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Abstract

Certain bioactive food components, including indole-3-carbinol (I3C) and 3,39-diindolylmethane (DIM) from cruciferous
vegetables, have been shown to target cellular pathways regulating carcinogenesis. Previously, our laboratory showed that
dietary I3C is an effective transplacental chemopreventive agent in a dibenzo[def,p]chrysene (DBC)-dependent model of
murine T-cell lymphoblastic lymphoma. The primary objective of the present study was to extend our chemoprevention
studies in mice to an analogous human neoplasm in cell culture. Therefore, we tested the hypothesis that I3C or DIM may
be chemotherapeutic in human T-cell acute lymphoblastic leukemia (T-ALL) cells. Treatment of the T-ALL cell lines CCRF-
CEM, CCRF-HSB2, SUP-T1 and Jurkat with DIM in vitro significantly reduced cell proliferation and viability at concentrations
8- to 25-fold lower than the parent compound I3C. DIM (7.5 mM) arrested CEM and HSB2 cells at the G1 phase of the cell
cycle and 15 mM DIM significantly increased the percentage of apoptotic cells in all T-ALL lines. In CEM cells, DIM reduced
protein expression of cyclin dependent kinases 4 and 6 (CDK4, CDK6) and D-type cyclin 3 (CCND3); DIM also significantly
altered expression of eight transcripts related to human apoptosis (BCL2L10, CD40LG, HRK, TNF, TNFRSF1A, TNFRSF25,
TNFSF8, TRAF4). Similar anticancer effects of DIM were observed in vivo. Dietary exposure to 100 ppm DIM significantly
decreased the rate of growth of human CEM xenografts in immunodeficient SCID mice, reduced final tumor size by 44% and
increased the apoptotic index compared to control-fed mice. Taken together, our results demonstrate a potential for
therapeutic application of DIM in T-ALL.

Citation: Shorey LE, Hagman AM, Williams DE, Ho E, Dashwood RH, et al. (2012) 3,39-Diindolylmethane Induces G1 Arrest and Apoptosis in Human Acute T-Cell
Lymphoblastic Leukemia Cells. PLoS ONE 7(4): e34975. doi:10.1371/journal.pone.0034975

Editor: Ilya Ulasov, University of Chicago, United States of America

Received July 18, 2011; Accepted March 12, 2012; Published April 13, 2012

Copyright: � 2012 Shorey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Cancer Institute (grant numbers R21CA135523 and P01CA90890), the National Institute of Environmental
Health Sciences (grant number T32ES07060), the Linus Pauling Institute at Oregon State University, and USANA Health Sciences. This research was supported by
the Utah Agricultural Experiment Station, Utah State University, and approved as journal paper number 8406. No additional external funding was received for this
study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: BioResponse Nutrients, LLC donated the DIM formulation used in this study, BioResponse-DIM. The monetary value of this donation is
less than $500. BioResponse Nutrients, LLC did not have any involvement in the experiment design, execution, analysis or composition of this manuscript. This
does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials. USANA Health Sciences provided financial support for this
research, via its support of the Linus Pauling Institute and associated laboratories. USANA did not have any involvement in the experiment design, execution,
analysis or composition of this manuscript. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: abby.benninghoff@usu.edu

Introduction

Acute lymphoblastic leukemia (ALL), the most frequently

diagnosed cancer in children ages 0 to 19 years [1], comprises a

diverse population of malignant lymphoid progenitors undergoing

clonal proliferation at various stages of differentiation [2]. The

American Cancer Society estimates that 6,050 people in the

United States will be diagnosed with ALL in 2012 [3], and

incidence rates of ALL have increased significantly over the past

thirty years [1]. Cases of T-cell origin (T-ALL) comprise 15% of

ALL patients. Prognosis for these patients is poor, because they are

less responsive to combination chemotherapy and are more likely

to relapse than their B-cell counterparts [4].

New strategies in cancer therapy utilize drugs that specifically

target aberrant signaling pathways in order to reduce toxic side

effects, yet such specific therapies are only effective in a small

percentage of this highly heterogeneous disease population. For

example, more than half of T-ALL cases are characterized by a

gain-of-function mutation in the Notch1 receptor, which leads to

constitutive activation of Notch-mediated cell proliferation and

survival [5,6,7]. Therapeutic gamma secretase inhibitors (GSIs)

prevent cleavage of the intracellular Notch (ICN) domain and

subsequent transcriptional activation of Notch target genes

[8,9,10]. Subpopulations of T-ALL patients and cell lines

(including CEM, SUP-T1, and Jurkat cells) are insensitive to

GSI therapy, presumably due to mutations that result in

constitutive ICN expression or additional mutations in genes

downstream [8] such as phosphatase and tensin homolog (PTEN),

a tumor suppressor and negative regulator of the PI3K/AKT/

mTOR signaling pathway [11]. Due to the complexity and

diversity of T-ALL signaling pathways, therapeutic efficacy and

safety may be improved through the use of natural products that
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target multiple cancer signaling pathways, either alone or adjuvant

to systemic or directed chemotherapy [12,13].

Evidence from epidemiological and animal studies shows that

modification of the diet to increase consumption of cruciferous

vegetables is sufficient to reduce cancer risk (reviewed in

[14,15]). Furthermore, maternal consumption of vegetables was

shown to be inversely associated with ALL in a population-based

study [16]. The bioactive food component indole-3-carbinol

(I3C) is produced from the hydrolysis of glucobrassicin, which is

present at high concentrations in cruciferous vegetables, such as

Brussels sprouts, broccoli, cabbage and cauliflower [17]. The

anticancer effects of I3C have been well-documented in various

tumor cell types including colon, breast, and prostate (reviewed

in [18,19]). However, I3C is unstable in acidic environments

such as the stomach and rapidly undergoes self-dimerization and

oligomerization to yield over 15 acid-condensation products

(ACPs) [20]. A major product of this reaction in vitro [21] and in

vivo [22] is 3,39-diindolylmethane (DIM). Because DIM has

greater stability than the parent compound [20,23,24], it is

expected that DIM contributes significantly to the anticancer

effects of dietary I3C and is more effective at an equivalent

molar dose.

