consortium [32]. Briefly, we mapped the probes to CpG islands

(resulting in 17,588 instances), trained our classifier with cross-

validation on a subset of the data and used the resulting model to

predict the methylation state of the remaining CpG islands (more

details can be found in the methods section). Afterwards, we

counted the confusion matrix by comparing the experimentally

determined methylation state with the predicted methylation state

of all CpG islands that have not been used for the training.

Depending on the size of the training and validation set, we

achieved accuracies between 87.2% (trained on 10% of the data)

and 92% (trained on 50% of the data), and MCCs from 0.48

(10%) to 0.58 (50%). Thus, predictive performance of the method

increases with the size of data, available for training. To validate

our NAME21 predictions, we further composed a training set,

consisting of all CpG islands in chromosome 21 (resulting in 224

instances for which we had data in out validation dataset).

Afterwards, we predicted with this model a validation set,

consisting of all CpG islands in other chromosomes and compared

the results to the experimentally determined methylation state.

This resulted in an accuracy of 90% and an MCC of 0.43. Please

see Table 3 for more detailed results on these validation runs.

Evaluation of a Quantitative Prediction Approach
To explore the possibility of a quantitative DNA methylation

prediction approach, we also employed support vector regression

(SVR) models. Briefly, a SVR model is trained by using the actual

methylation percentage of a CpG island instead of the binary

distinction between methylated and unmethylated CpG islands.

Consequently, these regression models return a methylation

percentage, instead of a binary attribute. To assess the suitability

of this classifier, we used the ‘‘GM12878 - replicate 10 dataset from

the ENCODE consortium [32] and processed it as described in

[sec:mm:validation]the validation subsection of the methods

section. We trained our classifier on 10% of the data and

predicted the remaining 90%. For evaluating these quantitative

models, error rates measuring the average difference between the

actual and the predicted values are usually employed. We used the

average absolute error (AAE) for performance evaluations (see

Equation 1) and achieved an AAE of 0.117. This means that each

predicted CpG island methylation value deviates on average by

611.7%.

Predicting CpG Island Methylation States
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On the first glimpse, this is a good result. But regarding the fact

that the genome-wide average methylation of our input dataset is

only 9%, the SVR failed to successfully predict the few

hypermethylated CpG islands. However, instead of predicting

the actual amount of methylated CpGs in a CpG island, it is more

useful to predict the binary methylation state of it. For example, if

a CpG island is 80% methylated, it most likely suppresses gene

expression, whereas it is very unlikely to suppress gene expression

with 20% of all CpG’s being methylated. Thus, comparing the

results of the SVR with our binary classifier validations, binary

predictions of CpG island methylation are more accurate and lead

to more meaningful results.

Performance Comparison with Other Approaches
Comparing the performance of different methylation prediction

approaches is difficult, because the procedure is usually a multi-

step workflow (extracting CpG island coordinates, extending them,

generating features, choosing a machine learning approach,

performing the model selection, etc.) and there is no stand-alone

application which can be requested from the authors of other

published methods to make a fair comparison. Furthermore, some

methods are tailored to a specific dataset and there is no standard

operating procedure that can be used for performance compar-

ison. Thus, the comparison has to be done by using the same input

data and evaluation technique of those, who previously published

methylation prediction results. Unfortunately, many datasets are

not available anymore. We were unable to obtain a human brain

dataset, used in Das et al. [26] and Fang et al. [27]. Further on,

Bock et al. [28] and Fang et al. used data from the HEP pilot phase.

Unfortunately, there is only data from the production phase of the

HEP project available. Fan et al. [29] used a leave-one-out cross-

validation statistic to validate their dataset, what makes their

results hard to compare to others, because most other approaches

are using a ten-fold cross-validation. However, the methylation

prediction approach of Bock et al. is one of the latest approaches

and probably the approach with highest impact. The CpG island

coordinates of the training dataset and methylation states for

human blood lymphocytes, used by Bock et al., are publicly

available. Furthermore, they also used support vector machines,

which again makes their results well comparable to ours. Thus, we

decided to make a comparison to Bock et al., and add other

approaches, who also published a comparison to Bock et al., to our

table.

