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Abstract

Background: Cardiopulmonary bypass (CPB) surgery initiates a controlled systemic inflammatory response characterized by
a cytokine storm, monocytosis and transient monocyte activation. However, the responsiveness of monocytes to Toll-like
receptor (TLR)-mediated activation decreases throughout the postoperative course. The purpose of this study was to
identify the major signaling pathway involved in plasma-mediated inhibition of LPS-induced tumor necrosis factor (TNF)-a
production by monocytes.

Methodology/Principal Findings: Pediatric patients that underwent CPB-assisted surgical correction of simple congenital
heart defects were enrolled (n = 38). Peripheral blood mononuclear cells (PBMC) and plasma samples were isolated at
consecutive time points. Patient plasma samples were added back to monocytes obtained pre-operatively for ex vivo LPS
stimulations and TNF-a and IL-6 production was measured by flow cytometry. LPS-induced p38 mitogen-activated protein
kinase (MAPK) and nuclear factor (NF)-kB activation by patient plasma was assessed by Western blotting. A cell-permeable
peptide inhibitor was used to block STAT3 signaling. We found that plasma samples obtained 4 h after surgery, regardless
of pre-operative dexamethasone treatment, potently inhibited LPS-induced TNF-a but not IL-6 synthesis by monocytes. This
was not associated with attenuation of p38 MAPK activation or IkB-a degradation. However, abrogation of the IL-10/STAT3
pathway restored LPS-induced TNF-a production in the presence of suppressive patient plasma.

Conclusions/Significance: Our findings suggest that STAT3 signaling plays a crucial role in the downregulation of TNF-a
synthesis by human monocytes in the course of systemic inflammation in vivo. Thus, STAT3 might be a potential molecular
target for pharmacological intervention in clinical syndromes characterized by systemic inflammation.
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Introduction

Cardiopulmonary bypass-assisted surgery initiates a systemic

inflammatory response induced by extrinsic (e.g. anesthesia,

contact activation within the extracorporeal circuit, endotoxemia)

and intrinsic (e.g. tissue damage, endothelial cell activation,

ischemia-reperfusion injury of myocardium) factors [1–3]. Mono-

cytes are important players in systemic inflammation and the main

producers of pro- and anti-inflammatory cytokines upon activation

of innate pattern recognition receptors [4]. Significant changes in

surface biomarkers on circulating monocytes such as HLA-DR

[5,6] and chemokine receptor CX3CR1 [7] have been observed in

critical illness. Moreover, monocytes activated by the extracorpo-

real circuit extravasate to peripheral tissues with upregulation of

adhesion molecule CD11b [8]. During this dysregulation of

inflammatory homeostasis, increased levels of pro-inflammatory

plasma mediators such as TNF-a, IL-6 and IL-8 are joined by

anti-inflammatory cytokines such as IL-10 and TGF-b [9–12].

Importantly, the net effect of these circulating inflammatory

mediators appears to be biased towards inhibition of innate

immune cells, thereby providing timely negative feedback.

However, the molecular and cellular mechanisms responsible for

suppression of the immune system after on-pump cardiac surgery

remain unclear [13].

The anti-inflammatory phase in systemic inflammation is

associated with a reduced TLR responsiveness of monocytes

[14,15]. Monocytes respond to LPS stimulation through the
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association of LPS/LPS-binding protein (LBP) with CD14 and

TLR4 [16,17], which results in NF-kB activation. Altered

monocyte reactivity to LPS after on-pump cardiac surgery by

plasma mediators may therefore be caused by reduced availability

of TLR ligands (i.e. free LPS), by upregulation of circulating LBP

[18] or lipoproteins [19]. Alternative explanations include

downregulation of TLR4 and the resulting inhibition of down-

stream signaling cascades [20,21], prevention of IkB-a degrada-

tion, the negative regulator of NF-kB [22,23], or finally, the effects

of signaling cascades [e.g. Signal transducer and activator of

transcription (STAT)3] activated by the prototypic anti-inflam-

matory cytokine IL-10 [14].

In the present study, we evaluated these possibilities in order to

identify the molecular mechanism behind the diminished response

of monocytes to LPS stimulation during human systemic

inflammation in vivo. Set against (pre-)clinical sepsis models,

CPB-assisted cardiac surgery allows serial sampling of cells and

plasma from the incitement, expansion, up to the resolution phase

of human systemic inflammation, as previously shown [24]. Only

patients with a favorable outcome were included in order to

provide a controlled system of inflammatory evolution. We tested

the capability of patient plasma isolated at different time points to

inhibit LPS-induced TNF-a and IL-6 synthesis by monocytes.

Subsequently, we tested the requirement of IL-10/STAT3

signaling for the effects of anti-inflammatory plasma on monocytes

ex vivo.

Results

Activation of the innate immune system after on-pump
cardiac surgery

As expected, cardiac surgery led to in vivo activation of the

innate immune system. Mean cell counts increased significantly

24 h after surgery for both the neutrophil (9.7962.74 vs.

3.1061.94?109/L, Fig. 1A) and monocyte (1.8760.89 vs.

0.5760.25?109/L, Fig. 1B) populations compared to baseline.

Accordingly, the pro-inflammatory CD14+CD16+ monocyte

subpopulation had expanded significantly 24 h after surgery

(0.5160.34 vs. 0.04460.025?109/L; Fig. 1C). These events were

paralleled by elevated plasma levels of C-reactive protein 24–48 h

after surgery (Fig. 1D), whereas we observed a transient

lymphopenia 4 h after surgery (Fig. 1E). Analysis of plasma

samples by multiplex immunoassay showed a marked increase of

biomarkers that have been associated with a deleterious course in

human systemic inflammation [25], including IL-6, IL-8, TNF-a,

MIF (all pro-inflammatory) and IL-10 (anti-inflammatory,

Fig. 1F). Thus, on-pump cardiac surgery leads to a temporary,

controlled activation of the innate immune system with both

strong pro- and anti-inflammatory signals.

