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Abstract

When the individual outcomes within a composite outcome appear to have different treatment effects, either in magnitude
or direction, researchers may question the validity or appropriateness of using this composite outcome as a basis for
measuring overall treatment effect in a randomized controlled trial. The question remains as to how to distinguish random
variation in estimated treatment effects from important heterogeneity within a composite outcome. This paper suggests
there may be some utility in directly testing the assumption of homogeneity of treatment effect across the individual
outcomes within a composite outcome. We describe a treatment heterogeneity test for composite outcomes based on a
class of models used for the analysis of correlated data arising from the measurement of multiple outcomes for the same
individuals. Such a test may be useful in planning a trial with a primary composite outcome and at trial end with final
analysis and presentation. We demonstrate how to determine the statistical power to detect composite outcome treatment
heterogeneity using the POISE Trial data. Then we describe how this test may be incorporated into a presentation of trial
results with composite outcomes. We conclude that it may be informative for trialists to assess the consistency of treatment
effects across the individual outcomes within a composite outcome using a formalized methodology and the suggested
test represents one option.
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Introduction

It is common to use primary composite outcomes in trials

designed to test the effectiveness of new therapies in preventing or

treating disease. Trialists identify a list of outcomes to include in

this composite that are thought to share the same disease pathways

and therefore, should show similar treatment effects, at least in

direction [1–7]. This type of composite outcome then assumes

homogeneity of treatment effect for all outcomes included in it.

However, this assumption can be challenged at the end of the trial,

when there is visible variation in the treatment effects among these

individual outcomes. Currently there are few formal methods to

determine if such variation is due to chance alone, or represents

new, unanticipated information that should change how we

interpret the overall treatment effect in a trial. This determination

is critical as an unanticipated treatment difference between

outcomes may alter our assumptions about mechanisms of action

potentially for both the treatment and the disease process itself.

Without using a formal statistical method to determine if the

outcomes within a composite share a common treatment effect,

individual readers may come to different conclusions, based solely

on variation in judgment. Given the importance of determining if

a primary composite outcome can validly represent the overall

treatment effect of an intervention, perhaps a more objective

assessment should be used.

It is easier to interpret the treatment effect for a primary

outcome where there is little variation in this effect for its

individual outcomes. The question remains open as to how

consistent these individual treatment effects need to be before we

should be concerned about using a primary composite outcome to

summarize the overall treatment effect. It has been suggested that

we may only accept the overall treatment effect if at least one

individual outcome also show statistically significant benefit [8].

Another view indicates that all individual outcomes contained in

the composite should have point estimates trending in the

direction of benefit [9,10]. Yet we know that power for these

individual outcome comparisons will be low in a trial designed to

have good power only for the primary composite outcome.

Random variation alone can easily result in variation in treatment
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effects for individual outcomes, as we see so often in under-

powered subgroup analyses[11,12].

Ferreira-Ganzalez et al.[2] suggest using a gradient of efficacy

across the individual outcomes for a composite. This gradient is

defined as the difference between smallest and largest individual

outcome treatment effects, and these differences are then

organized into small, moderate or large categories. The limitation

of this method is that it does not take variability or the amount of

information into account, so can not distinguish random variation

from systematic differences.

We suggest that a composite outcome treatment heterogeneity

test can be used to clarify variation in treatment effect for the

individual outcomes with that composite. A heterogeneity or

interaction test is routinely used in both meta-analysis[13] and

subgroup[11,12] analysis to distinguish random variation from

systematic differences, and this determination is wisely based on

the amount of information available in the analysis. However, with

multiple outcomes recorded for the same trial participants, one

cannot merely use a simple Cochran’s Q test to detect differences

in treatment effect across outcomes. The individual outcomes

within a composite are correlated with one another and we need to

use statistical models that account for this correlation. The purpose

of this paper is to illustrate the use of appropriate statistical

methods to assess treatment heterogeneity in both the design and

analysis of a trial that uses a composite outcome.