Herein, we report for the first time that DIM markedly reduces

the proliferation and survival of four different human T-ALL cell

lines, which were selected to represent the heterogeneity of the

disease. The anticancer effects of DIM were exerted by

modification of critical regulators in the cell cycle pathway leading

to induction of G1 arrest and apoptosis. Subtle differences in

sensitivity within this group of cell lines were observed, although

DIM was more potent than its parent compound I3C in all cases.

Of particular importance was the observation that DIM reduced

growth of human CEM cells in a xenograft model when

supplemented through the diet. Collectively, the data presented

below suggest that DIM could be an effective anticancer agent in

T-ALL cases originating from T cells at different stages of

differentiation and at concentrations that can be reasonably

achieved in vivo in humans and in animal models.

Materials and Methods

Materials
The following chemicals and reagents were purchased from the

indicated suppliers: I3C from Sigma-Aldrich Co. (St. Louis, MO),

Matrigel Matrix from BD Biosciences (Franklin Lakes, NJ) and

ViaCount Flex Reagent from Millipore (Billerica, MA). DNase I

and the NuPAGE system for SDS-PAGE, including 10% and 4–

12% Bis-Tris gels and appropriate electrophoresis and transfer

buffers, were purchased from Invitrogen (Carlsbad, CA).

Antibodies for immunoblotting were obtained from Cell Signal-

ing Technology (Danvers, MA), including b-actin and a-tubulin

primary antibodies and the Cell-Cycle Regulation Antibody

Sampler Kit (contains primary antibodies for CCND3, CDK4,

and CDK6 as well as HRP-linked anti-mouse and anti-rabbit IgG

secondary antibodies). DIM was kindly provided in a bioavailable

formula (BioResponse-DIM, herein referred to as DIM) by

BioResponse, LCC (Boulder, CO), which was certified to contain

30% DIM (wt/wt) by Eurofins-Alpha Laboratories (Petaluma,

CA). This bioavailable form of DIM, rather than the pure

crystalline DIM, has been utilized for many of the preclinical and

clinical studies in the published literature and is the common

form provided in commercial dietary supplements. For these

reasons, we selected the BioResponse formula for the experiments

outlined below. Experimental concentrations reported in this

study were adjusted accordingly (e.g. treatment with 12.3 mg/ml

BioResponse DIM is equivalent to 3.7 mg/ml DIM, or 15 mM

DIM).

Table 1. Human T-ALL cell lines used in this study.

Cell line (abbreviation) CCRF-HSB2 (HSB2) CCRF-CEM (CEM) SUP-T1 Jurkat (JM) Reference

Source (Cat #)* NIH-AIDS (497) ATCC (CCL-119) NIH-AIDS (100) NIH-AIDS (4668)

Age (years)/sex 11/m 3/f 8/m 14/m [25]

Immunophenotypic classificationa Pre-T Pre-T Cortical T Mature T [25]

CD3 (cytoplasmic) 2 + + + [25]

CD3 (surface) 2 2 2 + [25]

CD4 2 + + + [25]

CD8 2 2 + 2 [25]

CD1a 2 2 + 2 [25]

Somatic mutations in T-ALL tumor suppressorsa

CDKN2A(p16) + + + + [47]

RB1 2 2 2 2 [47]

TP53 2 + + + [47]

PTEN 2 + 2 + [47]

Oncogene profile (frequency in T-ALL)

NOTCH1 activating mutation (50–60%)a + + + + [47,53]

TAL1 expression (25%)b +++ ++ 2 ++ [53]

STIL-TAL1 fusiona + + 2 2 [53]

LYH1 expressionb + ++ 2 2 [53]

*ATCC, American Type Tissue Collection; NIH AIDS Research and Reference Reagent Program.
aIndicates presence (+) or absence (2).
bIndicates relative expression (2, +,++, or +++).
doi:10.1371/journal.pone.0034975.t001

Anti-Cancer Effects of DIM in Human T-ALL Cells
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In vitro experiments with human CEM cells
Cell lines and culture conditions. T-ALL is a

heterogeneous disease resulting from the developmental arrest

and abnormal proliferation of T-cells at different stages of

maturation [25]. Four human T-ALL lines representing this

heterogeneity were selected for this study, including human

CCRF-CEM (CEM) cells, CCRF-HSB2 (HSB2) cells, SUP-T1

cells and Jurkat cells (see Table 1). Cell lines were characterized by

their respective vendors at time of accessioning, and cells were

passaged fewer than 15 times and no longer than 3 months after

acquisition. All cell lines were maintained in phenol red-free

RPMI-1640 medium (Sigma-Aldrich) containing 10% (v/v)

charcoal-stripped, heat-inactivated fetal bovine serum (FBS;

Atlas Biologicals, Fort Collins, CO or Caisson Laboratories,

Logan, UT) in a humidified incubator at 37uC with 5% CO2. The

CEM line was selected for further characterization and study in a

xenograft model based on its classification as an immature

lymphoblastic T-cell population with an immunophenotype

similar to that observed in our murine model of transplacental

carcinogenesis [26] and its demonstrated ability to form solid

tumors in subcutaneous xenograft models [27]. DIM and I3C

were prepared as concentrated stock solutions in DMSO, which

were stored at 280uC protected from light. For in vitro

experiments, cells were seeded 24 hr prior to treatment at

appropriate concentrations for each specific endpoint. On the

day of treatment, dilutions of DIM and I3C were prepared so that

all experimental treatments contained 0.1% DMSO (v/v),

including a vehicle control.

Cell proliferation, viability and apoptosis. T-ALL cells

were treated with 0 up to 60 mM DIM or 0 up to 500 mM I3C for

up to 48 hr. The concentration of viable cells was determined at

each indicated time point by the ViaCount Assay (Millipore,

Billerica, MA) as recommended by the manufacturer using either

the Guava Personal Cell Analyzer (Guava Technologies, Inc.,

Hayward, CA) or the Accuri C6 flow cytometer (BD Accuri

Cytometers, Inc., Ann Arbor, MI); assay performance was

comparable on both instruments. Raw data were compared to

the time-zero control for cell proliferation and the time-matched

control for viability. Concentration values for 50% inhibition

(IC50) of T-ALL cell proliferation and viability by I3C and DIM

were calculated by non-linear regression using a sigmoidal dose-

response with variable slope (Prism 5, GraphPad Software, La

Jolla, CA).