Inhibition of LPS-induced monocyte TNF-a synthesis by
post-perfusion plasma

Next, we assessed the functional consequences of the dramatic

peri- and postoperative release of inflammatory mediators on

TLR-mediated monocyte activation. To study this, we stimulated

thawed PBMC from patients obtained at various time points with

E. coli LPS for 4 h in standard culture medium. Monocytes were

the major responders to LPS-stimulation in PBMC as determined

by intracellular TNF-a synthesis measured by FACS. However,

we found only a marginal decrease in TNF-a production by

patient monocytes in the course of CPB surgery (Fig. 2A).

Accordingly, TLR4 expression levels on monocytes did not

significantly change during the study period (TLR4 MFI Pre-op,

End-CPB, 24 h and 48 h after surgery was 2.461.3, 2.361.1,

2.661.5 and 2.361.6, respectively). We then stimulated fresh

whole blood samples obtained from patients at consecutive time-

points with LPS ex vivo. Importantly, we now found a marked

decrease of monocyte TNF-a production, which was maximal 4 h

after surgery compared to baseline (Fig. 2B). These findings

suggested that, although the intrinsic capacity of monocytes to

respond to LPS did not change, plasma factors released in the

course of on-pump cardiac surgery might influence their capacity

to synthesize TNF-a.

To test this, we next stimulated thawed patient PBMC isolated

before surgery with LPS in the presence of autologous plasma

obtained at different time points or with plasma from healthy

donors (control). Importantly, by using the same monocyte

population for all experimental conditions (see experimental setup

in Fig. 2C), we could specifically address the regulatory role of

plasma components released in the course of human systemic

inflammation on monocytes. As shown in Fig. 2D, we found

significantly reduced TNF-a production in the presence of plasma

obtained before surgery, at the end of CPB and maximal

suppression mediated by 4 h post-surgery plasma (all P,0.001

vs. control). Importantly, the number of TNF-a positive LPS-

stimulated monocytes in the presence of 4 h post-surgery plasma

was significantly lower compared to pre-operative and 24 h post-

surgery plasma (P,0.05 and P,0.001, respectively). Surprisingly,

we did not observe a similar inhibitory effect of 4 h post-surgery

plasma on IL-6 synthesis (Fig. 2E). Analysis of the mean

fluorescence intensities of TNF-a and IL-6 in LPS-stimulated

monocytes to compare their respective expression levels in the

different plasma milieus reproduced the same results (Fig. 2H).

Thus, plasma mediators released in the circulation 4 h after open

heart surgery strongly suppressed LPS-induced TNF-a but not IL-

6 synthesis by monocytes.

Since all patients analyzed had received dexamethasone pre-

operatively, we had to exclude that this anti-inflammatory agent

influenced our ex vivo monocyte assays. We therefore first

measured dexamethasone levels in consecutive patient plasma

samples and found that these were maximal in pre-operative

samples, but already significantly reduced 4 h post-surgery

(Fig. 2F). To further exclude the potential influence of steroids

on the effects of 4 h post-perfusion plasma, we enrolled a control

group that did not receive dexamethasone before surgery. The

clinical characteristics of these patients were comparable to the

previously analyzed cohort of patients (Table 1). We repeated the

ex vivo plasma assays as before and analyzed LPS-induced TNF-a
and IL-6 production by monocytes. Again, we found a significant

effect of 4 h post-perfusion plasma samples on TNF-a production

by monocytes (Fig. 2G). However, the inhibitory effects of Pre-op

and End-CPB plasma samples on TNF-a synthesis were not found

in the absence of dexamethasone. Moreover, there was no

suppression of IL-6 in any of the steroid-free conditions tested

(Fig. 2G). Representative results of a patient from the No-

dexamethasone group are shown in Fig. 2I. We inferred from

these data that 4 h post-perfusion plasma has a unique inhibitory

effect on LPS-induced TNF-a but not IL-6 synthesis by

monocytes.

Normal activation of p38 MAPK and NF-kB in the
presence of post-perfusion plasma

Next, we sought to elucidate the molecular mechanisms that

could account for the suppression of 4 h post-surgery plasma on

LPS-induced TNF-a production by monocytes. To test whether

this could be explained by either sequestration of LPS in post-

surgery plasma or reduced TLR4 expression on monocytes, we

evaluated for differences in activation of signaling pathways
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downstream of TLR4. To this end, we compared the effects of 4 h

vs. 24 h post-perfusion plasma samples from the same patient,

since the latter did not significantly reduce LPS-induced TNF-a
synthesis (see Fig. 2G). All three MAPK pathways i.e. p38, JNK/

SAPK and ERK are activated by LPS in monocytes [26]. Since we

found that the p38 MAPK pathway was most potently activated

by LPS, we assessed the activation of p38 MAPK in purified

monocytes isolated from healthy donors stimulated with LPS in

the presence of patient plasma obtained 4 h or 24 h (control) post-

surgery. As shown in Fig. 3A, there was no attenuation of p38

activation in monocytes after LPS stimulation in the presence of

4 h post-surgery plasma compared to control plasma. In contrast,

densitometric analysis of Western blots from 4 different patients

showed even slightly increased p38 MAPK phosphorylation in the

presence of suppressive 4 h post-surgery plasma (Fig. 3B). IkB-a
negatively regulates NF-kB by sequestering this transcription

factor in the cytosol [27]. LPS-mediated phosphorylation of IkB-a
induces its ubiquitination and degradation, resulting in the release

of NF-kB. Evaluation of IkB-a phosphorylation after LPS

stimulation showed similar kinetics in the presence of either 4 h

or 24 h post-surgery plasma (Fig. 3A,C). Thus, we inferred from

these results that suppression of LPS-induced TNF-a production

by monocytes mediated by 4 h post-surgery plasma is not due to

reduced TLR4 and subsequent p38 MAPK and NF-kB activation.