We took the CpG island coordinates and the binary methylation

state of the human blood lymphocytes dataset and lifted them to

the NCBI 36 release of the human genome. Afterwards, we

generated features and trained SVMs exactly as we did for the

NAME21 data. The prediction results of our and other methods

are shown in Table 4. Our maximal prediction accuracy on their

dataset is 95.76% compared to 91.5% of Bock et al. and our

maximum correlation coefficient is 0.87, compared to 0.74. This

reflects the quality and suitability of the features used in our

approach. For example, Bock et al. did not use the histone

modification profiles, which are the best performing feature class

in our approach. We also added the results of a comparison on the

HEP pilot phase data to Table 4. Please note that comparisons on

Figure 2. Predicted whole-genome methylation landscape for all four cell types. This figure visualizes the methylation landscape in all four
cell types, compared to the total number of CpG islands. One bar represents the number of methylated instances per cell type as percentage of the
total number of CpG islands in the given chromosome. The largest number of methylated CpG islands can be found in HEK293, whereas HEPG2 have
an almost unmethylated genome. The few CpG islands in chromosome Y are hypermethylated in most cell types, compared to the other
chromosomes.
doi:10.1371/journal.pone.0035327.g002

Table 3. Validation on experimental data.

Trained
on

Total
CGIs

CGIs in training
set

CGIs in test
set ACC MCC

CHR21 17588 224 17364 90.01 0.43

10% 17588 1758 15830 87.18 0.48

25% 17588 4397 13191 91.68 0.56

50% 17588 8794 8794 92.02 0.58

Validation of the proposed method (SVMs with RBF kernel, using all described
features) on experimental data. The experimental dataset has been divided into
a training and a test set. The training set was used for training and the test set
exclusively for the comparison with prediction results and calculation of
accuracy (ACC) and Matthews correlation coefficient (MCC). We performed this
evaluation on four different training datasets: consisting of all CpG islands
(CGIs) from chromosome 21, randomly picked 10%, 25% and 50% of the data.
doi:10.1371/journal.pone.0035327.t003
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HEP data are popular but not recommended, because most

amplicons they used do not fulfill CpG island criteria defined by

Gardiner et al. [5]. This difficulty with the HEP data is also

confirmed by Bock et al. and should be considered when

comparing different approaches.

The Application
The Java application that has been developed to preprocess the

input datasets and generate the features for this study is available

at http://www.cogsys.cs.uni-tuebingen.de/software/dna-

methylation/. This page also holds a documentation for the

application, as well as example datasets, and the predicted

methylation states for the NAME21 dataset. The application can

read tab-separated files, containing probe or CpG island locations

and methylation intensities. It can map probes to CpG islands, lift

coordinates between different releases of the human genome and

generate features for all 15 mentioned feature classes. The

generated feature file can then be used with various machine

learning applications (e.g., LIBSVM [47]) to train a model and

evaluate classifiers or feature classes.

Materials and Methods

Datasets
This study is based mainly on a CpG island methylation dataset

from the NAME21Consortium. The dataset, published by Zhang et

al., is freely available [21]. Zhang et al. took the promoter regions of

all protein coding genes on chromosome 21 inHomo sapiens, applied

a window from 2000 bps upstream to 500 bps downstream of the

transcription start site and searched for CpG enriched regions, using

the Takai-Jones criteria [48]. These CpG islands have been

analyzed in five different cell types: HEPG2 - a hepatocellular liver

carcinoma cell line, trisomic fibroblasts - derived from an individual

with Down syndrome, HEK293 - a human embryo kidney cell line,

fibroblasts, and leukocytes. The methylation status of every cytosine

has been determined using overlapping amplicons, in a way that

most CpGs are covered by multiple amplicons, resulting in 297

amplicons for 190 genes. On the experimental side, they used

bisulfite conversion and subclone sequencing to detect methylated

CpGs [49]. We took their raw data and parsed it into a cell type

specific data structure of CpG islands and CpGs. Methylation

information from multiple amplicons for single CpGs have been

averaged. To determine the methylation status of a CpG island, we

averaged the methylation status of all CpGs in that CpG island and

considered it methylated, if this value is above 60% (same threshold

as in Bock et al. [28]).