Sometimes composite outcomes are formed to quantify risk-

benefit or capture competing risks. In these cases, there is no

expectation that the treatment will have the same effect on each

outcome within the composite. In fact, often it is expected that a

new therapy may have greater efficacy and greater harm, than a

standard one. In such a case, there is no assumption of

homogeneity of treatment effects across the composite components

and the methods proposed in this article would not be appropriate.

To illustrate this methodology we use the composite outcome

from the POISE Trial [14] as an example. Given our a priori

assumption that all components of this composite outcome would

share the same direction and approximate magnitude of treatment

effect, we present a statistical analysis to address the possible

contradiction of this assumption in the design and analysis stages.

Methods

The POISE trial [14] examined the effect of peri-operative

beta-blocker versus placebo in participants at risk of cardiovascular

events who were undergoing non-cardiac surgery. 8351 partici-

pants were randomized from 190 centers in 23 countries. The

primary composite outcome was time to first occurrence of non-

fatal myocardial infarction, non-fatal cardiac arrest, or cardiovas-

cular death within 30 days from randomization. The primary

analysis used a Cox regression for the treatment comparison of

time to first composite outcome. Results, published previously

[14], visually display a lack of homogeneity of treatment effect

across the components of the composite outcome (see figure 1).

We would like to fit the following general model:

f Yijk

� �
~mzajzbz abð Þjkzv�

For the ith patient, all outcome types included in the composite

outcome are analyzed in a single regression. A function (f) of the

outcome for each component of the composite Yijk, is estimated

from the following terms: aj represents the treatment effect for j

treatment groups, bk is the effect of each individual outcome of the

composite outcome for k individual outcome components, (ab)jk is

the interaction of treatment and individual outcomes, intercept m,

and v* is an error term whose structure will depend on the exact

model used. The test of whether the interaction term (ab)jk is

different from zero is the test of homogeneity of treatment effect

across the individual components of the composite outcome.

A trial where multiple outcomes are evaluated for the same

participants can be viewed as a repeated measures design. These

models include terms to account for the non-independence of

these data due to an association or correlation of the multiple

outcomes (i.e. components of a composite outcome) within a

participant. Regardless of the outcome type (binary, continuous, or

time to event) there are generally two statistical models used for

this type of analysis: random effects and marginal models. For

random effects, also known as mixed models, a term for individual

variation is incorporated in the model, usually to allow the slope of

the regression to vary across participants. Individuals are

considered to be randomly selected from a population with an

intercept assumed to follow a known distribution [15]. For the

current case this model would include a random intercept term ci

assumed to vary for each patient from a common statistical

distribution and an error term eijk:

f Yijk

� �
~mzajzbkz abð Þjkzcizeijk

For the marginal or population-averaged model, the association

of multiple outcomes within an individual is treated as a nuisance

factor and treatment effects are then estimated by averaging over

the variability due to the individual, or are obtained at the margin

[16]. Thus, the expectation of Yijk is modeled as follows:

f E Yijk

� �� �
~m�za�j zb�kz abð Þ�jkze�ijk

The coefficients from these two models have different

interpretations. The marginal model, the * indicates that the

coefficients are averaged effects, while the random effects model

produces effects specific to the individuals in the analysis.

Statistical models such as these may be used for many different

types of composite outcomes. A composite outcome may be

formed from a number of continuous outcomes, such as multiple
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Figure 1. POISE [14] results for the primary composite outcome
and individual component outcomes. Hazard ratios and 95%
confidence interval for time-to-first composite outcome and for each
individual outcome within this composite.
doi:10.1371/journal.pone.0034785.g001
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disability scales, that are analyzed as a global test[17]. For

continuous and normally-distributed composite outcomes, f()