A regulatory role of STAT3 signaling induced by
inhibitory post-perfusion plasma

We next set out to assess the role of immunomodulatory

cytokines in our system. As shown above, we identified high levels

of the anti-inflammatory cytokine IL-10 in these plasma samples

(Fig. 1F). As monocytes/macrophages have been shown to be

both the main producers [28] and target cells of IL-10 [29], we

first evaluated the effect of IL-10 neutralization. Plasma samples

obtained 4 h post-surgery were pre-treated with anti-hIL-10 mAb

(10 or 100 mg/mL), or the appropriate isotype control (IgG2a,

100 mg/mL), before adding these samples back to PBMC in the

presence of LPS. As shown in Fig. 4A, we found that

neutralization of IL-10 partially reversed the inhibitory effects of

4 h post-surgery plasma on TNF-a synthesis by monocytes.

IL-10 activates the JAK1/STAT3 pathway by signaling

through the IL-10 receptor (IL-10R) in mononuclear cells

[30,31]. This IL-10R/STAT3 signaling axis results in the

upregulation of various anti-inflammatory proteins that can inhibit

pro-inflammatory cytokine synthesis [32,33]. Indeed, we found

activation of STAT3 in monocytes by incubation with plasma

isolated 4 h but not 24 h post-perfusion regardless of the presence

of LPS (representative example in Fig. 4B). Therefore, we next

assessed the functional role of STAT3 signaling in monocytes with

regard to the suppressive effects of post-perfusion plasma on

cytokine production. We pre-treated patient PBMC with a cell-

permeable STAT3 inhibitor peptide (phosphorylated peptide, pY-

Figure 1. Inflammatory events induced by CPB surgery. Increased mean neutrophil (A) and monocyte (B) counts after on-pump cardiac
surgery (n = 21 and n = 24, respectively). C. Increased numbers of circulating CD14+CD16+ monocytes after CPB surgery (n = 14). D. Increased mean
C-reactive protein (CRP) levels in patient blood samples post-surgery (n = 22). E. Lymphopenia was observed 4 h post-surgery (n = 27). Box-and-
whiskers plots. *P,0.01, **P,0.001 vs. pre-op (ANOVA). F. Cyto- and chemokine color profiles of plasma samples (n = 12) obtained at indicated time
points, represented as % change compared to baseline. MIF: Macrophage migration inhibitory factor.
doi:10.1371/journal.pone.0035070.g001
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Figure 2. Post-perfusion plasma suppresses LPS-induced TNF-a production by monocytes. A. Percentage of TNF-a producing cells in the
monocyte population after ex vivo LPS stimulation (100 ng/mL) of patient PBMC isolated at various time points (n = 4). B. Reduced TNF-a synthesis by
monocytes after LPS (10 ng/mL) stimulation in whole blood assays with patient samples obtained at the indicated time points (n = 5). C. Experimental
setup for experiments shown in D,E,G-I. In short, patient PBMC obtained before surgery (Pre-op) were mixed with control (pooled AB plasma from
healthy donors) or autologous patient plasma samples obtained at indicated time points, followed by LPS (100 ng/mL) stimulation for 4 h. Monocyte
populations (CD14/SSC gate) were then analyzed for intracellular TNF-a and IL-6 synthesis. D. Significantly reduced production of TNF-a by
monocytes after LPS stimulation in the presence of plasma samples from different sources (n = 13). Shown are percentages of TNF-a producing
monocytes relative to control (100%). *P,0.05, **P,0.001 vs. control (ANOVA). E. Percentages of IL-6 producing monocytes as in D. **P,0.001 vs.
control (ANOVA). F. Dexamethasone levels in patient plasma samples as measured by radio-immunoassay (n = 9). Median 6 interquartile range.
*P,0.05 vs. pre-op (ANOVA). G. Production of TNF-a and IL-6 by monocytes after LPS stimulation in the presence of dexamethasone-free plasma
samples (n = 4). *P,0.05 vs. control (ANOVA). H. Mean fluorescence intensities (MFI) of TNF-a and IL-6 in monocytes after LPS stimulation in different
plasma milieus (n = 7). *P,0.05, **P,0.001 vs. control (ANOVA). I. Representative flow cytometry results (contour plots) of the LPS-induced TNF-a
production by monocytes in the presence of control or patient plasma (Pre-op, End-CPB, 4 h or 24 h post-perfusion plasma from a No-
dexamethasone patient). Isotype control: mouse IgG1. Data represented as mean 6 SEM, unless otherwise indicated.
doi:10.1371/journal.pone.0035070.g002
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STAT3i) that contains a membrane translocating sequence that

prevents nuclear translocation of STAT3 dimers [34]. After pre-

treatment with pY-STAT3i or non-phosphorylated control

peptide (STAT3i), the cells were again stimulated with LPS in

the presence of 4 h post-perfusion plasma and the results were

compared to those obtained with 24 h post-surgery (control)

plasma. We found that STAT3 inhibition restored TNF-a
production in the presence of suppressive patient plasma

(Fig. 4C, left panel), but did not affect IL-6 synthesis

(Fig. 4C, right panel). STAT3 inhibition also restored levels

of TNF-a, but not IL-6, in supernatants of LPS-stimulated

mononuclear cells incubated in the presence of 4 h post-perfusion

plasma (Fig. 4D). In all experiments, pre-treatment with control

peptide had no effect on cytokine production (Fig. 4C,D). Taken

together, our findings suggest that STAT3 mediates the suppres-

sive effects of plasma mediators (released shortly after CPB

surgery) on TNF-a, but not IL-6, synthesis by monocytes.

Discussion

A suppressed immune system after cardiac surgery is extensively

described in both adult and pediatric patients and is associated

with an enhanced risk of nosocomial infections and prolonged

hospital stay [35,36]. Previous studies identified both phenotypic

cellular changes, such as HLA-DR expressed on monocytes [5]

and soluble factors including IL-10 [14,37], to be associated with

clinical outcome. Our data showed a transient suppression of

monocyte function in the circulation after open heart surgery,

which was mainly caused by plasma components (Fig. 2). Previous

dissections of signaling cascades responsible for suppression of the

innate immune system in systemic inflammation have lead to the

concept of ‘endotoxin tolerance’, particularly in human endotox-

emia and sepsis. These conditions are associated with the

upregulation of intracellular negative regulators of TLR4

signaling, including IL-1R-associated kinase (IRAK)-M [38],

MyD88s and single immunoglobulin interleukin-1 receptor-related

molecule (SIGIRR) [39]. However, we found that major signaling

pathways downstream of TLR4 (i.e. p38 MAPK and NF-kB

activation) were unimpaired in the presence of suppressive patient

plasma (Fig. 3). This suggests that the suppression of LPS-induced

TNF-a production by monocytes in our model was not explained

by endotoxin tolerance.

