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Abstract

Background: The National Institutes of Health (NIH) is among the world’s largest investors in biomedical research, with
a mandate to: ‘‘…lengthen life, and reduce the burdens of illness and disability.’’ Its funding decisions have been criticized
as insufficiently focused on disease burden. We hypothesize that modern portfolio theory can create a closer link between
basic research and outcome, and offer insight into basic-science related improvements in public health. We propose
portfolio theory as a systematic framework for making biomedical funding allocation decisions–one that is directly tied to
the risk/reward trade-off of burden-of-disease outcomes.

Methods and Findings: Using data from 1965 to 2007, we provide estimates of the NIH ‘‘efficient frontier’’, the set of
funding allocations across 7 groups of disease-oriented NIH institutes that yield the greatest expected return on investment
for a given level of risk, where return on investment is measured by subsequent impact on U.S. years of life lost (YLL). The
results suggest that NIH may be actively managing its research risk, given that the volatility of its current allocation is 17%
less than that of an equal-allocation portfolio with similar expected returns. The estimated efficient frontier suggests that
further improvements in expected return (89% to 119% vs. current) or reduction in risk (22% to 35% vs. current) are
available holding risk or expected return, respectively, constant, and that 28% to 89% greater decrease in average years-of-
life-lost per unit risk may be achievable. However, these results also reflect the imprecision of YLL as a measure of disease
burden, the noisy statistical link between basic research and YLL, and other known limitations of portfolio theory itself.

Conclusions: Our analysis is intended to serve as a proof-of-concept and starting point for applying quantitative methods to
allocating biomedical research funding that are objective, systematic, transparent, repeatable, and expressly designed to
reduce the burden of disease. By approaching funding decisions in a more analytical fashion, it may be possible to improve
their ultimate outcomes while reducing unintended consequences.
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Introduction

The National Institutes of Health (NIH) is among the world’s

largest and most important investors in biomedical research. Its

stated mission is to ‘‘seek fundamental knowledge about the nature

and behavior of living systems and the application of that

knowledge to enhance health, lengthen life, and reduce the

burdens of illness and disability’’ (http://www.nih.gov/about/

mission.htm). Some have criticized the NIH funding process as not

being sufficiently focused on disease burden [1–3] (further

discussion about criticisms and recommendations for improving

the process of allocating research funds is provided in Text S1 and

Table S1). Even after allowing for extensive private-sector

translational investment, significant funding gaps between disease

states persist [4]. Furthermore, carefully considered changes in

funding may generate dynamic effects that create more ‘‘mouths

to feed’’ [5]. NIH leaders have observed that research is risky,

involving trade-offs among stated criteria, and also unstated

secondary objectives, e.g., actively ‘‘balancing out’’ spending by

other entities [6]. These factors pose challenges to allocating

research funds.

We consider a framework in which biomedical research

allocation decisions are more directly tied to the risk/reward

trade-off of burden-of-disease outcomes. Prioritizing research
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efforts is analogous to managing an investment portfolio: in both

cases, there are competing opportunities to invest limited

resources, and expected returns, risk, correlations, and the cost

of lost opportunities are important factors in determining the

return of those investments.

Financial decisions are commonly made according to portfolio

theory [7], in which the optimal trade-off between risk and reward

among a collection of competing investments–known as the

‘‘efficient frontier’’–is constructed via quadratic optimization, and

a point on this frontier is selected based on an investor’s risk/

reward preferences. Given a measure of ‘‘return on investment’’

(ROI), an ‘‘efficient portfolio’’ is defined to be the investment

allocation that yields the highest expected return for a given and

fixed level of risk (as measured by return volatility), and the locus

of efficient portfolios across all levels of risk is the efficient frontier.

We recast the NIH funding allocation decision as a portfolio-

optimization problem in which the objective is to allocate a fixed

amount of funds across a set of disease groups to maximize the

expected ‘‘return on investment’’ (ROI) for a given level of

volatility. We define ROI as the subsequent improvements in years

of life lost (YLL), and using historical time series data provided by

the NIH (http://www.nih.gov/about/almanac/appropriations/

index.htm) and the Centers for Disease Control (CDC, http://

wonder.cdc.gov/) for each of 7 disease groups, we estimate the

means, variances, and covariances among these time series. These

estimates serve as inputs to the portfolio-optimization problem.