would be the identity link and both marginal and random effects

models would be multivariate linear models of the types commonly

used for analysis of repeated observation on the same individu-

als[18]. For the case of a binary composite outcome, f() would be

the logit function for a logistic regression. This generalized linear

model for binary outcomes analyzes the probability of occurrence

of the different outcome types, the effect of treatment, and their

interaction on the logit scale. This interaction term would form the

composite outcome treatment heterogeneity test. For binary

composite outcomes, we have previously demonstrated that a

marginal logistic regression model using generalized estimating

equations [GEE] [16] had the greatest power to detect composite

treatment heterogeneity [19], compared to the random effects

model [15], and the weighted logistic regression model, weighted

by either the intra-class correlation coefficient [20] or equivalently

the variance inflation factor [21]. For time to event data, either the

random effects frailty models [22] or marginal models such as that

proposed by Wei, Lin and Weissfeld [23,24] may be used to

analyze multiple event time data. Both frailty models and marginal

models have been shown to be useful in detecting treatment

heterogeneity between the individual outcomes within a composite

outcome [25].

Using such a model for repeated or correlated outcome data, we

can calculate the power to detect possible heterogeneity of

treatment effect across the individual outcomes of the composite

outcome at the design stage of a trial. For example, for a time to

event composite outcome, we begin with estimated associations

between outcome survival times, and then simulate correlated

outcome data in order to calculate our chances of detecting a

different treatment effect for one individual outcome within the

composite outcome. Estimates of the association in survival times

for individual outcomes may be taken from existing trials or

databases of similar trial participants. Simple correlated time-to-

event data may be simulated by creating a Cox proportional

hazards model [26] that contains a random frailty term sampled

from an assumed distribution (e.g. gamma) to represent the

association between two survival times within an individual [22].

However, for greater than two outcomes with different associa-

tions between them, simulation of multivariate survival data may

be best done through the marginal model. Lin and Wei [23,24,27]

in developing a marginal model for multivariate time-to-event

data, assumed the regression coefficients followed an approxi-

mately multivariate normal distribution and then derived a

‘‘working’’ correlation matrix to adjust the covariance matrix

estimates for correlated data. The results are known as a

‘‘sandwich’’ estimator or ‘‘robust’’ covariance matrix. Using an

estimated robust covariance matrix from a prior dataset and

assuming normality of the regression parameters, one can sample

from this multivariate normal distribution and insert these within

the Cox proportional hazards model [26] to generate random

multivariate time-to-event data, provided that the estimated

covariance matrix is positive-semi definite [25].

Suppose we were to design a two-group trial in a similar

population to the POISE trial [14] with the same composite

outcome of first occurrence of non-fatal myocardial infarction,

non-fatal cardiac arrest, or cardiovascular death within 30 days

from randomization. Assume that during the study, myocardial

infarction (MI), cardiac arrest, and cardiovascular death will be

experienced by 6%, 0.5%, and 1.5% of the control group

participants, respectively. Also we assumed a further 1% of

individual will die of a non-cardiovascular cause. From POISE

[14] data, we could fit a marginal model to obtain an estimate of

the covariance matrix, adjusted for multiple outcomes per

participant. For the ith person, kth outcome type, and jth

treatment group, this model would include time to event for each

of the three outcomes per person (T1i, T2i, T3i) and three

classification variables (Y1i, Y2i, Y3i), indicating whether each Tik

represents an occurrence of the respective event time or a

censoring time due to end of follow-up. Covariates in this

regression would include treatment group [Gj = 0 (control) or 1

(active)] and variables that compare the different outcomes to one

another [O1 = 0(MI) or 1(cardiovascular death), O2 = 0(MI) or

1(cardiac arrest)]. The following proportional hazards model

would be fit:

hijk tð Þ~h0 tð Þ exp b1Gjzb2O1zb3O2zb4 GjO1

� �
zb5 GjO2

� �� �

In this model, h0(t) represent the risk or hazard of having an MI

in the control group. The estimate of b1 represents the treatment

effect on the MI outcome, while b2 and b3 represent the difference

in risk or hazard between cardiovascular death and MI, and

cardiac arrest and MI, respectively. The interaction term b4

estimates the difference in treatment effect between cardiovascular

death and MI, and lastly, the interaction term b5 compares the

difference in treatment effect between cardiac arrest and MI. A

treatment heterogeneity test for the composite outcome would test

whether there are any significant differences between the three

individual outcomes in their treatment effect (testing the

hypothesis that b4 = b5 = 0).