Transcriptional activity of STAT3 in macrophages and

neutrophils has been shown to be essential for the orchestration

of anti-inflammatory responses in experimental models of systemic

inflammation [40,41]. Currently, there is limited information on

the role of STAT3 in anti-inflammatory feedback on innate

immune cells in human (sterile) systemic inflammation [42,43].

Here we demonstrate a crucial role for STAT3 in the suppression

of TNF-a synthesis by monocytes in the course of systemic

inflammation associated with on-pump cardiac surgery in a well

described pediatric patient population (Fig. 4). JAK1/STAT3

signaling has been studied broadly in primary mononuclear cells in

vitro and both JAK1 and STAT3 are required for IL-10 mediated

inhibition of LPS-induced TNF-a production [44]. On-pump

cardiac surgery has been shown to induce the release of cytokines

(IL-6, IL-10) associated with JAK1/STAT3 signaling [10,14,45],

as confirmed in the present study (Fig. 1F). Neutralization of IL-

10 in suppressive plasma samples partially reversed its inhibitory

effects on LPS-induced TNF-a synthesis (Fig. 4A), which

suggested involvement of downstream JAK1/STAT3 signaling.

We subsequently found that pre-treatment of monocytes with a

specific STAT3 peptide inhibitor ex vivo indeed restored TNF-a

Table 1. Patient characteristics.

Dexamethasone No-Dexamethasone P-value

Age (mo) 12634 766 0.14

Male / female 19/15 1/3

VSD 16 3

ASD 12 1

AVSD 2

Aortic valvuloplasty 2

Extracardiac conduit 1

CoA 1

Duration of CPB (min) 52628 49629 0.82

Duration of ACC (min) 32620 42617 0.26

PICU stay (days) 261.2 160 0.17

Age, CPB, ACC and PICU durations represented as median 6 SD. ACC: aortic
crossclamping, ASD: atrial septum defect, AVSD: atrioventricular septum defect,
CoA: Coarctation aorta, CPB: cardiopulmonary bypass, Extracardiac conduit
change due to stenosis after Fontan procedure, PICU: pediatric intensive care
unit, VSD: ventricular septum defect. No significant differences were found
between both patient groups (Mann-Whitney test).
doi:10.1371/journal.pone.0035070.t001

Figure 3. Post-perfusion plasma does not interfere with p38 MAPK or NF-kB activation. Representative examples (A) and densitometric
analyses (B–C) of LPS-induced p38 MAPK and IkB-a phosphorylation in monocytes in the presence of 24 h (control) or 4 h post-surgery plasma.
Tubulin: loading control. Mean 6 SEM (n = 4). *P,0.05 vs. 0 min (ANOVA).
doi:10.1371/journal.pone.0035070.g003
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(but not IL-6) synthesis by monocytes (Fig. 4C,D). STAT3 is a

critical signaling hub used by both pro- and anti-inflammatory

signals mediated by IL-6 and IL-10, respectively [46,47]. These

apparent paradoxical inputs are differentially regulated by

suppressor of cytokine signaling (SOCS)3 [32]. While the IL-6

receptor is susceptible to feedback inhibition by SOCS3, the IL-

10R is not. The IL-10R-induced STAT3 pathway induces a

transcriptional program of anti-inflammatory gene products

resulting in the repression of pro-inflammatory transcripts

[48,49]. Surprisingly, STAT3 inhibition in our study failed to

reverse the suppression of IL-6 production by monocytes in the

presence of post-perfusion plasma, in contrast to TNF-a
(Fig. 4C,D). This unexpected finding warrants further dissection

of the exact molecular mechanisms used by STAT3 to selectively

regulate TNF-a synthesis in human monocytes. Besides an

important regulator of inflammation, STAT3 plays a potential

role in cytoprotection and regeneration. With regard to cardiac

surgery, STAT3 contributes to cardioprotective mechanisms in

ischemia-reperfusion injury [50,51], with a major role for IL-6 in

the induction of this pathway [52]. Thus, our results add another

feature to the multifaceted properties of STAT3 signaling in

different cell types to promote tissue homeostasis after cardiac

surgery.

Pharmacological agents administered during and after the

surgical and anesthesiological procedures could have affected our

ex vivo plasma assays. In particular, the pre-operative administra-

tion of dexamethasone (standard practice for this type of surgery in

our hospital and most other institutions [53]) may be of influence,

as corticosteroids are known for their potent anti-inflammatory

effects on innate immune cells. However, we found that the

circulating levels of dexamethasone were already significantly

reduced 4 h after surgery (Fig. 2F). More importantly, we

repeated the key experiments with plasma samples obtained from

patients that did not receive steroids before the procedure (clinical

characteristics in Table 1). Steroid-free plasma isolated shortly

(4 h) after open heart surgery was still able to suppress LPS-

induced TNF-a production by monocytes (Fig. 2G). These results

also suggest that the suppressive plasma components were not

Figure 4. STAT3 signaling is required for the suppressive effects of post-perfusion plasma on TNF-a production. A. Pre-treatment of
4 h post-surgery plasma samples with anti-IL-10 partially restored TNF-a production by patient monocytes in response to LPS (n = 10). Control:
plasma from healthy donors. B. Activation of STAT3 in monocytes by incubation with suppressive (4 h post-perfusion) but not control (24 h post-
perfusion) plasma. Cells were incubated in the absence or presence of LPS to match the experimental setup as in Fig. 2. C. Pre-treatment of patient
PBMC with active STAT3 inhibitor (pY-STAT3i) but not control peptide (STAT3i) before LPS stimulation in the presence of post-surgery plasma
restored TNF-a synthesis (left panel), in contrast to IL-6 (right panel). Shown are percentages of TNF-a and IL-6 producing monocytes normalized to
control (24 h post-surgery) plasma (n = 8). D. TNF-a and IL-6 levels measured in supernatants of LPS-stimulated mononuclear cells after pre-treatment
with STAT3 inhibitor or control peptide, in the presence of 4 h post-surgery plasma (n = 8). Cytokine levels were normalized to LPS stimulation in
control plasma from healthy donors due to interassay variability. All results are depicted as mean 6 SEM. *P,0.05 vs. control condition (ANOVA), ns:
not significant.
doi:10.1371/journal.pone.0035070.g004
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indirectly induced by steroids. By comparing the results obtained