After applying these constraints, our dataset consists of 56

methylated (112 unmethylated) instances for leukocytes, 73

methylated (117 unmethylated) instances for HEK293, 44

methylated (142 unmethylated) instances for HEPG2, 43 methyl-

ated (142 unmethylated) instances for fibroblasts, and 32

methylated (137 unmethylated) instances for trisomic fibroblasts.

During evaluation of these datasets, we decided to remove the

trisomic fibroblast dataset for this study, because it contains only of

32 methylated CpG islands with 81% of all CpG islands being

unmethylated. The low number of training samples in this highly

imbalanced dataset made it unsuitable for reliably train support

vector machines with a ten-fold cross-validation.

We extended the sequence to analyze for each CpG island from

the given coordinates by the primer sequence length and 500 bps

up- and downstream to also cover nearby effects, which might

have an influence on cytosine methylation. For example, cis-acting

transcription factors might lie in the sequence, flanking the CpG

island [25]. This window size has also been chosen by Fan et al.

[29] and approved as a good choice by Fang et al. [27]. We

double-checked the data by retrieving every single CpG island

sequence from Ensembl and comparing it to the sequence given in

the source data.

Furthermore, we used two datasets from the ENCODE

consortium [32] to evaluate a quantitative DNA methylation

prediction approach and to validate our method. For the

quantitative DNA methylation prediction approach, we used the

‘‘ENCODE HudsonAlpha Methyl27 GM12878 replicate 10

dataset [50] and to validate our method, the ‘‘ENCODE

HudsonAlpha MethylSeq HEPG2, Pcr2x, replicate 10 dataset

[51] has been used.

Machine Learning Algorithms and Scoring
In order to evaluate the predictability of our features, various

machine learning algorithms have been considered. We used

support vector machines (SVMs) with linear and radial basis

function (RBF) kernels, decision trees, naive Bayesian networks, k-

nearest neighbor, random decision forest and the K* (KStar)

classifier.

With each of these machine learning algorithms, we assessed the

predictive performance using the complete feature dataset for each

cell type separately. The accuracy, Matthews correlation co-

efficient (MCC) and the area under the receiver operating

characteristics curve (AUC) have been calculated for each

prediction. The accuracy is the percentage of all predictions that

are correct. The MCC is a performance measure that is especially

suited for imbalanced binary datasets. It calculates a correlation

coefficient between -1 (perfect inverse prediction) and 1 (perfect

prediction), where 0 is an average random prediction independent

of the underlying class distribution. This is a good measure for

DNA methylation predictions because CpG islands tend to be

unmethylated. For example, with 71% of all CpG islands being

unmethylated, simply classifying all data as unmethylated would

already result in an accuracy of 71% but the MCC would be 0.

For a detailed discussion on these scoring metrics and their

calculation, please see the work of Baldi et al. [52].

To measure the performance of support vector regression

models, we employed the average absolute error (AAE), which is

an error rate that measures the average difference between the

actual (targeti) and the predicted (predictioni) methylation values

(see Equation 1).

Table 4. Comparison of different methylation prediction
approaches.