Cell-cycle analysis. T-ALL cells were treated with 0 to

15 mM DIM for up to 48 hr, rinsed in cold PBS, fixed in ice cold

70% EtOH, and stored at least overnight at 220uC. On the day of

analysis, cells were washed with PBS and incubated for 30 min in

the dark in staining solution (25 mg/ml propidium iodide, 0.1%

Figure 1. I3C and DIM reduce proliferation and viability of CEM cells. Cells were treated with 0 (%), 1.9 (m), 3.8 (,), 7.5 (X), 15 (#), or 30
(&) mM DIM (panels A,C) or 0 (%), 15.6 (m), 31.3 (,), 62.5 (X), 125 (#), 250 (&), or 500 (e) mM I3C (panels B,D) for 24 or 48 hr, then stained with
ViaCount reagent for analysis of viable cell concentration and percent viability. Values are the mean fold change in cell proliferation (panels A, B) or
percent viability (panels C, D) 6 SEM (n = 3 independent experiments) normalized to control cells at 0 hr. **, p,0.01 and ***, p,0.001, as determined
by two-way ANOVA with Bonferroni post-hoc test comparisons for significant effects of DIM treatments at each time point compared to time-
matched vehicle control (0.1% DMSO).
doi:10.1371/journal.pone.0034975.g001

Anti-Cancer Effects of DIM in Human T-ALL Cells
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(v/v) Trition X-100 and 0.2 mg/ml RNase in PBS). Flow

cytometry was used to determine cellular DNA distribution

using the Guava PCA or Accuri C6 instruments and the

number of cells in each cycle were analyzed using MultiCycle

software (Phoenix Flow System, San Diego, CA) or FlowJo

Cytometry Analysis Software (Ashland, OR).

Immunoblotting. Cells were treated with 0 to 15 mM DIM

for 12 or 24 hr or with 0 to 500 mM I3C for 24 hr, then lysed in IP

lysis buffer (20 mM Tris, 150 mM NaCl, 1 mM EDTA, 1 mM

EGTA, 1% (v/v) Triton X-100, 2.5 mM Na4P2O7?10H2O, 1 mM

C3H9O6P, 1 mM Na3VO4, 1 mg/ml leupeptin and 0.5% protease

inhibitor cocktail III (EMD Chemicals, Gibbstown, NJ)). Protein

concentration was determined using the Coomasie Plus Assay

(Thermo Scientific, Rockford, IL) and an equal amount of protein

for each sample was separated by SDS-page electrophoresis and

transferred to nitrocellulose membranes. Membranes were

blocked for 1 hr in 5% non-fat milk or BSA prior to overnight

incubation at 4uC with primary antibodies for CCND3, CDK4, or

CDK6 (all 1:1000 dilution). Membranes were subsequently

incubated with the appropriate HRP-conjugated secondary

antibody for 1 hr. Immunoreactive proteins were visualized

using an Alpha Innotech Imaging Station (Cell Biosciences,

Santa Clara, CA) and the Western Lightning ECL reagent (Perkin

Elmer, Waltham, MA). Protein bands of interest were measured

by densitometry using FluorChem 8800 software (Cell Biosciences,

Santa Clara, CA). Membranes were stripped using Restore

Western Blot Stripping Buffer (Thermo Scientific) and tested for

removal of antibodies before re-probing with b-actin or a-tubulin.

Changes in protein expression, normalized to b-actin or a-tubulin,

were calculated as the mean difference in percentage compared to

time-matched vehicle controls (0.1% DMSO), which were

assigned a value of 100%.

TUNEL analysis in vitro. The terminal deoxynucleotidyl

transferase dUTP nick end labeling method (TUNEL) was applied

to CEM treated with 0–15 mM DIM for 48 hr. The In Situ Cell

Death Detection kit with Fluorescein (Roche Applied Science,

Indianapolis, IN) was used to label DNA strand breaks and the

Guava Express Plus program was used to sort and quantify the

amount of TdT incorporation. Detailed methods, including

sample preparation and fluorescent microscopy, are provided in

File S1. The apoptotic index (AI) was calculated from the flow

cytometry results as follows: AI = (number of TUNEL-positive

cells/total number of cells)6100.

Quantitative PCR for apoptosis pathway. Total RNA was

extracted using TRIZOL reagent (Sigma-Aldrich) as

recommended by the manufacturer from triplicate samples of

CEM cells treated with 7.5 mM DIM for 4 or 24 hr. cDNA

synthesis was performed using 2 mg RNA per sample with the RT2

First Strand Synthesis Kit (SABiosciences, Frederick, MD);

quantitative PCR analysis for 84 genes related to human

apoptosis was performed using the RT2 Profiler PCR Array

System (SABiosciences) with the iCYCLER iQ5 Real-Time PCR

System (Bio-Rad, Hercules, CA). Relative gene expression was

calculated using the DDCt method [28] with the housekeeping

genes B2M and GAPDH selected for normalization. Transcripts

were considered absent if Ct.35 and were removed from analysis.

In vivo xenograft study with human CEM cells
Animal care and diet preparation. All protocols for the

handling and treatment of mice were reviewed and approved by

the Oregon State University Institutional Animal Care and Use

Committee (Animal Care and Use Protocol #3837). Male

NOD.CB17-Prkdcscid/SzJ (SCID) mice were purchased from

Jackson Laboratories (Bar Harbor, ME) at 7 weeks of age and

housed at the Laboratory Animal Resource Center at Oregon

State University under controlled conditions of 2061uC and

50610% humidity with a 12:12 hr light/dark cycle in micro-

isolator cages (Super Mouse750TM Micro-Isolator TM, Life

Products, Seaford, DE) with CareFRESH bedding. Mice were

acclimated for one-week prior to any experimental procedures.

Experimental diets were prepared by incorporating 500 or

2000 mg I3C, or 350 mg BioResponse-DIM (contains 100 mg

DIM) per kg of powdered AIN93G diet (Research Diets, New

Brunswick, NJ). All prepared diets were c-irradiated (2.5 mRads)

and stored at 220uC, protected from light throughout the course

of the study.