with plasma with and without dexamethasone (compare Fig. 2D,
E and Fig. 2G, respectively), we inferred that only the suppressive

effect of 4 h post-perfusion plasma on TNF-a synthesis was likely

caused by endogenous plasma factors. No effect on IL-6 synthesis

by monocytes was found with steroid-free plasma which is

consistent with our observations that abrogation of IL10/STAT3

signaling did not affect IL-6 production in monocytes (Fig. 4).

Please note that due to limited availability of these steroid-free

samples we could not perform additional experiments with IL-10

neutralizing antibodies and STAT3 inhibitor peptide.

We demonstrated a non-redundant role for STAT3 in

mediating negative feedback on LPS-induced monocyte TNF-a
(but not IL-6) production after on-pump cardiac surgery. This

supports the concept of specific monocyte reprogramming in the

course of human systemic inflammation, rather than general

immune suppression. Our findings suggest that functional

modulation of STAT3 activity offers a potential target for

molecular intervention in suppressed states of the innate immune

system in human disease.

Materials and Methods

Ethics Statement
Written informed consent was obtained from the parents of

children participating in the study. A medical ethics committee

(Medische Ethische Toetsings Commissie UMC Utrecht) ap-

proved this study (METC 03/049-K, 04/144-K UMC Utrecht,

The Netherlands) and all procedures were in accordance with

institutional guidelines.

Study population, surgical and anesthesiological
procedures

Children admitted to our hospital for surgical repair of relatively

simple congenital heart defects with an expected rapid recovery

were enrolled. For this purpose, we only included patients who

underwent a surgical procedure from RACHS-1 (Risk Adjustment

for Congenital Heart Surgery) score of 2 or less [54]. Patients that

had signs of infection or a documented immunodeficiency were

excluded. A total of 38 children were enrolled in the study and all

experienced an uneventful peri- and postoperative clinical course.

Detailed clinical characteristics are depicted in Table 1. The

surgical, anesthesiological and cardiopulmonary bypass proce-

dures have been published previously [24]. Briefly, general

anesthesia was always implemented using a standard technique

involving sufentanil, midazolam, pancuronium, dopamine and

milrinone. All patients received 48 hours perioperative antibiotic

prophylaxis with Cefazolin. Patients receiving dexamethasone

were given a single dose of dexamethasone (1 mg/kg) after

induction of anesthesia. Four patients received no steroids before

the procedure. Non-pulsatile cardiopulmonary bypass was used,

the standard pump flow rate was 2.8 liter/m2/min. Combined

alpha and pH stat management of acid-base status was used

during cardiopulmonary bypass. The cardioplegia procedure was

standardized using St. Thomas’ solution. After weaning from

cardiopulmonary bypass all patients remained intubated and

ventilated and were admitted to the pediatric intensive care for

further management. At the pediatric intensive care patients were

treated with milrinone, midazolam and morphine for maximally

24 hours. All patients were treated by the same surgical and

anesthetic team.

Blood sampling and cell isolation
Blood samples were obtained at the following time points:

immediately after insertion of a central venous catheter during

anesthetic induction (Pre-op), at the end of cardiopulmonary

bypass (End-CPB), 4 h, 24 h and 48 h after surgery. At these time

points, total leucocyte, neutrophil, monocyte, lymphocyte counts

and C-reactive protein (CRP) levels were determined. Fresh

heparinized blood samples were used for full blood assays. For all

other purposes, plasma samples were prepared by centrifugation

and stored at 280uC, whereas PBMC were separated by density

gradient centrifugation over Ficoll-Hypaque (Amersham Pharma-

cia Biotech) and stored in liquid nitrogen, as previously described

[55]. In some assays, pooled human AB plasma from healthy

volunteers (Sanquin Blood Bank, Utrecht, The Netherlands) was

used as control plasma.

Antibodies
Fluorescently labeled or unconjugated monoclonal antibodies

(mAb) directed against human CD14 (murine, clone MOP9,

StemCell Technologies), mouse anti-FccRIII/CD16 (3G8, BD

Biosciences), mouse anti-CD284/TLR4 (HTA125, eBioscience),

mouse anti-TNF-a (Mab11, eBioscience) and rat anti-IL-6 (MQ2-

6A3, BD) were used for flow cytometry. MAbs directed against

hIL-10 (JES3-19F1, rat IgG2a, BD) and rat IgG2a isotype (BD)

were used for neutralization experiments. Antibodies directed

against p-p38, p38, p-IkB-alpha and p-STAT3 (Cell Signaling),

IkB-alpha and STAT3 (Santa Cruz) and Tubulin (Sigma) were

used for Western blotting.

Cellular assays
Whole blood stimulation assays were performed in RPMI-1640

at 1:5 dilution. Cells were incubated with or without LPS

(Escherichia coli O127:B8E, L4517, Sigma) at 10 ng/mL in a 96-

well plate (Costar) for 4 h at 37uC, 5% CO2 with 100% relative

humidity. Cells were then washed and stained for surface markers

followed by lysis of red blood cells (BD Lysing Solution) and

intracellular cytokine staining. For ex vivo LPS stimulation assays,

PBMC from various time points were plated in a 96-well plate at

26106 cells/mL in RPMI-1640 supplemented with 2 mmol/L

glutamine, 100 U/mL penicillin/streptomycin (Gibco BRL,

Invitrogen) and 10% (v/v) heat-inactivated human AB serum.