Year Authors Dataset CC Accuracy

2006 Fang et al. [27] HEP pilot phase data 0.42 81.48

2006 Bock et al. [28] HEP pilot phase data 0.15 74.76

2006 Bock et al. [28] Human peripheral blood
lymphocytes

0.74 91.5

Our approach Human peripheral blood
lymphocytes

0.87 95.76

Our approach NAME21 (Leukocytes) 0.80 91.13

The predictive results of our method, compared to other methods. The table
shows that our method outperforms other previously published methods.
doi:10.1371/journal.pone.0035327.t004
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All experiments have been performed using a ten-fold cross-

validation. In addition, ten repetitions with different seeds have

been used in all experiments, resulting in 100 experiments, which

were averaged for each reported value. For the SVM predictions

(classification and regression), the LIBSVM [47] and LIBLINEAR

[53] have been used. The WEKA library [54] has been used for all

other classifiers.

Validation
The HEPG2 dataset from ENCODE, used for the validation of

our method, is a binary dataset. It contains sequence regions that

have a score of 0 (unmethylated) or 1000 (methylated). All

sequence regions from this dataset have been mapped to CpG

islands (using coordinates from UCSC) and each CpG island is

assigned a methylation value, based on the average methylation of

all sequence regions, overlapping with the CpG island. Sequence

regions that did not overlap with CpG islands have been

discarded. Afterwards, we removed all differentially methylated

CpG islands from our dataset. For example, if a CpG island has

two overlapping sequence regions and only one of them is

methylated, even with the experimental data we can not decide if

the whole CpG island is methylated or not. Thus, we removed all

CpG islands that are between 40% and 60% methylated.

Afterwards, we separated this dataset into a training and a test

set. This is performed, e.g., by randomly picking 10% of all CpG

islands using a stratified sampling procedure. This means, our

training set has the same percentage of methylated CpG islands as

the whole dataset. For another validation, we simply took all CpG

islands from chromosome 21 into our training set and declared all

CpG islands from other chromosomes as test set. After splitting the

dataset, we trained a support vector machine with RBF kernel,

using all features, ten repetitions and a ten-fold cross-validation on

this training set. With the resulting model, we predicted the

methylation status of the remaining CpG islands and compared

them with the experimentally determined methylation status. This

ensures an accurate validation, because no CpG islands that have

been used to train the method are used to evaluate the predictions.

We used a similar procedure for the evaluation of our

quantitative prediction approach. The GM12878 dataset from

ENCODE, which is a non-binary dataset, has been used for this

purpose. We mapped all sequence regions from this dataset to

CpG islands annotated by UCSC, averaged the methylation

values of all overlapping regions and removed regions that are not

overlapping with CpG islands. We then picked 10% of these CpG

islands as in the HEPG2 ENCODE dataset and evaluated our

regression model by comparing all predicted methylation values

with the experimental methylation values.

Features
If not explicitly stated, all data comes from Ensembl v47. This

Ensembl version is based on the NCBI 36 release of the human

genome. We used coordinates and sequences from the NCBI 36

release for all studies. For all UCSC data, we used the hg18

version (which corresponds to NCBI 36). All features were

calculated on this release of the human genome. We used the

UCSC LiftOver tool (http://genome.ucsc.edu/cgi-bin/

hgLiftOver) to map all data on this release of the human genome.

Our feature dataset consists of 948 features from 15 categories:

1) Distances to transcription start sites (4 features).
Several groups observed that the methylation of CpGs

decreases gradually when approaching the transcription

start site (TSS) of a gene [20,21]. We included this

observation by measuring the distance to the closest gene

and closest protein coding gene, based on the Ensembl

database. Each value has been added normalized and

logarithmized.

2) CpG island-specific attributes (7 features). CG

content, CG ratio, CG observed/expected ratio [5], CG/

TG ratio (with and without the reverse strand), AT/CG

ratio and a boolean flag, if the CpG island is in a coding

region have been added as features.

3) Genomic attributes (11 features). We included the

percentage of repetitive base pairs (CpG island length/total

length of all self-alignments), number of genes overlapping

with the CpG island, total length of all overlapping genes,

number of exons overlapping with the CpG island, total and

average length of all overlapping exons, number of

transcripts for all overlapping genes and number of

transcripts divided by number of overlapping genes. For

completeness: CpG island length, percentage of CpGs in the

whole CpG island and average distance between CpGs have

been added to this category.