Given a robust estimated covariance matrix S and estimates of

h0(t), b2, b3 from POISE [14], we can assume a common

treatment effect or hazard ratio (l) for all three outcomes, and set

b1 = ln(l), b4 = 0, and b5 = 0. We can then vary the effect on a

single interaction term (e.g. b4.0) to see what degree of

heterogeneity we may have reasonable power to detect in our

future trial. Given these estimates, we assumed that b1, b2, b3, b4,

and b5 were multivariate normal with estimated robust covariance

S (see table 1) and drew random samples of size 8,200 (4100 active

and 4100 control participants) from this multivariate distribution

to represent simulated participants in our new trial.

Assuming a constant baseline hazard h0(t) which followed an

exponential distribution, we used these randomly sampled

coefficients in the above Cox regression to generate survival times

(T1i, T2i, T3i) and classification variables (Y1i, Y2i, Y3i) for each

simulated participant. Censoring due to non-cardiovascular death

was also assumed to follow an exponential distribution. Power was

assessed as the number of simulations where a significant

treatment heterogeneity test was found, divided by the total

number of simulations. For the first series of simulations, the

treatment effect for MI and cardiac arrest were kept constant at a

hazard ratio of 0.70 while varying the treatment hazard ratio on

cardiovascular death from 0.70 to 2.0. Clear treatment homoge-

neity within the composite outcome occurs when all outcomes

have the same hazard ratio, and heterogeneity is observed to

greater degrees as the hazard ratio of one outcome increases. Each

of multiple simulated datasets were then be analyzed to determine

the chance of detecting statistically significant composite treatment

heterogeneity or power, for a given single heterogeneous

component. This process was repeated holding the treatment

effect for cardiovascular death and MI the same, and varying this

for cardiac arrest. Lastly, the treatment effect for cardiovascular

death and cardiac arrest were kept constant while the treatment

effect for MI was varied.

Data were simulated and analyzed in R for Unix version 2.11.1

[28]. This was calculated over 1500 iterations per condition. Based

Designing Clinical Trials with Composite Outcomes
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of interaction term standard errors (s= 0.2 to 0.3) from

POISE[14], 1500 iterations should allow us to estimate an

interaction term within a level of accuracy of 0.01 to 0.02, using

a two-tailed type I error rate of 0.05 [29]. Example R code for this

simulation is included in appendix S1.

Finally we demonstrated the use of a composite outcome

heterogeneity test by re-analyzing the POISE [14] data using a

marginal time-to-event model [23,24,27]. The overall heteroge-

neity test compared the effect of peri-operative beta-blockers vs.

placebo on cardiovascular death compared to myocardial

infarction, and non-fatal cardiac arrest compared to myocardial

infarction. Contrasts were fit comparing the effect of beta-blockers

for among the three outcome types. Further to this, we

summarized the degree of heterogeneity using an ‘‘I2 type’’ test,

taking the difference of chi-square value for the composite

treatment heterogeneity test from its degrees of freedom as a

percentage of the chi-square value itself. This test is typically used

to quantify the degree of heterogeneity across different studies in

meta-analyses [30]. The test can be interpreted as the percentage

of total variation due to true differences (i.e. not chance) in

treatment effects across the components of the composite outcome.

Results

Figure 2 displays the power to detect treatment heterogeneity

within the composite outcome as a function of the treatment effect

for each outcome in the composite for our simulated trial. As

expected, for all three outcomes the power to detect treatment

heterogeneity within the composite outcome increased as a single

outcomes’ hazard ratio become more different from the remaining

two. There was 50% power to detect that MI had a hazard ratio of

1.03 and 80% power to detect a hazard ratio of 1.18. There was

50% and 80% power to detect that cardiovascular death has larger

hazard ratios of 1.06 and 1.22, respectively. Lastly, this simulated

trial had the lowest power to detect that cardiac arrest had a

different treatment effect compared to the other two outcomes,

with 50% power to detect a hazard ratio of 1.25 and 80% power

for a hazard ratio of 1.51.