LPS was added (100 ng/mL LPS) for 4 h, followed by intracellular

cytokine staining. For plasma assays, patient PBMC isolated

before surgery were adjusted to 26106 cells/mL in supplemented

RPMI-1640 (no serum). Pooled human AB plasma (control) and

autologous patient plasma samples obtained at serial time-points

were thawed and spun (300 g, 10 min) and the supernatants were

filtered (50 mm). Plasma samples mixed with LPS (100 ng/mL end

concentration) were added to equal volumes of cell suspensions

(50% v/v) and incubated for 4 h at 37uC, followed by intracellular

cytokine staining. For IL-10 neutralization assays, patient plasma

samples were pre-incubated with anti-hIL-10 mAb (10–100 mg/

mL) or IgG2a isotype (100 mg/mL) for 1 h at 4uC on a shaker. For

STAT3 inhibition assays, PBMC obtained before surgery were

pre-treated with 0.02 or 0.1 mM cell-permeable STAT3 Inhibitor

Peptide (PpYLKTK-mts, Calbiochem) or 0.1 mM inactive control

peptide (Ac-PpYLKTK-OH) for 1 h at 37uC in culture medium

with 10% AB plasma. PBMC were then washed and mixed with

plasma samples (4 h or 24 h post-surgery) and LPS (100 ng/mL)

for a 4 h incubation period followed by intracellular cytokine

staining.
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Flow cytometry
Golgistop (2 mM, BD) was added during ex vivo incubations with

LPS. Cells were then washed, blocked with normal mouse serum

followed by extracellular staining, fixation in Cytofix/Cytoperm

and washing in Perm/Wash solution (Cytofix/perm kit, BD).

Finally, cells were incubated with mAbs for intracellular cytokine

staining, as published [24].

Multiplex immunoassay
Multiplex immunoassay with the Bio-Plex suspension array

system (Bio-Rad Laboratories) was used to measure levels of TNF-

a, IL-6, IL-8, IL-10 and MIF in patient plasma samples and

culture supernatants, as previously described [56].

Dexamethasone measurements
Dexamethasone in serum was measured after diethylether

extraction using an in house competitive radio-immunoassay

(RIA) employing a polyclonal anti-dexamethasone-antibody (IgG

dex1 lot 1301; IgG Corporation). [1,2,4,6,7-3H]-dexamethasone

(TRK645, Amersham) was used as a tracer following chromato-

graphic verification of its purity. The lower limit of detection was

20 pmol/L and intra-assay variation was ,7%. All samples were

included in one assay.

Western blot analysis
Purified monocytes from healthy donors were serum starved for

at least 2 h, washed and resuspended in supplemented RPMI-

1640. A total of 56105 cells per condition were stimulated in the

absence or presence of LPS (100 ng/mL) for 0, 5, 15 or 240 min

at 37uC in the presence of 50% (v/v) patient plasma. After in vitro

stimulation, cells were washed with cold PBS and lysed in reducing

Laemmli sample buffer. Proteins were separated with SDS-PAGE,

transferred to PVDF membranes, blocked with 5% BSA, followed

by immunoprobing overnight at 4uC. Proteins were detected with

HRP-conjugated secondary antibodies (Dako) and developed with

Hyperfilm ECL (GE Healthcare). Densitometric analysis was

performed with ImageQuant densitometric software (Molecular

Dynamics).

Statistical analysis
Basic descriptive statistics were used to describe the patient

population. Multiple data sets were analyzed by one-way

ANOVA, as indicated. Significance was accepted at *P,0.05

and **P,0.001.

Acknowledgments

We thank J. Meerding and W. de Jager from the Dept. of Pediatric

Immunology for their assistance in performing the multiplex cytokine

immunoassays. We also thank S.O. Algra from the Dept. of Pediatric

Intensive Care and F. de Roo from the Dept. of Pediatric Cardiothoracic

Surgery for their assistance in patient sampling. I. Maitimu-Smeele and

E.G.W. Lentjes from the Dept. of Endocrinology, University Medical

Center Utrecht, are acknowledged for the quantification of dexamethasone

levels in patient plasma samples.

Author Contributions

Conceived and designed the experiments: BJP PJC FvW JMB NJGJ.

Performed the experiments: PRdJ AWLS TvdB. Analyzed the data: PRdJ

AWLS BJP NJGJ. Wrote the paper: PRdJ AWLS JMB FvW PJC BJP

NJGJ.

References

1. Tomic V, Russwurm S, Moller E, Claus RA, Blaess M, et al. (2005)

Transcriptomic and proteomic patterns of systemic inflammation in on-pump

and off-pump coronary artery bypass grafting. Circulation 112(19): 2912–2920.

2. Diegeler A, Doll N, Rauch T, Haberer D, Walther T, et al. (2000) Humoral

immune response during coronary artery bypass grafting: A comparison of

limited approach, ‘‘off-pump’’ technique, and conventional cardiopulmonary

bypass. Circulation 102(19 Suppl 3): III95–100.

3. Chew MS, Brandslund I, Brix-Christensen V, Ravn HB, Hjortdal VE, et al.

(2001) Tissue injury and the inflammatory response to pediatric cardiac surgery

with cardiopulmonary bypass: A descriptive study. Anesthesiology 94(5):

745–53.

4. Xing L, Remick DG (2003) Relative cytokine and cytokine inhibitor production

by mononuclear cells and neutrophils. Shock 20(1): 10–16.

5. Allen ML, Peters MJ, Goldman A, Elliott M, James I, et al. (2002) Early

postoperative monocyte deactivation predicts systemic inflammation and

prolonged stay in pediatric cardiac intensive care. Crit Care Med 30(5):

1140–1145.

6. Peters M, Petros A, Dixon G, Inwald D, Klein N (1999) Acquired

immunoparalysis in paediatric intensive care: Prospective observational study.

BMJ 319(7210): 609–610.

7. Pachot A, Cazalis MA, Venet F, Turrel F, Faudot C, et al. (2008) Decreased

expression of the fractalkine receptor CX3CR1 on circulating monocytes as new

feature of sepsis-induced immunosuppression. J Immunol 180(9): 6421–6429.

8. Evans BJ, Haskard DO, Finch JR, Hambleton IR, Landis RC, et al. (2008) The

inflammatory effect of cardiopulmonary bypass on leukocyte extravasation in

vivo. J Thorac Cardiovasc Surg 135(5): 999–1006.