CEM cell xenograft study. Detailed methods for the

xenograft study are provided in File S1. Briefly, CEM cells were

freshly collected, prepared in a 1:1 (v/v) solution of medium/

Matrigel, and engrafted subcutaneously (107 cells/site) into SCID

mice. Mice were fed diets containing 500 ppm I3C, 2000 ppm

I3C, or 100 ppm DIM (350 ppm BioResponse-DIM) ad libitum for

one-week prior to engraftment and throughout the course of the

study. Xenograft measurements were conducted every third day

with digital calipers, and tumor volume was estimated using the

equation for an ellipsoid (L6W26p/6).

TUNEL analysis of human CEM cell xenografts. Detailed

methods for staining and analysis of xenograft tissues by TUNEL

for detection of apoptosis are provided in File S1. Briefly, serial

sections of xenografts were stained using the In Situ Cell Death

Detection kit, POD (Roche Applied Science) with few

modifications from the manufacturer’s protocol. The apoptotic-

index (AI) was calculated as follows: AI = (manual count TUNEL

positive/auto count negative)6100.

Figure 2. Comparison of I3C and DIM in multiple human T-ALL cell lines. Human CEM, HSB2, SUP-T1 and Jurkat cells were treated for 48 hr
with I3C (15.6 up to 500 mM) or DIM (1.9 up to 60 mM), then stained with ViaCount reagent for analysis of cell concentration and percent viability.
Values are the mean level of cell proliferation (panels A–D) or the mean percent viable cells (panels E–F) 6 SEM (n = 3 independent experiments),
normalized to the time-matched vehicle control (0.1% DMSO). Non-linear regression analysis (four parameter, variable slope) was performed
(GraphPad Prism) to generate the concentration-response curve for each chemical in each cell line, from which IC50 values were obtained (see
Table 2).
doi:10.1371/journal.pone.0034975.g002

Table 2. Inhibition of T-ALL cell growth by DIM and I3C.

IC50 (mM) for DIM IC50 (mM) for I3C

Cell line Proliferation Viability Proliferation Viability

CEM 15 27 122 223

HSB2 8 7 86 83

SUP-T1 13 14 262 284

Jurkat 9 15 228 222

Note: Non-linear regression analyses (four parameters, variable slope) were
performed using data generated from each DIM and I3C concentration-
response curve generated for each of the four cell lines tested (GraphPad Prism
v5.0, San Diego, CA). IC50 values are the concentrations of DIM or I3C required
to inhibit cell proliferation or viability by 50% compared to the vehicle control
(0.1% DMSO).
doi:10.1371/journal.pone.0034975.t002

Anti-Cancer Effects of DIM in Human T-ALL Cells
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Figure 3. DIM induces cell-cycle arrest in CEM and HSB2 cells. Cells were treated with 0, 3.8, 7.5, or 15 mM DIM for 48 hr, then fixed in ice-cold
70% EtOH and stained with propidium iodide. DNA content distribution was analyzed by Guava PCA or Accuri C6 flow cytometry. (A–B)

Anti-Cancer Effects of DIM in Human T-ALL Cells
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Statistical analyses
GraphPad Prism 5 software (La Jolla, CA) was used for all

statistical analyses. One or two-way ANOVA were performed as

appropriate for the number of experimental factors being

examined. Statistical significance was inferred when p,0.05 and

was denoted in each figure as follows: *, p,0.05; **, p,0.01, and

***, p,0.001. Non-linear regression analyses were performed

using the equation for exponential growth to determine the impact

of experimental diet on the doubling time (DT) of CEM

xenografts. DT was calculated as follows: DT = [(To2Ti)ln2]/

ln(Vo/Vi) where Ti and To represent the initial and final time

points and Vi and Vo represent initial and final tumor volumes. A

significant effect of DIM on gene expression was inferred when the

relative fold change was greater than 1.5-fold (log2 R,20.58 or

.0.58) with a p-value,0.05 (Student’s t-test) compared to time-

matched controls.

Results

Impact of DIM treatment CEM cells in vitro
DIM and I3C inhibit proliferation of CEM cells. To

determine the impact of DIM and I3C on growth of a

representative human T-ALL cell line, a time-course study was

performed over a range of concentrations using CEM cells. DIM

and I3C blocked the proliferation of CEM cells in a time- and

concentration-dependent manner (Fig. 1A–B). Treatment with the

highest concentrations of DIM or I3C significantly reduced CEM

cell viability by up to 58 or 82%, respectively (Fig. 1C–D).

Significant inhibition of proliferation and a decrease in viability

was observed after 24 hr treatment with DIM or I3C, with the

greatest response observed by 48 hr. However, I3C was

substantially less effective, as much greater concentrations

(.62.5 mM) were required to significantly reduce CEM cell

growth or decrease viability compared to DIM (.7.5 mM).

Comparison of efficacy of DIM and I3C in multiple T-ALL

cell lines. Concentration-response experiments were performed

in four different T-ALL cell lines to determine whether DIM and

I3C are similarly effective in reducing growth of T-ALL cells

derived from T-cells at different stages of differentiation. In all cell

types, in vitro treatment with DIM for 48 hr markedly reduced cell

proliferation (IC50 values of 8 to 15 mM) and cell viability (IC50

values of 7 to 27 mM), whereas I3C was much less effective

(proliferation IC50 values of 86 to 262 mM; viability IC50 values of

83 to 284 mM) (Fig. 2; Table 2). HSB2 cells were the most sensitive

to inhibition of cell growth by DIM and I3C.

DIM induces cell cycle arrest in CEM and HSB2

cells. The marked suppression of proliferation by DIM

prompted us to evaluate cellular DNA content by flow

cytometry in each of the four T-ALL cell lines. Treatment of

CEM or HSB2 cells with 7.5 or 15 mM DIM for 48 hr resulted in

a significant G1 cell cycle arrest, with substantially fewer cells

progressing to the G2/M phase (Fig. 3). Shorter duration DIM

treatment (6 and 12 hr) in CEM cells also caused a significant G1

arrest (data not shown). On the other hand, DIM treatment did

not significantly alter cell cycle progression in either SUP-T1 or

Jurkat cells (Fig. 3). Additionally, at the higher concentrations of

DIM tested, a sub-G1 peak was observed in the raw histogram

data (for example in CEM cells approximately 10% at 7.5 mM,

and about 14% at 15 mM; data not shown) indicating an

increasing population of apoptotic cells.