Therefore, with this simulated study design there is some power

to detect one outcome within the composite to be in the neutral to

harmful range, depending on which outcome. This design would

have little chance of demonstrating differences between the

outcomes if all showed varying degrees of benefit due to treatment.

The amount of power for composite treatment heterogeneity did

depend on the standard error of the interaction term being

manipulated, with power being greatest for a comparison of

cardiovascular death versus MI (and reverse) as compared to

cardiac arrest versus MI (since s2
b4,s2

b5).

For the actual POISE trial results [14] the interaction of

treatment with outcome type was statistically significant, indicating

composite outcome heterogeneity (p = 0.0072) (see table 2).

Contrasts across the composite components provide evidence for

a difference in treatment effect for cardiovascular death when

compared to myocardial infarction (p = 0.0024), but no statistically

significant difference for cardiac arrest compared to myocardial

infarction, although there were relatively few cardiac arrests. For

this effect, the value of I2 = 79.8 (95% CI: 36.3% to 93.6%),

indicating a large amount of heterogeneity [30]. These results re-

enforce the treatment pattern observed for the individual

components in figure 1.

Discussion

Trialists may find this new test useful in planning and analyzing

trials that use composite outcomes. At the design stage, trialists could

explore the degree of treatment differences that could be detected for

Table 1. Estimated robust covariance matrix S.

Ŝ = s2
b1 sb1b2 sb1b3 sb1b4 sb1b5 = 0.010 0.003 0.003 20.008 20.007

sb1b2 s2
b2 sb2b3 sb2b4 sb2b5 0.003 0.019 0.006 20.019 20.006

sb1b3 sb2b3 s2
b3 sb3b4 sb3b5 0.003 0.006 0.054 20.006 20.054

sb1b4 sb2b4 sb3b4 s2
b4 sb4b5 20.008 20.019 20.006 0.036 0.009

sb1b5 sb2b5 sb3b5 sb4b5 s2
b5 20.007 20.006 20.054 0.009 0.104

doi:10.1371/journal.pone.0034785.t001
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Table 2. Composite outcome treatment heterogeneity test
results for the POISE trial .

Heterogeneity Test for
Treatment Effect p-value

Overall Composite 0.0072

Cardiovascular death vs. MI 0.0024

Cardiac arrest vs. MI 0.1976

Results of heterogeneity tests for the actual trial data.
doi:10.1371/journal.pone.0034785.t002
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each outcome within the composite, given estimated outcome rates

and covariances. Such power calculations are possible, even for

complex composite heterogeneity patterns across multiple individ-

ual outcomes. This information may be considered in selecting the

final trial design and sample size. If trial sample size cannot be

altered based on this knowledge, then at least trialists can be

informed of the degree of composite treatment heterogeneity they

can detect with their current design. If a trial has very little power to

detect a statistically different treatment effect for one outcome, for

example non-fatal cardiac arrest in POISE[14], then this may

inform and change our discussion of trial results.

A composite outcome heterogeneity test may be an additional

piece of information that readers can consider when interpreting a

trial results for a composite outcome. Such a test could help us

distinguish real differences in outcome treatment effects within a

composite from mere random variation. When readers examine

treatment estimates on the individual outcomes in the composite, a

heterogeneity test may discourage them from interpreting minor

variations in treatment estimates as real differences between

outcomes. Use of such a test itself may reinforce the play of chance

on individual outcome results within a trial, as was done for

subgroup analysis [11,12,31].