Such an approach provides objective, systematic, transparent, and

repeatable metrics that can incorporate ‘‘real-world’’ constraints,

and yields well-defined optimal risk-sensitive biomedical research

funding allocations expressly designed to reduce the burden of

disease.

Portfolio theory highlights the value of diversification: investing

in multiple securities with imperfectly correlated pay-offs almost

always yields a better reward-to-risk profile than investing in

a single security. For developing this framework, Markowitz

shared the Nobel Memorial Prize in Economic Sciences, and

today portfolio theory is the starting point for investment

management decisions among the largest institutional investors

[8,9]. Recently, portfolio theory has also been proposed as a means

for conducting health care cost-benefit analysis [10–12].

Methods

Funding Data
The NIH has 27 Institutes and Centers, of which we identified

10 with research missions clearly tied to specific disease states, and

which account for $21 billion of funding in 2005 or 74% of the

total. The disease classification scheme used and the procedure for

constructing the appropriation time series are described in greater

detail in Table S2 and Figure S1. Figure 1 depicts NIH

appropriations data in real (2005) dollars from 1965 to 2005,

and summary statistics are provided in Table S3. The National

Institute of Allergies and Infectious Diseases (NIAID) spending has

been split to account for HIV, which is presented separately (see

HIV discussion below).

These Institutes and the basic research they fund have inevitable

overlap and effect beyond their charter; we treat all spending for

any given Institute as being directed toward the corresponding

disease states, and account for spillover effects by considering the

correlations in the lessening of the burden of disease in other

groups. For example, molecular biology funded by the NCI may

be relevant to infectious diseases but, like the entire NCI budget,

would be assumed for modeling purposes to be directed at cancer;

the hypothetical infectious-disease improvement would appear in

the correlation between the decrease in years of life lost for cancer

and that of infectious diseases.

Burden of Disease Data
Because of its simplicity, availability, breadth, and long history,

years of life lost (YLL) was chosen as the measure of burden of

disease to be used in constructing the estimated return on

investment from NIH-funded research (see Text S1 for a discussion

of other possible measures). The CDC Wide-ranging Online Data

for Epidemiologic Research (WONDER) database (http://

wonder.cdc.gov/) was queried for the underlying cause of death

at the Chapter level (except for mental disorders, where dementia

and unspecified psychoses were all placed in CNS for consistency

with CDC coding after 1998) for International Classification of

Diseases (ICD) categories ICD-9 (for 1979–1998) and ICD-10 (for

1999–2007). The two datasets for pre- and post-1998 were joined

into one continuous series, data were stratified into groups by age

at death, and YLL were computed by comparing the midpoint of

the age ranges with the World Health Organization’s (WHO)

year-2000 U.S. life table (http://www.who.int/whosis/en/). Years

of life lost were then tabulated by Chapter annually, and adjusted

for population growth to remove what would otherwise be

a systematic downward bias in realized health improvements.

This process yielded YLL series for 9 distinct disease groups (see

Table S2 for an analysis of HIV separated from other infectious

disease).

Using 2005 as the base year, the raw YLL observations were

adjusted in other years to be comparable to the 2005 population:

YLLt : YLLraw
t |

POP2005

POPt

,

POPt : U:S: population in year t:

ð1Þ

The procedure for assembling the YLL time series is summarized

in Figure S2, and the resulting series, both raw and normalized for

population growth, are shown in Figure 2. Summary statistics for

these adjusted YLL series are also reported in Table S3 for the 9

groups (HIV treated separately). The change in burden of disease

was measured by taking first differences. These first differences

were used to compute the ‘‘return on investment’’ on which the

mean-variance optimizations were based (see the ‘‘Methods’’

section below).

Three disease areas required special consideration: HIV, AMS,

and dementia. AMS and HIV have shorter histories, which is

problematic for estimating parameters based on historical returns

that are lagged by typical FDA approval times plus 4 years.

Dementia, including Alzheimer’s disease and unspecified psycho-

ses, was reclassified with the change from ICD-9 to ICD-10 from

mental and behavioral disorders to diseases of the nervous system;

we placed all dementia YLL in the CNS group to avoid

a transition-point artifact at the juncture between ICD-9 and

ICD-10, and then performed a sensitivity analysis with and

without the dementia YLL. Further work could, in a manner

analogous to our treatment of HIV, treat this group of

neurodegenerative conditions as a separate category.