9. Seghaye M, Duchateau J, Bruniaux J, Demontoux S, Bosson C, et al. (1996)

Interleukin-10 release related to cardiopulmonary bypass in infants undergoing

cardiac operations. J Thorac Cardiovasc Surg 111(3): 545–553.

10. Sablotzki A, Welters I, Lehmann N, Menges T, Gorlach G, et al. (1997) Plasma

levels of immunoinhibitory cytokines interleukin-10 and transforming growth

factor-beta in patients undergoing coronary artery bypass grafting.

Eur J Cardiothorac Surg 11(4): 763–768.

11. Tarnok A, Schneider P (2001) Pediatric cardiac surgery with cardiopulmonary

bypass: Pathways contributing to transient systemic immune suppression. Shock

16 Suppl 1: 24–32.

12. Franke A, Lante W, Fackeldey V, Becker HP, Thode C, et al. (2002)

Proinflammatory and antiinflammatory cytokines after cardiac operation:

Different cellular sources at different times. Ann Thorac Surg 74(2): 363–70.

13. Wilhelm W, Grundmann U, Rensing H, Werth M, Langemeyer J, et al. (2002)

Monocyte deactivation in severe human sepsis or following cardiopulmonary

bypass. Shock 17(5): 354–360.

14. Dehoux MS, Hernot S, Asehnoune K, Boutten A, Paquin S, et al. (2000)

Cardiopulmonary bypass decreases cytokine production in lipopolysaccharide-

stimulated whole blood cells: Roles of interleukin-10 and the extracorporeal

circuit. Crit Care Med 28(6): 1721–1727.

15. Borgermann J, Friedrich I, Flohe S, Spillner J, Majetschak M, et al. (2002)

Tumor necrosis factor-alpha production in whole blood after cardiopulmonary

bypass: Downregulation caused by circulating cytokine-inhibitory activities.

J Thorac Cardiovasc Surg 124(3): 608–617.

16. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a

receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein.

Science 249(4975): 1431–1433.

17. Haziot A, Tsuberi BZ, Goyert SM (1993) Neutrophil CD14: Biochemical

properties and role in the secretion of tumor necrosis factor-alpha in response to

lipopolysaccharide. J Immunol 150(12): 5556–5565.

18. Lequier LL, Nikaidoh H, Leonard SR, Bokovoy JL, White ML, et al. (2000)

Preoperative and postoperative endotoxemia in children with congenital heart

disease. Chest 117(6): 1706–1712.

19. Kitchens RL, Thompson PA, O’Keefe GE, Munford RS (2000) Plasma

constituents regulate LPS binding to, and release from, the monocyte cell

surface. J Endotoxin Res 6(6): 477–482.

20. Dybdahl B, Wahba A, Lien E, Flo TH, Waage A, et al. (2002) Inflammatory

response after open heart surgery: Release of heat-shock protein 70 and

signaling through toll-like receptor-4. Circulation 105(6): 685–690.

21. Hadley JS, Wang JE, Michaels LC, Dempsey CM, Foster SJ, et al. (2007)

Alterations in inflammatory capacity and TLR expression on monocytes and

neutrophils after cardiopulmonary bypass. Shock 27(5): 466–473.

22. Shames BD, Selzman CH, Meldrum DR, Pulido EJ, Barton HA, et al. (1998)

Interleukin-10 stabilizes inhibitory kappaB-alpha in human monocytes. Shock

10(6): 389–394.

23. Takezako N, Hayakawa M, Hayakawa H, Aoki S, Yanagisawa K, et al. (2006)

ST2 suppresses IL-6 production via the inhibition of IkappaB degradation

induced by the LPS signal in THP-1 cells. Biochem Biophys Res Commun

341(2): 425–432.

24. Schadenberg AWL, Vastert SJ, Evens FCM, Kuis W, van Vught AJ, et al. (2011)

FOXP3+CD4+ Tregs lose suppressive potential but remain anergic during

transient inflammation in human. Eur J Immunol 41: 1132–42.

STAT3 Regulates Human Systemic Inflammation

PLoS ONE | www.plosone.org 8 April 2012 | Volume 7 | Issue 4 | e35070



25. Pierrakos C, Vincent JL (2010) Sepsis biomarkers: A review. Crit Care 14(1):

R15.
26. Guha M, Mackman N (2001) LPS induction of gene expression in human

monocytes. Cell Signal 13(2): 85–94.

27. Piao W, Song C, Chen H, Diaz MA, Wahl LM, et al. (2009) Endotoxin
tolerance dysregulates MyD88- and Toll/IL-1R domain-containing adapter

inducing IFN-beta-dependent pathways and increases expression of negative
regulators of TLR signaling. J Leukoc Biol 86(4): 863–875.

28. Bazzoni F, Tamassia N, Rossato M, Cassatella MA (2010) Understanding the

molecular mechanisms of the multifaceted IL-10-mediated anti-inflammatory
response: Lessons from neutrophils. Eur J Immunol 40(9): 2360–2368.

29. Pils MC, Pisano F, Fasnacht N, Heinrich JM, Groebe L, et al. (2010)
Monocytes/macrophages and/or neutrophils are the target of IL-10 in the LPS

endotoxemia model. Eur J Immunol 40(2): 443–448.
30. Williams LM, Sarma U, Willets K, Smallie T, Brennan F, et al. (2007)

Expression of constitutively active STAT3 can replicate the cytokine-suppressive

activity of interleukin-10 in human primary macrophages. J Biol Chem 282(10):
6965–6975.

31. Williams L, Bradley L, Smith A, Foxwell B (2004) Signal transducer and
activator of transcription 3 is the dominant mediator of the anti-inflammatory

effects of IL-10 in human macrophages. J Immunol 172(1): 567–576.

32. Berlato C, Cassatella MA, Kinjyo I, Gatto L, Yoshimura A, et al. (2002)
Involvement of suppressor of cytokine signaling-3 as a mediator of the inhibitory

effects of IL-10 on lipopolysaccharide-induced macrophage activation.
J Immunol 168(12): 6404–6411.

