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Abstract

Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal
changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or
moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous
hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using
floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We
evaluated proboscis placement, foraging efficiency, and inspection learning of naı̈ve moths foraging on flower models with
coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either
achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent,
components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow
colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe
mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact,
naı̈ve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or
luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on.
Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different
informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and
visually guided behaviours in general.
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Introduction

Visual systems assess the configuration of the environment

based on the detection of different quantities of light (brightness;

achromatic vision), different qualities of light (colour; chromatic

vision), or both. The topographic nature of image-forming vision

and the spatial limitations for photoreceptor arrangement impose

some constraints, particularly for chromatic vision. To assess the

colour of a point, or ‘‘pixel’’, in the visual field, it is necessary

(though not sufficient) that incident light be detected by different

photoreceptor types, sensitive to different, relatively narrow ranges

of the electromagnetic spectrum (e.g. UV-, blue-, and green-

sensitive photoreceptors in many insects). On the other hand, to

assess the quantity of light, or brightness, from the same point,

light can be gathered by one or more photoreceptors of a single

type (usually with a relatively broader spectral sensitivity), whose

excitation contributes to the same signal (green-receptor channel

in insects studied so far). Therefore, chromatic vision generally is

less sensitive and has lower resolution than achromatic vision,

which results in constraints to detail detection and, some effects on

temporal resolution [1]. Thus, tasks involving detection of small

(or distant), or moving objects tend to be performed using

achromatic contrast (in honeybee: [2], in chicken: [3], in goldfish:

[4], in budgerigars: [5]).

Nevertheless, colour vision is widely spread, which suggests

colour discrimination to be of great importance. Moreover,

chromatic signals tend to generally be used in visual tasks

involving object recognition. Thus, colour signals can be

significant for mate-choice [6], hunting and aposematism [7],

aggressive territorialism [8], and host detection [9,10,11].

This apparent ‘‘specialization’’ to different visual tasks of colour

(object recognition) and luminance (movement and detail

detection) signals is independently supported by evidence that in

humans and insects the processing of chromatic and achromatic

signals appears to be through different physiological pathways

([12,13], reviewed in: [14,15]).

Among insects, pollinators are relatively well studied in regards

to the visual signals used to visit flowers, particularly hymenop-

terans such as honeybees [16–18] and bumblebees [19–21], but

also Dipterans [22] and Lepidopterans [23–25]. Even so, the

factors determining the use of achromatic cues in insects capable

of colour vision are still elusive. Many visually guided behaviours

demand high spatial and/or temporal resolution, and at these
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instances, achromatic vision seems to be more reliable [26,27].

Nevertheless, some studies have shown that, for example,

recognition of pattern orientation [28] in bees uses achromatic

contrast even when spatial and temporal resolutions are far from

their limits. Similarly, Papilio butterflies [29] and honeybees [30]

use achromatic vision to land on flower models, even when they

discriminate among them through chromatic cues.

Here, we evaluate the flower inspection behaviour of naı̈ve free-

flying Macroglossum stellatarum (hereafter: Macroglossum); a diurnal

hawkmoth with trichromatic vision based on three photoreceptors

with peak sensitivities in the same regions as most hymenopterans,

i.e. UV, blue and green [31,32]. Nectarivorous hawkmoths hover

in front of flowers while they search for nectar with their long

proboscis. At this instance, hawkmoths use visual input to control

placement and movements of their proboscis on the flower, with

floral markings, known as nectar or floral guides, having a strong

effect in the behaviour [33,34].

While the nocturnal hawkmoths Manduca sexta appear to assess

these floral markings through an achromatic mechanism and

strongly rely on mechanosensory cues [33,35], the diurnal

Macroglossum weight visual cues over tactile input. Moreover, it

has been suggested that they could use chromatic cues during this

behaviour [34]. This would be favoured by the high luminance

conditions during their active periods and the relatively short

distance to the flower at which they forage (proboscis of ,2.5 cm).

Nevertheless, it would challenge our notion that visual stimuli used

in motion detection and self-motion control, and form/pattern

perception, are typically governed by achromatic contrast

(reviewed in: [14,36]).