4) Repeat, Alu-Y and DNA/DNA alignment features
(19 features). We implemented features, representing

DNA/DNA self alignments in the CpG island region,

various features covering repetitive elements in the CpG

island region (e.g., total number of repeats, length of repeats)

and multiple features analyzing the Alu-Y repeat. This

special AGCT-repeat has been found to occur often in

methylated CpG islands [27,55]. All features were calculat-

ed for three different window sizes: 6900 bp, 6400 bp and

exactly covering the CpG island.

5) Single nucleotide polymorphism (8 features).
Known single nucleotide polymorphisms (SNPs) have been

retrieved from the Ensembl database for various window

sizes, flanking the CpG island. The number of all SNPs and

the distance to the closest SNP from the center of the CpG

island have been added to the feature list. Additionally, the

same values have been calculated especially for T/C SNPs,

because of its special role in bisulfite sequencing [56,57].

6) Periodic CpG distances (15 features). Jia et al.

reported a correlation between DNA methylation and

a periodic distribution of CpGs [30]. They state that if the

CpGs are at a distance of eight to ten base pairs, they are

more likely to be methylated. Zhang et al. validated these

findings and reported a significant enrichment of distances

9, 18 and 27 bps between CpGs in highly methylated

amplicons [21]. Based on these findings, we calculated

distance scores specially for multiples of nine from 9 to

45 bps in both directions of a CpG. While studying the

flanking sequences of methylated CpGs, we realized

a significant difference in CpG occurrence at a distance of

48 bps (CpGs occur almost twice as frequently as on other

positions). For this reason, we added features representing

the CpG occurrence at a distance of 48 bp on both strands,

additionally to the multiples of nine. All values have been

averaged for all CpGs in the CpG island and three

additional features have been added, which represent sums
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of the multiples of nine, of the two 48 bps features and a sum

of these two sums.

7) Closest CpGs (6 features). In addition to periodic CpG

distances, feature scores have been implemented which

measure the distance to the three closest CpGs in general.

The features are calculated by measuring the distances to

the three closest CpGs for all CpGs in a CpG island. The

three smallest and the average of all values are added as

features.

8) Sequence - dinucleotides (16 features). We counted

the occurrences of all possible 16 dinucleotides in the CpG

island sequence and added these values, divided by the CpG

island length as features.

9) Sequence - tetranucleotides (257 features). We did

the same for all 256 tetranucleotides. This also covers the

four base pair long Alu repeat (for which we also added an

additional feature that represents the total, not averaged

count of Alu repeats). Please note that combining this feature

class with the dinucleotides feature class might lead to

redundancies in the resulting feature set.

10) CpG flanking sequence (4 features). Several authors
claim to have found flanking sequences for DNA methyl-

transferases [21,31,43]. This means that methylated CpGs

have other flanking sequences than unmethylated CpGs.

Zhang et al. report that A/T nucleotides tend to occur more

often in flanking sequences of methylated CpGs, whereas C/

G flanks occur more often when the CpG pair is

unmethylated [21]. We took the flanking sequences 64 bp

and 620 bp for all CpGs in the dataset. We separated these

into methylated and unmethylated CpGs and calculated

position frequency matrices (PFMs) [58] for all these

sequences and for every cell type separately as follows:

Calculate a PFM for all methylated instances and a PFM for

all unmethylated instances. Divide the PFM of methylated

instances (by dividing the frequency of each nucleotide in

each position) by the PFM of unmethylated instances. This

leads to a total of four PFMs, separating methylated from

unmethylated instances that were used for each cell type:

two PFMs, specific for the cell type, with flanking sequence

sizes of 4 and 20 bp and two non-specific PFMs with the

same flanking sequence sizes. These PFMs have then been

applied to the CpG island sequences and a weight score,

covering the quality of the match and the significance, based

on the frequency of the actual sequence in the whole human

genome [59] is used as a feature. We used ModuleMaster

[60] to apply the PFMs to the sequences and calculate the

weight scores.