Next, we measured the expression of key regulatory proteins of

cell cycle progression by immunoassay in CEM cells. DIM

suppressed expression of key cell cycle regulatory proteins in vitro, a

finding that is consistent with DIM-induced G1 growth arrest

(Fig. 4). Treatment with DIM for 12 or 24 hr decreased expression

of CCND3 and CDK4 proteins in a concentration-dependent

manner (i.e., 38% and 56% decrease after treatment with 15 mM

DIM for 24 hr, respectively), whereas a trend for decreasing

CDK6 expression was evident (up to 48% decrease after 15 mM

DIM for 24 hr). I3C also decreased expression of CCND3, CDK6

and CDK4 at 24 hr (data not shown), albeit at supra-physiological

concentrations (.100 mM) that have been shown to be cytotoxic

in healthy peripheral blood mononuclear cells [29].

DIM induces apoptosis in T-ALL cells. Two methods for

assessing the impact of DIM on apoptosis were used in this study.

First, the portion of apoptotic cells following treatment with DIM

for 48 hr was determined by the ViaCount assay. In all four T-

ALL cell types, treatment with 15 mM DIM caused a significant

increase in the percentage of apoptotic cells (Fig. 5), although the

sensitivity to DIM varied with cell type. For example, HSB2 cells

were the most sensitive to DIM-induced apoptosis (significant

increase in apoptosis at DIM concentrations .7.5 mM up to 52%),

whereas apoptosis was only modestly increased in Jurkat cells (10%

apoptosis at 15 mM DIM).

Next, the extent of DNA strand breaks in vitro was analyzed

using the TUNEL method and a commercially available kit (In Situ

Cell Death Detection Kit, Roche Applied Science) in the CEM

cell line only. Marked incorporation of fluorescein-dUTP was

evident by fluorescence microscopy (Fig. 6A). Fixed and stained

samples were applied to a benchtop flow cytometer (Guava PCA)

for quantitative analysis of results. This approach identified

populations of both low and high TdT incorporation by

fluorescence intensity, reflective of low and high cellular levels of

apoptosis (Fig. 6B). For all concentrations of DIM tested, the low

intensity apoptotic index increased in a concentration-dependent

manner relative to controls, with the percentage of CEM cells

undergoing low levels of apoptosis ranging from 2 to 13%. At

higher concentrations ($7.5 mM) of DIM, an increase in the

number of cells with a high level of apoptotic response was also

observed. Apoptosis was detected in 22% of the cell population at

the highest concentration of DIM tested.

DIM alters expression of genes that regulate the

apoptosis pathway. We determined the effects of DIM on

expression of gene targets relevant for regulation of apoptosis in

human cells. Fold change values and results of the statistical analyses

for all gene targets on the apoptosis PCR pathway array are

provided in Table S1. In vitro exposure to 7.5 mM DIM for 4 hr

significantly altered the expression level of eight genes more than

1.5-fold (p,0.05) with respect to the time-matched controls

(Table 3). This set of genes accounted for 9.5% of transcripts

queried by the quantitative PCR apoptosis pathway array. Among

those transcripts, BCL2L10, CD40LG, HRK, TNFRSR1A and

TNFSF8 were significantly induced, while only TNF was repressed.

Following 24 hr of DIM exposure, expression levels of CD40LG

and HRK remained elevated, while TNFRSF25 and TRAF4 were

significantly repressed (,21.5-fold, p,0.05) (Table 3).

Representative histograms are shown for control and 15 mM DIM treatments at 48 hr in human CEM cells. (C–D) Distributions of CEM, HSB2, SUP-T1 or
Jurkat cells in G1 (black), S (white), and G2 (grey) phases of cell-cycle progression at 48 hr (n = 3 to 5 independent experiments). *, p,0.05; **, p,0.01
or *** p,0.001 for G1 arrest compared to the vehicle control (0.1% DMSO) as determined by one-way RM ANOVA (matching by experiment day) with
Dunnett’s multiple comparisons post-hoc test.
doi:10.1371/journal.pone.0034975.g003
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Impact of DIM and I3C treatment on growth of CEM
xenografts

DIM and I3C inhibit growth of CEM xenografts in

vivo. Another key objective of this study was to determine

whether dietary DIM or I3C reduced the growth of human CEM

cells in vivo using a SCID mouse xenograft model. The rate of body

weight gain or average final body weight was not significantly

affected by any of the dietary treatments (Fig. S1). On average,

animals in the DIM group consumed about 0.4 mg DIM/day,

based on per cage diet consumption data (Fig. S1B). The rate of

successful CEM engraftment in this study was high (57/59

animals), with solid nodules palpable within one week

(approximately 250 mm3). In this study, short-term (1 week pre-

engraftment+28 days post-engraftment; 35 days total) dietary

treatment with 100 ppm DIM, 500 ppm I3C or 2000 ppm I3C

did not significantly affect average body weight or rate of body

weight gain (Fig. S1A). Animals fed 500 ppm I3C apparently

consumed less food on a daily basis compared to the other diet

groups (Fig. S1B.); one animal was removed from this group due to

an unrelated health problem. Tumor volume in control-fed

animals increased by about 600%, with an average doubling

Figure 4. DIM reduces expression of cell-cycle regulatory
proteins. Following either 12 hr (gray bars) or 24 hr (black bars)
treatment with increasing concentrations of DIM, CEM cells were
harvested and protein immunoassays were performed for detection of
CCND3, CDK4 and CDK6 proteins (three replicate experiments
performed). (A) A representative immunoblot is shown for each protein
assay. (B) Values shown are average protein expression 6 SEM
normalized to b-actin, expressed as a percentage difference from
time-matched vehicle controls (0.1% DMSO), which were assigned a
value of 100%. *, p,0.05 or **, p,0.01 compared to 0 mM DIM (vehicle
control) as determined by one-way ANOVA with Dunnett’s post-hoc
test for multiple comparisons; overall ANOVA p-values within each time
group are indicated in each panel. In some cases where the p-value for
the ANOVA was not ,0.05, a significant linear trend was evident, as
indicated by trend p-values in the figure. Finally, a Student’s t-test
(###, p,0.001) was performed to compare 15 mM DIM to vehicle
control for CCND3 expression at 24 hr because high variability observed
at the 3.8 mM concentration confounded the ANOVA post-hoc results
(overall effect of DIM was significant).
doi:10.1371/journal.pone.0034975.g004