We presented Macroglossum with flower models that had

coloured patterns offering chromatic and/or achromatic contrast

to investigate which of these visual cues might be of relevance for

proboscis placement and its subsequent movements. By inter-

changing colour/brightness of the patterns and their corolla

background we also evaluated the combined effects of colour/

luminance signals and their relative position on the corolla.

Additionally, we evaluated how availability of chromatic and/or

achromatic contrast affected the efficiency with which moths

inspected flowers, and their learning abilities for this task.

Methods

Animals
Larvae of Macroglossum stellatarum from our colony at Lund

University were reared under a light:dark cycle of 16:8 hours on a

natural host plant, Galium mollugo. We starved adults for 1–2 days

in order to increase feeding motivation.

Flower models
Circular flower models with a diameter of 3 cm were made out

of paper (Ilford Galerie photo paper) and coloured using a Canon

Pro9000 inkjet colour printer. At the centre of each flower we put

a plastic ‘‘nectar tube’’ 2 cm long with an opening of 0.2 cm in

diameter.

We used 4 colours to produce the ‘‘corolla’’ of the different

flower models, which were otherwise identical (Figs. 1A, B). These

were ‘‘dark blue’’ (B), ‘‘bright blue’’ (b), ‘‘dark yellow’’ (Y) and

‘‘bright yellow’’ (y). We used blue and yellow because these colours

have been shown to be (in this order) the preferred floral colours

for hummingbird moths [25]. Spectral radiance (mW/steradian

cm2 nm) was measured for each of these colours (range: 300–

700 nm; intervals: 1 nm) with a spectroradiometer (International

Light, RPS900-R) inside the experimental arena at a 45u angle

and 5 cm apart from the flower model surface. We calculated the

number of photons captured by each of the 3 photoreceptors in

the retina of M. stellatarum (known as ultraviolet, blue, and green

receptors for their peak sensitivity in the spectrum; Kelber and

Henique, 1999) using the spectral sensitivity of Deilephila elpenor, a

closely related hawkmoth, with peak absorption wavelengths:

350 nm (UV), 440 nm (Blue), and 525 nm (Green) [37]. This

allowed us to determine the colour locus for each stimulus in the

Blue-Green axis of the colour space (UV component was

negligible due to the low UV emission of the light source;

Fig. 1B), and the perceptual ‘‘distance’’ between colours (non-

dimensional). We used the calculated number of photons captured

by the green receptors to assess the achromatic contrast between

stimuli (Fig. 1B;[1]). Achromatic contrast (C) was calculated as:

C1/2 = (Q12Q2)/(Q1+Q2); where Q1 and Q2 are the quantum

catches of green receptors for colour 1 and colour 2, respectively.

As shown in figure 1B, dark blue (B) and dark yellow (Y), as well as

bright blue (b) and bright yellow (y), offer practically no

achromatic contrast (CB/Y = Cb/y = 0.01). On the other hand,

bright blue (b) and dark blue (B) have basically no chromatic

contrast between them, with colour loci 0.055 units apart.

Similarly, bright yellow (y) and dark yellow (Y) are only 0.006 units

apart, offering practically no chromatic contrast.

With these colours we produced 8 flower models of which 7

were bicolour. One colour was used as the ‘‘floral marking’’ in the

shape of a cross (arms width: 0.5 cm) and the other as the ‘‘corolla

background’’ (Fig. 1A). The models were: bright yellow cross on

Figure 1. Flower models used in the experiments. A) Each model
is named with 2 letters, where the first letter refers to the colour of cross
mark and the second letter refers to the colour of the background
‘‘corolla’’ (B: dark blue; Y: dark yellow; b: bright blue; y: bright yellow). B)
Relative catches (photon catches relative to a white standard -ws-)
versus Colour distance (in the perceptual colour space of a hawkmoth)
for the 4 colours used in flower models. See methods section for
calculations.
doi:10.1371/journal.pone.0034629.g001
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dark blue (yB – nomenclature: first character for the cross and

second character for the corolla background), dark yellow cross on

bright blue (Yb), bright blue cross on dark yellow (bY), dark yellow

cross on dark blue (YB), dark blue cross on dark yellow (BY), dark

blue cross on bright blue (Bb), bright blue cross on dark blue (bB),

and plain blue (B). Additionally, we include the dark blue cross on

bright yellow (By) used in a previous, methodologically identical

study for comparison [34].