33. Lee TS, Chau LY (2002) Heme oxygenase-1 mediates the anti-inflammatory
effect of interleukin-10 in mice. Nat Med 8(3): 240–246.

34. Turkson J, Ryan D, Kim JS, Zhang Y, Chen Z, et al. (2001) Phosphotyrosyl

peptides block Stat3-mediated DNA binding activity, gene regulation, and cell
transformation. J Biol Chem 276(48): 45443–45455.

35. Sarvikivi E, Lyytikainen O, Nieminen H, Sairanen H, Saxen H (2008)
Nosocomial infections after pediatric cardiac surgery. Am J Infect Control 36(8):

564–569.

36. Michalopoulos A, Geroulanos S, Rosmarakis ES, Falagas ME (2006) Frequency,
characteristics, and predictors of microbiologically documented nosocomial

infections after cardiac surgery. Eur J Cardiothorac Surg 29(4): 456–460.
37. Allen ML, Hoschtitzky JA, Peters MJ, Elliott M, Goldman A, et al. (2006)

Interleukin-10 and its role in clinical immunoparalysis following pediatric
cardiac surgery. Crit Care Med 34(10): 2658–2665.

38. van ’t Veer C, van den Pangaart PS, van Zoelen MA, de Kruif M,

Birjmohun RS, et al. (2007) Induction of IRAK-M is associated with
lipopolysaccharide tolerance in a human endotoxemia model. J Immunol

179(10): 7110–7120.
39. Adib-Conquy M, Adrie C, Fitting C, Gattolliat O, Beyaert R, et al. (2006) Up-

regulation of MyD88s and SIGIRR, molecules inhibiting toll-like receptor

signaling, in monocytes from septic patients. Crit Care Med 34(9): 2377–2385.
40. Matsukawa A, Takeda K, Kudo S, Maeda T, Kagayama M, et al. (2003)

Aberrant inflammation and lethality to septic peritonitis in mice lacking STAT3
in macrophages and neutrophils. J Immunol 171(11): 6198–6205.

41. Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, et al. (1999)
Enhanced Th1 activity and development of chronic enterocolitis in mice devoid

of Stat3 in macrophages and neutrophils. Immunity 10(1): 39–49.

42. Tamassia N, Calzetti F, Menestrina N, Rossato M, Bazzoni F, et al. (2008)

Circulating neutrophils of septic patients constitutively express IL-10R1 and are

promptly responsive to IL-10. Int Immunol 20(4): 535–541.

43. Oiva J, Mustonen H, Kylanpaa ML, Kyhala L, Alanara T, et al. (2010) Patients

with acute pancreatitis complicated by organ failure show highly aberrant

monocyte signaling profiles assessed by phospho-specific flow cytometry. Crit

Care Med 38(8): 1702–1708.

44. Riley JK, Takeda K, Akira S, Schreiber RD (1999) Interleukin-10 receptor

signaling through the JAK-STAT pathway. requirement for two distinct

receptor-derived signals for anti-inflammatory action. J Biol Chem 274(23):

16513–16521.

45. Ogata M, Okamoto K, Kohriyama K, Kawasaki T, Itoh H, et al. (2000) Role of

interleukin-10 on hyporesponsiveness of endotoxin during surgery. Crit Care

Med 28(9): 3166–3170.

46. Niemand C, Nimmesgern A, Haan S, Fischer P, Schaper F, et al. (2003)

Activation of STAT3 by IL-6 and IL-10 in primary human macrophages is

differentially modulated by suppressor of cytokine signaling 3. J Immunol 170(6):

3263–3272.

47. Yasukawa H, Ohishi M, Mori H, Murakami M, Chinen T, et al. (2003) IL-6

induces an anti-inflammatory response in the absence of SOCS3 in

macrophages. Nat Immunol 4(6): 551–556.

48. Murray PJ (2005) The primary mechanism of the IL-10-regulated antiin-

flammatory response is to selectively inhibit transcription. Proc Natl Acad

Sci U S A 102(24): 8686–8691.

49. Murray PJ (2007) The JAK-STAT signaling pathway: Input and output

integration. J Immunol 178(5): 2623–2629.

50. Bolli R, Stein AB, Guo Y, Wang OL, Rokosh G, et al. (2011) A murine model of

inducible, cardiac-specific deletion of STAT3: Its use to determine the role of

STAT3 in the upregulation of cardioprotective proteins by ischemic precondi-

tioning. J Mol Cell Cardiol 50(4): 589–597.

51. Heusch G, Musiolik J, Gedik N, Skyschally A (2011) Mitochondrial STAT3

activation and cardioprotection by ischemic postconditioning in pigs with

regional myocardial ischemia/reperfusion. Circ Res 109(11): 1302–1308.

52. Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R (2008) The

myocardial JAK/STAT pathway: From protection to failure. Pharmacol Ther

120(2): 172–185.

53. Checchia PA, Bronicki RA, Costello JM, Nelson DP (2005) Steroid use before

pediatric cardiac operations using cardiopulmonary bypass: An international

survey of 36 centers. Pediatr Crit Care Med 6(4): 441–444.

54. Jenkins KJ, Gauvreau K, Newburger JW, Spray TL, Moller JH, et al. (2002)

Consensus-based method for risk adjustment for surgery for congenital heart

disease. J Thorac Cardiovasc Surg 123(1): 110–118.

55. de Jong H, Lafeber FF, de Jager W, Haverkamp MH, Kuis W, et al. (2009) Pan-

DR-binding Hsp60 self epitopes induce an interleukin-10-mediated immune

response in rheumatoid arthritis. Arthritis Rheum 60(7): 1966–1976.

56. de Jager W, Prakken BJ, Bijlsma JW, Kuis W, Rijkers GT (2005) Improved

multiplex immunoassay performance in human plasma and synovial fluid

following removal of interfering heterophilic antibodies. J Immunol Methods

300(1–2): 124–135.

STAT3 Regulates Human Systemic Inflammation

PLoS ONE | www.plosone.org 9 April 2012 | Volume 7 | Issue 4 | e35070