Figure 5. DIM induces apoptosis in human T-ALL cells. CEM,
HSB2, SUP-T1 and Jurkat cells were treated with 3.8 to 15 mM DIM for
48 hr. Values are the proportion of apoptotic cells as determined using
the ViaCount assay + SEM (n = 3 to 4 independent experiments). *,
p,0.05; **, p,0.01 or *** p,0.001 for compared to the vehicle control
(0 mM DIM, 0.1% DMSO) as determined by one-way RM ANOVA
(matching by experiment day) with Dunnett’s multiple comparisons
post-hoc test.
doi:10.1371/journal.pone.0034975.g005
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time (DT) of 6.4 days (Fig. 7; Table 4). Dietary DIM significantly

reduced growth of CEM xenografts (p = 0.041, two-way RM

ANOVA), and a significant effect of dietary DIM on CEM nodule

size was detected by day 25 (p,0.05, Bonferroni’s post-hoc tests

compared to control) (Fig. 7A). At the conclusion of the study, the

final average tumor size in DIM-treated animals was substantially

and significantly reduced (44% decrease in volume) compared to

control animals. Moreover, the rate of growth of CEM cell

xenografts in animals fed 100 ppm DIM was significantly slower

with a DT of 10.2 days (Table 4) compared to 6.4 days for control

fed animals (p,0.001 by one-way ANOVA). I3C was less effective

at reducing xenograft growth; 500 and 2000 ppm diet

concentrations decreased tumor volume by 25% or 27% by day

28, respectively, although these levels of effect were not statistically

significant (500 ppm I3C, p = 0.356; 2000 ppm I3C, p = 0.271, by

two-way RM ANOVA) (Fig. 7B). However, tumor growth rate

was significantly reduced by 2000 ppm I3C, with a calculated

doubling time of 8.5 days (p = 0.006) (Table 4).

Dietary DIM induces apoptosis in CEM xenografts.

Because high rates of apoptosis were detected in CEM cells

exposed to DIM in vitro, apoptosis was also assessed in CEM

xenografts following dietary exposure to 100 ppm DIM, 500 ppm

I3C, and 2000 ppm I3C (Fig. 8A). Dietary DIM resulted in a

significant (p,0.001), two-fold increase in the number of TUNEL-

positive cells in mice fed DIM (3.460.5%) compared to control

mice (1.760.2%). Alternatively, AI values for xenograft sections

from mice exposed to 500 or 2000 ppm I3C were not significantly

different from control (Fig. 8B).

Discussion

We provide evidence for the first time that DIM significantly

impairs the growth of human T-ALL cells in vitro and in vivo.

Moreover, we show that DIM blocks growth of T-ALL cell types

that represent the spectrum of T-cell differentiation arrest

occurring within this disease, ranging from least differentiated to

nearly mature (HSB2.CEM.SUP-T1.Jurkat). All four T-ALL

cell types studied responded to DIM treatment in a dose-

dependent manner, as shown by inhibition of cell proliferation

and viability and increased levels of apoptosis; in addition, a G1

Figure 6. DIM induces apoptosis in CEM cells as detected by TUNEL. The In situ cell death detection kit (TUNEL) was applied to fixed CEM
cells treated with 0 to 15 mM DIM for 48 hr. (A) Fluorescence images of control (0 mM) and DIM-treated (15 mM) cells were taken at 206magnification
following TUNEL labeling in mounting medium with DAPI. (B) Flow cytometry was used to identify and quantify cells with no, low (open bar) or high
(solid bar) intensity staining. **, p,0.01 or ***, p,0.001 as determined by one-way ANOVA with Dunnett’s post-hoc test comparisons for significant
effects of DIM treatments within each intensity category as compared to vehicle control (0 mM DIM, 0.1% DMSO).
doi:10.1371/journal.pone.0034975.g006

Table 3. DIM-induced changes in expression of select apoptosis-related genes in CEM cells. *

Log2 R (p-value){

Unigene Symbol Description 4 hours 24 hours

Hs.283672 BCL2L10 BCL2-like 10 (apoptosis facilitator) 1.05 (0.459) 0.63 (0.023)

Hs.592244 CD40LG CD40 ligand 0.75 (0.019) 0.62 (0.043)

Hs.87247 HRK Harakiri, BCL2 interacting protein (contains only BH3 domain) 0.88 (0.014) 1.35 (0.004)

Hs.241570 TNF Tumor necrosis factor (TNF superfamily, member 2) 20.63 (0.016) 20.39 (0.026)

Hs.279594 TNFRSF1A Tumor necrosis factor receptor superfamily, member 1A 1.22 (0.002) 20.46 (0.331)

Hs.462529 TNFRSF25 Tumor necrosis factor receptor superfamily, member 25 nd{ 21.15 (0.015)

Hs.654445 TNFSF8 Tumor necrosis factor (ligand) superfamily, member 8 0.90 (0.026) 0.34 (0.009)

Hs.8375 TRAF4 TNF receptor-associated factor 4 nd 20.59 (0.017)

*A complete list of DIM-induced changes in gene expression, including all genes on the RT2 Profiler Apoptosis array, is provided in Table S1.
{Log2 fold change (R) values are highlighted in bold if level of change is .1.5-fold (Log2 R,20.58 or .0.58) compared to vehicle (0.1% DMSO) control. p-values were
determined by a Student’s t-test assuming equal variances.
{nd, not detected by RT2 PCR profiler array at this time point (Ct.35).
doi:10.1371/journal.pone.0034975.t003
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cell cycle arrest was observed in HSB2 and CEM cells, lines that

represent early (pre-T) differentiated cells. In this study, we also

show that the I3C derivative, DIM, was far more potent than its

precursor and exhibited therapeutic effects on a variety of highly

aggressive juvenile T-ALL cell lines, including Jurkat and CEM, at

physiological concentrations. Others have reported that I3C

suppressed NFkB stimulation by TNF and downstream gene

products, including CCND1, BCL-2 and TRAF1, in myeloid and

leukemia (Jurkat) cells [30], but I3C was not capable of blocking

the growth of T-cell lines that were not infected with human T-cell

leukemia virus type-1 (MOLT-4, Jurkat and CCRF-CEM) [29].