The original experimental design included models combining

bright yellow with dark yellow (only achromatic contrast) and

bright yellow with bright blue (only chromatic contrast), but naı̈ve

moths were very unresponsive to these colour combinations.

Because here we evaluated innate behavior, we were compelled to

use only the models to which naı̈ve moths responded readily. We

used a cross as the floral pattern because in animals that show a

preference for one of the 2 colour/intensities presented, this

pattern is effective at revealing how inspection efficiency can be

affected by sensory biases [33,34]. Additionally, the cross pattern is

also comparable with common radial patterns seen in nature, and

are very attractive to hummingbird hawkmoths [38]. This resulted

in an appropriate experimental design to test our hypotheses.

General procedure
The experimental arena consisted of a flight cage (height6

depth6width: 65665680 cm) illuminated from above with

fluorescent tubes (OSRAM Lumilux 18 W/965; see [39] for

spectral distribution of illumination) giving an illuminance of

4280 lx (at the level of the flower models). In this arena we placed

an array of 12 identical flower models, each with its corolla in a

horizontal orientation 5 cm above the top of a green rectangular

cardboard box (height6depth6width: 10620630 cm). Each

model was filled with 5 ml of a 15% (w/w) sucrose solution. The

walls of the arena were made of white cheesecloth, and the floor

was covered with newspaper. One moth at a time was let to fly

freely for 60 seconds. If it did not respond to the models (i.e. start

probing) during this period, we presented it with a blue cardboard

piece (262 cm; henceforth: primer) with a drop of sugar solution

on its surface. Macroglossum are very responsive to dark blue

objects, and after feeding, they become more responsive to objects

of other colours, which otherwise do not elicit prompt responses.

This procedure was performed to evaluate and increase foraging

motivation [25]. If a moth did not respond to the primer, we

captured it and did not include it in our analysis. If it responded,

we let it feed for 2 seconds on it. If a primed moth did not respond

to the models within 60 s, we captured it and recorded it as not

responsive. If within that period a moth probed for more than

5 seconds, we recorded it as responsive, and let it forage for 180

more seconds.

Statistical analysis
Responsiveness (as the percentage of moths that responded to

our flower models) was tested by means of G-tests. Latency (as the

time elapsed from take off until first probing event) was tested

using one-way ANOVAs. To test empty flowers (as the number of

flower models emptied during the foraging bout) we performed the

non-parametric Kruskal-Wallis and Mann-Whitney tests because

assumptions of the parametric models could not be met. Place of

first touch with the proboscis was tested with binomial tests under

the null hypothesis of no colour bias with P(cross area) = 0.41 and

P(background corolla) = 0.59 (i.e. proportionally to their respective

areas). Learning was evaluated by testing if probing time declined

as the moths successfully inspected successive flowers (from the 1st

to the 10th) with a test of goodness of fit to an exponential decline

function. Alpha-level for comparisons was corrected when multiple

tests were performed (specified in Results for each case).

Results

We tested a total of 193 moths, out of which 160 (82.9%)

showed sustained flower inspection behaviours. There were no

statistical differences in the responsiveness, latency or foraging

time when comparing the different flower models (Table 1).

Chromatic and achromatic assessment of patterns by
flower-naı̈ve moths

We evaluated the first contact on the flower surface of 223

moths. This includes moths that probed for less than 5 seconds

(and thus, were not included in the analysis of the other variables;

see Methods), and the post hoc analysis of previously recorded

moths foraging on the By model [34]. In bicolour models naı̈ve

moths showed a very significant bias to first contact on the yellow

cross independently of the achromatic contrast (Fig. 2; Binomial

tests: yB, Yb, and YB: p,0.0001 in all 3 cases), as well as a strong

tendency to first contact outside the blue cross (on the yellow

background corolla) in the remaining bicolour models (Fig. 2; By:

p = 0.18; bY: p = 0.03; BY = 0.07; Bonferroni-corrected a-lev-

el = 0.0063). These results show that these (and the previously

observed [34]) biases for yellow are based on the chromatic

assessment of the patterned flower models irrespective of

achromatic contrast (see also Learning and efficiency subsection

below). Nevertheless, the weaker tendency to first contact yellow as

the background corolla than as a cross mark also suggests that

initial probing of naı̈ve moths tends to be aimed towards the floral

marks, as shown by Lunau and collaborators in bumblebees and

honeybees [40].