11) Splice sites (5 features). We used all four PFMs,

generated from SpliceDB [61] to identify splice sites. The

four PFMs correspond to mammalian frequency matrices of

splice sites for GT-AG and GC-AG pairs for donor and

acceptor sites respectively. These four features were in-

tegrated as weight scores (as described in 10) CpG flanking

sequence). Additionally, the number of hits from all PFMs has

been added as fifth feature.

12) Transcription factor binding sites (457 features).
Correlation between DNA methylation and transcription

factor binding sites (TFBSs) has already been reported by

several groups [20,26–28]. ModuleMaster [60] was applied

to calculate weight scores, as described in 10) CpG flanking

sequence, which we added to our feature database. The

transcription factors have been selected among a large PFM

database, consisting of transcription factor binding in-

formation from TRANSFAC professional, NUBIScan and

predicted TFBSs. This dataset is described in more detail by

Wrzodek et al. [60]. We took all CpG island sequences from

the NAME21 dataset and performed a matrix scan with all

PFMs on those. All PFMs which had a weight score below

one were removed, because of lack of significance (good

matches should have weight scores of at least five. Smaller

scores indicate that either the putative TFBS is not well

recognized by the PFM or that the putative TFBS occurs

very often by chance throughout the human genome). This

resulted in a total of 456 PFMs we took for this study. In

addition to these 456 features, we added the logarithm of the

sum of all TFBSs as feature.

13) DNA structure (43 features). Bock et al. have found

a statistically significant correlation between DNA structure

and CpG island methylation [28]. We used the data from

Gardiner et al. to calculate octamer sequence dependent

predicted DNA structure energies [62] (7th order hidden

Markov models) and added a total of 43 features,

representing these energy values.

14) Evolutionary conservation (4 features). Methylation

patterns tend to be evolutionarily conserved [63]. Siepel et al.

generated PhastCon elements, representing the evolutionary

conversation of a region [64]. We took the data from the

UCSC Genome Browser [45] and generated several

features, representing the evolutionary conservation of the

CpG island.

15) Histone modification data (92 features). The corre-

lation between histone modification and DNA methylation

has already been reported by several authors [10,36,65,66].

Fan et al. already tried to use histone modification marks for

predicting DNA methylation [67] and were quite successful

with it. Barski et al. [29] generated 23 genome-wide datasets,

covering 20 different histone modification variants

(H3K4me1, H3K4me2, H3K4me3, H3K9me1,

H3K9me2, H3K9me3, H3K27me1, H3K27me2,

H3K27me3, H3K36me1, H3K36me3, H3K79me1,

H3K79me2, H3K79me3, H3R2me1, H3R2me2,

H4K20me1, H4K20me3, H4R3me2, H2BK5me1) and

the distribution of H2A.Z, RNA polymerase II, and the

insulator binding protein CTCF. We used this data, mapped

it to each available CpG island and generated four

numerical features for each histone modification dataset

and CpG island. This results in a total of 92 histone

modification features per CpG island. It has been shown

that, e.g., H3K4me prevents DNA methyltransferase

enzymes from de novo methylating CpG islands [10]. Thus,

taking one dataset for all cell types allows for validation of

our method, because some histone modifications dictate

DNA methylation in the embryo.

Prediction of CpG Island Methylation Status
All CpG islands have been downloaded for the hg18 release of

the human genome from UCSC [45]. We generated feature sets

for every CpG island exactly as we did for our training data. The

LIBSVM svm-predict application [47] has been used with all

features to predict the unknown methylation states. Two

parameters (C and Gamma) for the RBF Kernel are necessary

to build a model for the predictions. These have been estimated

for each cell type by performing a grid parameter search on the

experimental data and calculating the ACC, MCC and AUC of

every parameter combination (parameter grids: C: 2{45 to 235,
Gamma: 2{55 to 27, for each step, the exponent has been
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increased by 2). The grid has been extended if a maximum ACC,

MCC or AUC lies on a border and refined to a smaller step size if

a peak has been found. We took the parameter combination for the

prediction that had the lowest combined score according to

equation 2. In all cases, this score matched the maximal MCC.