The SCID mouse model supports the solid growth of

subcutaneously injected human acute leukemia blast cells in a

manner that is easily measurable and exhibits a dissemination

pattern analogous to the human disease [31,32]. We supplemented

this pre-clinical model with dietary indoles to determine the extent

of xenograft growth suppression following absorption, metabolism

and disposition to the grafted cells. This study is the first to employ

continuous exposure of I3C or DIM through the diet, as opposed

to bolus administration via gavage or injection, with a human cell

xenograft model in SCID mice. In the present study, growth of

human CEM cell xenografts in mice consuming DIM (approxi-

mately 0.4 mg/day) was only about half that of the control

animals, an observation that is comparable to other studies with

breast cancer cell xenografts that employed even greater amounts

of DIM or more direct routes of exposure. For example, oral

gavage of about 1 mg DIM/day (3.5 mg BioResponse-DIM/day)

decreased growth of MDA-MB-231 xenografted cells by approx-

imately 30% after 3 weeks of exposure [33] whereas daily 5 mg/kg

s.c. injections of DIM at the site of MCF-7 xenografts reduced

tumor volume by about 45% [34].

We selected a dietary concentration of 2000 ppm I3C level

based on the apparent anticancer effects at this level observed in

our previous studies [26,35]. The likely proportion of this I3C diet

Figure 7. DIM and I3C suppress CEM cell xenograft growth. Male NOD.CB17-Prkdcscid/SzJ mice were engrafted with CEM cells as described in
Materials and Methods and fed control diet (CTRL), 100 ppm DIM (panel A) or 500 or 2000 ppm I3C (panel B) for 28 days. Growth of xenografts was
assessed every third day and compared to nodule volumes in control-fed animals. *, p,0.05 or **, p,0.01 as determined by two-way repeated
measures ANOVA with Bonferroni post-hoc tests to evaluate the effects of diet on tumor growth at each time point compared to the time-matched
control. p-values for overall effect of each treatment on tumor growth compared to control are: 100 ppm DIM, p = 0.041; 500 ppm I3C, p = 0.356; and
2000 ppm I3C, p = 0.271.
doi:10.1371/journal.pone.0034975.g007

Table 4. Growth of human CEM cell xenografts in SCID mice fed DIM or I3C.

Treatment
Final tumor volume
mm3 ± SEM

Tumor doubling time{

Days (95% CI)

Control 13606222 6.43 (5.22–8.35)

100 ppm DIM (350 ppm BR-DIM) 7616153 ** 10.2 (7.51–15.9) ###

500 ppm I3C 10306318 7.57 (5.43–12.5)

2000 ppm I3C 9946191 8.45 (6.47–12.2) ##

Note:
**, p,0.01 as determined by two-way ANOVA with Dunnett’s post-hoc test comparisons for significant effect of experimental diet compared to the time-matched
control (day 28 values for tumor volume are shown).
##, p,0.01 or
###, p,0.001 as determined by one-way ANOVA with Dunnett’s post-hoc test comparisons for significant effects of experimental diets compared to control.
{Tumor growth rates were modeled by non-linear regression analyses using the exponential growth equation with least-squares fit (Prism 5). Average doubling time
(DT) values are shown and were calculated as follows: DT = [(To2Ti)6ln2]/ln(Vo/Vi) where Ti and To represent the initial and final time points and Vi and Vo represent
initial and final tumor volumes. p-values (extra sum of squares F test) are reported for comparison of calculated growth curves for indicated treatments compared to
control diet.
doi:10.1371/journal.pone.0034975.t004
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to be converted to DIM following in vivo condensation corresponds

to a diet concentration of 350 ppm DIM, based on a 2:1 molar

ratio and assuming a 20% conversion rate [20,23]. The

BioResponse-DIM formulation is a commercially available dietary

supplement, sold for human consumption, that is also used in

animal studies and clinical trials; thus, 350 ppm BioResponse-

DIM (100 ppm DIM) was selected in anticipation of comparable

bioactivity to the 2000 ppm I3C treatment [23]. Pharmacokinetic

studies in mice comparing this formulated DIM to crystalline DIM

demonstrate a 50% improvement in adsorption [23]. This

difference in bioavailability, along with the rapid elimination of

I3C and formation of additional bioactive I3C derivatives, may

account for the reduced efficacy of 2000 ppm I3C in vivo

compared to 100 ppm DIM.

DIM was also significantly more potent than I3C in vitro based

on the relative IC50 values for inhibition of cell proliferation and

viability across all cell lines tested. Moreover, the anti-proliferative

effect of I3C was delayed compared to DIM, suggesting that

conversion of I3C to DIM and other ACPs in the culture media

may contribute to the physiological effects of I3C. A recent report

by Bradlow and Zeligs [36] showed that addition of 100 mM I3C

to culture media at a neutral pH resulted in concentrations of DIM

of about 25 mM within 24 hours. However, because the degree of

difference in potency of DIM and I3C varied across the four T-

ALL cell lines tested and by the endpoint examined (viability,

proliferation) in this study, the apparent lower potency of I3C

compared to DIM cannot be fully explained by conversion of I3C

to DIM in the culture media.

Other plausible explanations exist for the distinctive responses

to DIM observed in the four T-ALL cell lines studied, which are

characterized by different lineages of T-cell differentiation (pre-T,

cortical-T and mature-T), as well as different ages and genders of

the source patients (Table 1). Gene deletions and mutations as well

as epigenetic mechanisms of gene dysregulation are commonly

implicated in the oncogenesis of T-cells and in therapeutic

outcome [37,38,39]. Common leukemic signature genes include

those involved in normal T-cell receptor signaling and T-cell

differentiation such as NOTCH1, NOTCH3, HOX11, TAL1, LYL1

and LMO1 [5,37]. A selection of these therapeutically relevant

targets and their status in HSB2, CEM, SUP-T1 and Jurkat cells

are listed in Table 1.