Moths could also assess floral markings through achromatic

signals. On bB (no chromatic contrast) moths showed a very strong

bias to first contact the brighter cross (binomial test: p,0.0001;

fig. 2), while in Bb models they tended to first contact the dark blue

cross (Fig. 2; binomial test; p = 0.0069; a-level = 0.0063). Interest-

ingly, the initial bias towards the cross mark was stronger than in

the bicolour models. Nevertheless, it is important to mention that

in Bb models this initial bias was observed only at the first contact(s).

We directly observed moths probing mostly on the bright blue

background of Bb models, which is also reflected in the different

number of empty flowers for these models (compared with bB;

Table 1 and Fig. 3). On bB, moths continued to probe on the

bright blue cross, achieving a higher foraging efficiency (Table 1

and Fig. 3).

Learning and efficiency
After finding 3–4 nectaries, moths learned to find subsequent

nectaries in 2 seconds or less (Fig. 3). Nevertheless, while all

models could be learned, the efficiency with which moths foraged

on the different models was affected by the innate bias to probe on

the yellow areas of bicolour models (frequency distributions in

insets of fig. 3 and table 1).

In models with a yellow cross pattern on blue (yB, Yb and YB;

Fig. 1A), moths found the first nectar tube relatively quickly

(medians between 4 s and 5 s) and continued to decrease the

inspection time thereafter (Fig. 3), resulting in high foraging

efficiencies (see Table 1 for statistics). In models with a blue cross

on yellow offering chromatic and achromatic contrast (By and bY),

moths were initially slower, with median probing times until first

success of 14 s and 9 s, respectively (Fig. 3; see [34] for data on

By). The bias to probe on yellow also resulted in more moths

finding fewer nectaries (bimodal frequency distributions in insets of

Chromatic Signals in the Hummingbird Hawkmoth
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Fig. 3). Thus, moths were less efficient overall, attaining

significantly fewer nectaries when foraging in bY than in Yb

(Table 1). Similarly, empty flowers was lower in By (mean6-

s.e.m. = 6.861.1) than in yB (mean6s.e.m. = 9.760.9; Table 1).

These results suggest that the observed tendency to probe on the

small cross mark regardless of its colour is relevant for the first(s)

contacts only, and that subsequent inspection movements are

primarily affected by colour differences. (We did not perform

statistics for By vs. yB, because data from By was obtained from a

similar, but previous experiment [34].) Moths spent more time to

find the first nectary on BY (7.5 s) than on YB (4 s; Fig. 3), but the

fast learning on BY accounted for a comparably high number of

emptied flowers (Table 1). The fact that this occurred in the only

pair with no achromatic contrast is suggestive, but whether

luminance signals can interfere with learning or not has to be

further investigated.

In bB (providing only achromatic contrast) moths found their

first nectar tube relatively fast, and most animals could empty a

high number of flowers (Table 1 and Fig. 3). On the other hand,

when inspecting Bb flowers probing times until first successful

event were twice as long than in bB (Fig. 3), fewer moths found

nectaries (insets of Fig. 3) and, consequently, moths could empty

fewer flowers than in bB (table 1). This suggests that after the first

contact, moths directed their proboscis towards the brighter

background areas, thus being ‘‘mislead from the nectar tube’’ by

their innate achromatic control of inspection movements. This

could also be directly observed during the experiments (personal

observation).