It would be beneficial to include discussion of possible treatment

differences within a composite outcome in the trial pre-specified

statistical analysis. Any comprehensive statistical analysis plan

should define the assumptions of the models that will be used and

suggest alternative models to be substituted if these assumptions are

not met. As in any statistical analysis, the appropriate model

assumptions must be examined prior to estimation of the treatment

effect, to avoid a biased treatment estimate. For example, when

using a linear regression the analyst must check for normality and

independence of the error terms [32]. When using a proportional

hazards model, the assumption of proportional hazards must be

examined prior to model fitting [26]. Similarly, for a model

analyzing a composite outcome, formed based on the assumption of

homogeneity of treatment effect across its components, researchers

would not want to emphasize the estimated treatment effect from the

composite outcome if it were not a reasonable estimate of the overall

effect. Guidance to distinguish random variation in treatment effects

from important outcome differences may help in this decision. If

there is evidence of composite heterogeneity, it may be unwise to

proceed with the typically model. The composite outcome result

could be presented along side with the treatment heterogeneity test

result and possible I2 value, to clarify it interpretation. This may be

followed by a discussion of evidence for and against the initial

treatment homogeneity assumption. This observed effect may lead

to further exploration of the mechanisms of action for the treatment

being investigated. It could also guide the selection composite

outcomes for future trials.

More research is needed to investigate tests of composite outcome

treatment heterogeneity for a variety of outcome types and RCT

designs. Our power calculations have assumed that the estimates of

both outcome rates and the associations between survival times from

a past trial accurately estimate these for future trials. One could also

do sensitivity analyses to see how the power for this test would change

if these were over-estimates or under-estimates. It would be helpful if

published studies included information about the association or

correlation between the components of commonly used composite

outcomes, in addition to the composite outcome event rate itself.

There is also merit to studying power to detect treatment differences

between individual outcomes within a composite when this effect of

treatment is not constant over time. Treatments that may show early

benefit but later harm would likely require incorporating time into

the heterogeneity test, forming outcome type by treatment by time

interaction term, but further research would be needed to explore

this scenario. Finally, we have applied the methods described to a

single RCT. POISE [14] is only one example where a composite

outcome heterogeneity test may have assisted in interpretation of

trial results, and there may be other trials where such a test may be

useful as well. This limits our inference and there is a need to apply

these methods to more trials to provide greater insight about the

patterns of treatment heterogeneity that commonly occurs in

composite outcomes and the broader applicability of our proposed

method.

Some may view the disadvantages of composite outcomes as

outweighing their advantages. Our perspective is that although the

disadvantages are real, composite outcomes will remain a reality

for most RCTs. In fact, most outcomes that appear as single

outcomes are composites of heterogeneous events. For example,

the single primary outcome of stroke will usually be a composite of

major and minor strokes or different types of stroke (e.g. intra-

cerebral bleed, cerebral infarction, etc.) that occur at different

frequencies and that may differ in their prognostic importance to

patients. Even total mortality is a composite of different types of

deaths, each of which may vary in response to a treatment. Despite

the limitations of composite endpoints, the beneficial aspects

related to sample size, cost, and clinical relevance make a

persuasive argument for the continued use of composite outcomes

in future trials. Therefore there is a need for guidance on how to

determine when a composite outcome may not be appropriate to

use and interpret for an individual RCT.

It is clear that a new direction is needed for the analysis of

composite outcomes. The methods outlined in this manuscript

provide a possible framework for approaching this problem and

may help us to use and interpret composite outcomes more wisely.

Supporting Information

Appendix S1 R code to calculate power composite
outcome heterogeneity test. The following will calculate the

power to detect composite outcome treatment heterogeneity if

treatment does not change cardiovascular death (b4 = 0 or hazard

ratio = 1.0) and both MI and non-fatal cardiac arrest have a

treatment hazard ratio = 0.7 (interaction term b5 = 0): CO-

power(1500,4100,20.35667,21.43508,22.35138,0.35667,0).

The following will calculate the power to detect composite

outcome treatment heterogeneity if treatment does not change

non-fatal cardiac arrest (b5 = 0 or hazard ratio = 1.0) and both MI

and cardiovascular death have a treatment hazard ratio = 0.7

(interaction term b4 = 0): COpower(1500,4100,20.35667,

21.43508,22.35138,0,0.35667). The following will calculate the

power to detect composite outcome treatment heterogeneity if

treatment does not change MI (b1 = 0 or hazard ratio = 1.0) and

both non-fatal cardiac arrest and cardiovascular death have a

treatment hazard ratio = 0.7 (interaction terms b4 = b5): CO-

power(1500,4100,0,21.43508,22.35138,20.35667,20.35667).

(DOC)
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