Although beyond the scope of this study, the different

combinations of these aberrations across the cell lines tested are

likely to play a role in the therapeutic effect of DIM. The variable

responses to both targeted and conventional chemotherapeutic

drugs that have been previously observed in T-ALL cells are likely

a consequence of the respective mutations harbored by the cell

lines (e.g., [11,40]). Thus, the observation that DIM had variable

potency for blocking growth of T-ALL cells (though effective in all

four cell lines tested) is not necessarily unexpected given the

apparent variability in response of T-ALL cells to drug therapies.

Treatment of CEM and HSB cells with DIM caused a blockade

of cell-cycle progression at the G1 phase checkpoint, although this

effect was not observed in more differentiated T-ALL cell lines

(SUP-T1 or Jurkat); DIM (and I3C) also suppressed expression of

CCND3, CDK4 and CDK6 cell cycle regulatory proteins in CEM

cells. Early progression of the eukaryotic cell cycle is positively

regulated by the coupling of D-type cyclins with the highly

homologous CDK4 or CDK6 proteins and negatively regulated by

cyclin dependent kinase inhibitors and phosphatases [41]. I3C and

DIM inhibit proliferation and cell cycle progression of various

tumor cells, including breast [42], prostate [43] and colon [44], via

down-regulation of cyclins and cyclin dependent kinases and/or

up-regulation of cyclin dependent kinase inhibitors, such as p21 or

p27 [42,43,45]. The INK4A gene locus, which encodes the cyclin

dependent kinase inhibitors p16 and p19, is inactivated in up to

80% of T-ALL cases and in all T-ALL cell lines tested [46,47].

CDK6 is the initial CDK induced during T-lymphocyte

activation/proliferation and is highly expressed in T-cell lympho-

blastic leukemias/lymphomas [48]; similarly, over-expression of

cyclin D3 is oncogenic in an array of mouse and human T-ALL

cell lines [49]. Aberrant expression of cyclin D3 and cyclin

dependent kinases during leukemic transformation underscores

their relevance as therapeutic targets for I3C/DIM.

DIM treatment effectively induced apoptosis in human T-ALL

cells in vitro and in vivo, although the apoptotic response to in vitro

treatment with DIM varied greatly among the cell lines tested.

HSB2 cells, which represent T-ALL originating from T-cells at a

very early stage of differentiation, were highly sensitive to DIM-

induced apoptosis compared to other T-ALL cell types that were

only modestly affected. This observation reinforces a general

conclusion of this report that HSB2 cells are more sensitive to the

anticancer effects of DIM in vitro. DIM treatment of CEM cells in

vitro also altered expression of mRNA transcripts belonging to the

BCL-2 superfamily or involved in TNF signaling, suggesting the

involvement of both intrinsic and extrinsic apoptotic pathways.

Others have shown that in vitro treatment with I3C or DIM inhibits

NFkB activity in human breast and prostate cancer cells

Figure 8. DIM induces apoptosis in vivo. (A) The In situ cell death detection kit (TUNEL) was applied to xenograft sections following exposure to
control diet (CTRL), 100 ppm DIM, 500 ppm I3C (I3C-L), or 2000 ppm I3C (I3C-H). Dark staining indicates apoptotic cells, and the scale bar represents
50 mm. (B) Manual and software-assisted counting was performed for xenograft sections as described in File S1 to calculate the percentage of positive
cells. ***, p,0.001 as determined by one-way ANOVA with Dunnett’s multiple comparisons post-hoc test.
doi:10.1371/journal.pone.0034975.g008
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undergoing apoptosis [18,50] and reduces BCL-2 mRNA and

protein expression in breast cancer cells [51]. Moreover,

expression of HRK (a BH3 domain-only BCL2 family member)

is induced in hematopoietic progenitor cells upon growth factor

removal or chemotherapeutic administration [52]. In this study,

treatment of CEM cells with 7.5 mM DIM rapidly and

continuously elevated HRK expression in vitro, which represents

a putative and novel therapeutic target of these dietary indoles.

Bioactive dietary components may be utilized as part of a

healthy lifestyle aimed at disease prevention or therapy. The

ability of I3C/DIM to target multiple pro-survival pathways in

cancer cells, while causing few adverse effects on normal cells, has

been explored in a number of cancer models with substantial

success. Collectively, our work points to the potential benefit of

exposure to these agents at early life stages for chemoprotection,

from gestation through adolescence, when leukemia is most

prevalent [26, this study]. Based on available human and animal

data [22,23], the concentrations of DIM used in this study in vitro

are likely achievable in vivo. In conclusion, our observations suggest

that DIM may be a beneficial chemotherapeutic agent or adjunct

therapy for T-ALL patients.

Supporting Information

Figure S1 Body weight gain and food consumption of
mice engrafted with human CEM cells and fed DIM or
I3C diets. Male NOD.CB17-Prkdcscid/SzJ mice were fed diets

containing 100 ppm DIM (350 BR-DIM, X), 500 ppm I3C (n,

I3C-L), 2000 ppm I3C (#, I3C-H) or control diet (&) throughout

the xenograft study. (A) Following engraftment with CEM cells,

animals were weighed every third day to monitor the rate of

weight gain. A significant effect of experimental diet was not

observed on weight gain, as determined by a two-way repeated-

measures ANOVA (source of variation and p-value: diet

treatment, p = 0.543; time, p,0.0001; interaction, p = 0.053;

subjects matching, p,0.001). (B) Average food intake was assessed

daily on a per cage basis (two subjects per cage). *, p,0.05 as

determined by one-way ANOVA with Dunnett’s post-hoc multiple

comparisons test compared to control (CTRL) diet.

(TIF)

Table S1 DIM-induced changes in expression of genes
associated with apoptosis pathway in human CEM cells.

(PDF)

File S1 Supplemental methods. Additional details on

experimental methods are provided, including TUNEL analysis

of CEM cells cultured in vitro, the CEM cell xenograft study and

TUNEL analysis of human CEM cell xenografts.

(PDF)
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