Discussion

Our experiments show that Macroglossum can use chromatic

and/or achromatic signals to control the placement and

movement of their proboscis during flower inspection. Our design

allowed us to identify three, apparently independent, input signals

affecting motor output. First, in bicolour blue-yellow models moths

weighted chromatic over achromatic signals, probing on yellow

areas regardless of their luminance contrast. This was directly

observed, but also substantiated by the shorter probing times to

find the first nectar tube (Fig. 3) and the higher foraging

efficiencies on models with a yellow cross (intersecting the nectar

tube) than in models with yellow as background colour (not

intersecting the nectar tube; Table 1). Second, in blue models,

providing only achromatic contrasts, moths probed more on the

brighter areas, taking shorter times to find the first nectar tube,

and achieving higher foraging efficiencies in models where the

nectar tube was on the brighter cross (Table 1). Third, flower-

naı̈ve moths showed an innate bias towards the cross marks

regardless of luminance or chromatic contrast during the

establishment of the first contact with the corolla. This ‘‘spatial

configuration’’ bias seemed to compete with (or enhance) the

colour and luminance control in flower-naı̈ve moths (Fig. 2).

Nevertheless, it did not have a significant effect after the first

contact, when probing showed to respond to colour or luminance

biases for yellow and brighter areas, respectively. This is suggested

by the higher foraging efficiencies (Table 1), and the lower

inspection times needed to locate the first nectar tube (Fig. 3) when

the cross marks were yellow (bicolour models) or brighter (in blue

models). Thus, when considering only the first contact of flower-

naı̈ve moths on models with a yellow cross, the bias towards the

mark seemed to enhance the bias for yellow (strong, significant

bias toward yellow cross models; Fig. 2). Conversely, with a blue

cross (bicolour models) both innate biases seemed to ‘‘compete’’,

resulting in weaker biases towards the yellow background (for first

contact; Fig. 2) and longer inspection times until the first nectar

tube was found (Fig. 3). For Bb models (only achromatic contrast)

Table 1. Values and statistics for Responsiveness, Latency (mean6s.e.m.), Foraging time (mean6s.e.m.), Empty flowers
(mean6s.e.m.).

? Colour
?Brightness

?Colour
= Brightness

= Colour
?Brightness

yB Yb bY YB BY Bb bB B

Responsiveness (%) 87.0 69.0 77.8 88.9 89.0 83.3 87.0 82.6

Latency time (s) 2268 6561 56613 4061 52612 5669 55610 3969

Foraging time (s) 180 180 180 180 180 180 180 180

Empty flowers 9.760.9A 10.360.8Aa 6.161.4b 11.262.6A{ 9.760.8{ 6.661.2a 10.161b 6.361.3a

Number of
replicates (N)

23 29 18 25 27 24 23 24

Number of replicates indicates the number of moths that were exposed to each flower model (the base for the responsiveness percentages). The statistical tests are
based on an a-level = 0.005 after a Bonferroni correction. Responsiveness (G-test): Gh = 5.52; p = 0.7; N = 193; Latency (ANOVA): F(7, 155) = 2.64; p = 0.0135. Each
comparison between models for the variable empty flowers is denoted by a superscript of a different type (A, a, a, and {). Statistically significant differences are denoted
by different characters within each type (e.g. ‘‘a’’ and ‘‘b’’, or ‘‘a’’ and ‘‘b’’). Empty Flowers (Kruskal-Wallis tests): x2 = 35.6; p,0.0001. Comparison among models with a
yellow cross (A): x2 = 2.35; p = 0.31. Comparisons among all models with only blue colour (a, b): x2 = 10.79; p = 0.0045; only Bb vs. bB: x2 = 10.13; p = 0.0015. Comparisons
among ‘‘inverted patterns’’ Yb vs. bY (a, b): x2 = 11.6; p = 0.0007; YB vs. BY({): x2 = 7.2; p = 0.0074.
doi:10.1371/journal.pone.0034629.t001

Figure 2. Area of first contact by flower-naı̈ve moths. In the
upper row are the different flower models; in the middle row are the
expected distributions, for each model. These are colour-coded under
the null hypothesis of no bias. In the lower row are the actual
distributions based on the recorded data. *p,0.05; **p,0.01;
***p,0.00001. a-level = 0.0063 after Bonferroni correction.
doi:10.1371/journal.pone.0034629.g002
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the scenario was analogous, but the bias to first probe the cross was

stronger (compare Bb with bicolour models with a blue cross in

Fig. 2). This suggests that the initial aiming at cross marks could be

related to visual feedback mechanisms for flight control/

stabilization using the achromatic channel, which, theoretically,

is more reliable for tasks involving motion detection.