Score(i)~(ACCi{max
Vj

(ACCj)

z(MCCi{max
Vj

(MCCj))

z(AUCi{max
Vj

(AUCj))

ð2Þ
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44. Oka M, Rodić N, Graddy J, Chang LJ, Terada N (2006) CpG sites preferentially

methylated by Dnmt3a in vivo. J Biol Chem 281: 9901–9908.

45. Rhead B, Karolchik D, Kuhn RM, Hinrichs AS, Zweig AS, et al. (2010) The
UCSC Genome Browser database: update 2010. Nucleic Acids Res 38:

D613–D619.

46. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The
human genome browser at UCSC. Genome Res 12: 996–1006.

47. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines.

Available: Software available from the LIBSVM homepage at http://www.csie.
ntu.edu.tw/̃cjlin/libsvm. Accessed 2012 Mar 16.

48. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human

chromosomes 21 and 22. Proc Natl Acad Sci U S A 99: 3740–3745.

49. Schones DE, Zhao K (2008) Genome-wide approaches to studying chromatin
modifications. Nat Rev Genet 9: 179–191.

50. ENCODE HudsonAlpha Methyl27 GM12878 replicate 1. Downloaded from

the ‘‘ENCODE Data Coordination Center at UCSC’’. Available: http://
h g d ow n l o a d . c s e . u c s c . e d u / g o l d e n P a t h / h g 1 8 / e n c o d eDCC/

Predicting CpG Island Methylation States

PLoS ONE | www.plosone.org 10 April 2012 | Volume 7 | Issue 4 | e35327



w g E n c o d e H u d s o n a l p h a M e t h y l 2 7 /

wgEncodeHudsonalphaMethyl27GM12878r1.bed. gz. Accessed 2011 Mar, 30.
51. ENCODE HudsonAlpha MethylSeq HEPG2, Pcr2x, replicate 1. Downloaded

from the ‘‘ENCODE Data Coordination Center at UCSC’’. Available: http://

h g d ow n l o a d . c s e . u c s c . e d u / g o l d e n P a t h / h g 1 8 / e n c o d eDCC/
w g E n c o d e H u d s o n a l p h a M e t h y l S e q /

wgEncodeHudsonalphaMethylSeqRegionsRep1Hepg2Pcr2x.bed9.gz. Accessed
2011 Mar, 25.

52. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000) Assessing the

accuracy of prediction algorithms for classification: an overview. Bioinformatics
16: 412–424.

53. Fan R, Chang K, Hsieh C, Wang X, Lin C (2008) LIBLINEAR: A library for
large linear classification. The Journal of Machine Learning Research 9:

1871–1874.
54. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, et al. (2009) The

WEKA data mining software: An update. ACM SIGKDD Explorations

Newsletter 11: 10–18.
55. Kochanek S, Renz D, Doerer W (1993) DNA methylation in the Alu sequences

of diploid and haploid primary human cells. EMBO J 12: 1141–1151.
56. Hajkova P, el Maarri O, Engemann S, Oswald J, Olek A, et al. (2002) DNA-

methylation analysis by the bisulfite-assisted genomic sequencing method.

Methods Mol Biol 200: 143–154.
57. Bock C, Lengauer T (2008) Computational epigenetics. Bioinformatics 24: 1–10.

58. Stormo GD (2000) DNA binding sites: representation and discovery. Bioinfor-
matics 16: 16–23.

59. Aerts S, Loo PV, Thijs G, Moreau Y, Moor BD (2003) Computational detection

of cis-regulatory modules. Bioinformatics 19 Suppl 2: ii5–i14.
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