Nevertheless, during flower inspection the probing response of

hovering moths was strongly affected by patterns whose edges and

shape were only defined by chromatic signals. This was

unexpected, because in insects studied so far, pattern, edge and

form detection, as well as movement control, are handled through

the more spatially and temporally resolving achromatic vision.

Thus, our results strongly support the hypothesis that Macroglossum

stellatarum can perceive small patterns through colour vision, as

opposed to honeybees which do it through achromatic vision [13].

What kind of information do chromatic and achromatic
signals offer to a diurnal nectar forager?

Chromatic cues appear to be suitable for the assessment of

object properties because they are relatively invariable under

natural illumination conditions. This makes chromaticity a

suitable ‘visual modality’ for object recognition and classification

[34]. Luminance can vary greatly under changing illumination

conditions, deeming it unreliable for these kinds of tasks [14,36].

This seems to be reflected in the fact that insect pollinators usually

have innate preferences for potential nectar sources that are based

on chromaticity rather than on particular luminance levels. Also,

both moths and bees have been shown to learn faster, and more

reliably, colour than luminance [36].

Interestingly, luminance is, at least theoretically, a dimension of

visual perception that can carry more information due to its

greater dynamic range [16,41]. Alternatively, the behavioural

significance of this greater dynamic range could reside in the

greater availability of luminance signals under different light

conditions. In first place, the large illumination range under which

achromatic stimuli can be used makes them reliable signals for

control mechanisms, such as in flight stabilization, speed

regulation and positional control. This becomes very relevant

under low light conditions, or when fast motion is involved.

Achromatic cues can be more widely used for object detection as

in nocturnal pollination systems, where flowers offer high

achromatic contrast with the vegetative background.

Innate releasing functions of colours and motor output
regulation

The strong innate bias towards yellow (independent of

achromatic cues) is surprising, because Macroglossum have a

robust preference for plain blue over plain yellow flowers [25,32].

Consistently with the notion that spectral signals are more useful

for object recognition, chromatic properties are typically associ-

ated with response ‘releaser’ functions, or ‘‘key stimuli’’ [42]. One

hypothesis for this behaviour is that blue would act as an effective

releaser of proboscis extension in flower-searching moths, while

yellow would act as a releaser of the next behavioural stage, thus

affecting proboscis placement and exploratory movements. As

proposed earlier, this could be linked to the fact that ancestrally,

anthophilous insects foraged on pollen (usually yellow) rather than

nectar, which evolved later as a floral reward (see: [34]).

On the other hand, visual contrast could be the relevant signal.

When hawkmoths approach and hover in front of a flower, their

body position is regulated using visual contrast as feedback, such as

looming stimuli [43–45], flower displacements [43,45,46], and

optic flow from the background [47]. Contrasting floral markings

could be offering a visual reference for the control of proboscis

placement and movements in a similar way. In fact, parallel floral

markings control the positioning of the hovering flight and

proboscis in Manduca sexta hawkmoths [33]. Extensive research on

motion, pattern, and edge detection suggests that insects use

achromatic contrast feedback through the green receptor channel

in regulatory motor responses (see reviews: [36,48]). Our

hypothesis implies a novel sensory-motor mechanism to control

proboscis and/or hovering flight that involves chromatic contrast

signals. We are now investigating this hypothesis by manipulating

the degree of blend between marks and background (from sharp to

graded boundaries), while recording with better temporal and

spatial resolution.

Achromatic signals
Moths were able also to use achromatic signals. In bB moths

probed almost exclusively on the bright blue cross (Fig. 2), leading

to more efficient foraging bouts (Table 1) and taking the shortest

inspection times (Fig. 3). Conversely, first contacts on Bb were

biased towards the dark blue cross, suggesting a substantial

pattern-luminance effect on models with only achromatic contrast.

This is consistent with the finding that Macroglossum prefers

flowers with small marks regardless of whether they are the darker

or the brighter than the background corolla as long as they offer

high luminance contrast [49]. Nevertheless, after initial contact,

moths mainly probed on the bright, background areas, which

explains the poor performance on this model (Table 1).

Flower inspection learning
Moths diminished the time spent inspecting on all of our flower

models (Fig. 3). Nevertheless, the bimodality observed in some of

the frequency distributions of the number of emptied flowers

makes individual variation evident in some models (Fig. 3). In

bicolour models where the nectar tube was placed in the ‘‘non

preferred’’ colour (bY, BY), we observed 3 distinct behaviours.

One group of moths would continue to probe chiefly on the

preferred colour, avoiding the blue cross and thus, achieving low

inspection success (larger numbers of moths that found none or

few nectaries; insets of fig. 3). The other 2 groups changed their

behaviour in 2 different ways, lowering inspection times and

achieving higher efficiencies.

In one group, after a few successes moths started to probe on the

blue cross and achieved higher inspection success. This is

evocative of associative learning, in which animals associate a

colour with the presence of a reward and modify their innate

preferences. Presently, we cannot discard this hypothesis for this

adaptive change of the inspection behaviour.

The last group, continued to probe on the innately preferred

background (corolla) colour, but after finding the first nectaries,

they started to place their proboscis equidistantly from the cross

arms and dragged it in a straight line, towards the centre. This

seemingly teleonomic movement appears to be using the markings

Figure 3. Discovery times (time elapsed (s) inspecting flowers, disregarding drinking and flying between models) vs. Attempts (1st,
2nd, …, 10th successful nectary discovery events). R2 and p values are from tests for goodness of fit to an exponential decline function of 2
parameters (f(x) = a(2bx)), a typical learning curve. Insets: absolute frequency distributions of the number of successfully emptied flowers arranged in 5
bins (none, 1–3, 4–6, 7–9, and 10–12).
doi:10.1371/journal.pone.0034629.g003
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as true guides, in the sense that their display was apparently used

to orient both positioning and direction.

What do hummingbird moths see when they inspect our
flower models?

Macroglossum forages under daylight conditions, but its

inspection behaviour involves extremely fast movements (prelim-

inary recordings with a high speed camera show moths moving

25 mm in 100 ms while hovering over the contour of flower

models and poking with their proboscis 150–200 times/s;

supporting information Movie S1). The fast proboscis and body

movements during inspection suggest a priori that moths would use

achromatic visual feedback during inspection to control these

motor outputs. This, in fact, can be the case; nevertheless, we have

shown that Macroglossum can use small chromatic signals while

hovering and probing on flowers.

One could interpret that contrast detection (chromatic and/or

achromatic) alone suffices to explain results. If that were the case,

colour inversions (e.g. bY-Yb) would not affect behaviour (and

consequently, inspection efficiency) because inversions do not

change the position, orientation, or length of contrast-lines. On the

contrary, colour inversions showed that moths do not only assess

contrast lines, but also the actual colour, shape, and relative

position of the differently coloured areas. Naı̈ve moths directed

their proboscis and scanned within shapes (‘‘central cross’’ or

‘‘outer triangles’’), which were defined both by their chromatic

contrast boundaries and their coloured inner areas.

Our study has uncovered complex interactions between colour,

luminance, floral pattern, innate biases and learned inspection

strategies. Nevertheless, we have shown evidence that humming-

bird hawkmoths can detect floral patterns, and resolve their small

shapes based only on chromatic signals. This allows them to

precisely direct the fast exploratory movements of the proboscis

and the body while inspecting flowers ‘‘on the wing’’. Their ability

to rapidly modify the use of visual signals adaptively, particularly

chromatic ones (Fig. 3), reflects their switch to diurnal activity, and

the generalist flower-visitation scheme that hummingbird hawk-

moths carry on during their long dispersion from the Mediterra-

nean to the northern latitudes during the boreal summer.

Supporting Information

Movie S1 Slow-motion sequence of Macroglossum stellatarum

probing on a flower model. The 11 seconds of playback (at a

rate of 30 fps) correspond to 1.1 seconds in real time (recorded at a

rate of 300 fps).

(MOV)
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