HIV poses a special challenge given its extreme returns after the

introduction of protease inhibitors, which are outliers that are

likely to be non-stationary and would heavily bias the parameter

estimates on which the portfolio optimization is based. To address

this outlier, HIV spending and its corresponding YLL were

omitted from those of other infectious diseases–the component of

NIAID spending directed at HIV was estimated by straight-line

interpolation from published figures, and this HIV spending was

NIH Efficient Frontier
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treated as a separate entity and subtracted from reported NIAID

appropriations; a similar procedure was followed for the

estimation of HIV-related YLL, and WONDER was queried at

the subchapter level to implement this separation.

For completeness, empirical results that include AMS and HIV

data are provided in Text S1, but because of their unique

characteristics, these two groups are omitted from our main

empirical results other than the summary tables.

Applying Portfolio Theory
To apply portfolio theory, the concept of a ‘‘return on

investment’’ (ROI) must first be defined. Although YLL has

already been chosen as the metric by which the impact of research

funding is to be gauged, there are at least two issues in determining

the relation between research expenditures and YLL that must be

considered. The first is whether or not any relation exists between

the two quantities. While the objectives of pure science do not

always include practical applications that impact YLL, the fact

that part of the NIH mission is to ‘‘reduce the burdens of illness

and disability’’ suggests the presumption–at least by the NIH–that

there is indeed a non-trivial relation between NIH-funded

research and burden of disease. For the purposes of this study,

and as a first approximation, we assume that YLL improvements

are proportional to research expenditures. Of course, factors other

than NIH research expenditures also affect YLL, including

research from other domestic and international medical centers

and institutes, spending in the pharmaceutical and biotechnology

industries, public health policy, behavioral patterns, prosperity

level and environmental conditions. Therefore, the YLL/NIH-

funding relation is likely to be noisy, with confounding effects that

may not be easily disentangled. See the Discussion section above

for a more detailed discussion of this assumption and some possible

alternatives.

The second issue is the significant time lag between research

expenditures and observable impact on YLL. For example,

Mosteller [13] cites a lag of 264 years, starting in 1601, for the

adoption of citrus to prevent scurvy by the British merchant

marine. More contemporary examples [14–16] cite lags of 17 to

20 years. We use shorter lags in this study both because of data

limitations (our entire dataset spans only 29 years), and also to

reduce the impact of factors other than research expenditures on

our measure of burden of disease (YLL). Any attempt to optimize

appropriations to achieve YLL-related objectives must take this lag

into account, otherwise the resulting optimized appropriations

may not have the intended effects on subsequent YLL outcomes.

The impact of NIH-funded research on disease burden is likely

to be spread out over several years after this intervening lag, given

the diffusion-like process in which research results are shared in

the scientific community. For simplicity, the same duration (p=5

years) of the diffusion-like impact for all the disease groups was

hypothesized. The lag q for each disease group was estimated by

running linear regressions associating improvements in YLL over

p=5 years with NIH funding q years earlier and real income and

choosing the lag between 9 and 16 years (beyond which data

limitations and other factors make it impossible to distinguish the

impact of research funding from other confounding factors

affecting YLL) that maximizes the R2 and the corresponding lags

are shown in Figure 3.

This procedure is, of course, a crude but systematic heuristic for

relating research funding to YLL outcomes. Alternatives include

using a single fixed lag across all groups, simply assuming

particular values for group-specific lags based on NIH mandates
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Figure 1. Appropriations data. NIH appropriations in real (2005) dollars, categorized by disease group (http://www.nih.gov/about/budget.htm).
doi:10.1371/journal.pone.0034569.g001
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and experience, computing a time-weighted average YLL for each

group with a weighting scheme corresponding to an assumed or

estimated knowledge-diffusion rate for that group, or constructing

a more accurate YLL return series by tracking individual NIH

grants within each group to determine the specific impact on YLL

(through new drugs, protocols, and other improvements in

morbidity and mortality) from the award dates to the present.

While the choice of lag is critical in determining the characteristics

of the YLL return series and deserves further research, it does not

effect the applicability of the overall analytical framework. While

our procedure is surely imperfect, it is a plausible starting point

from which improvements can be made.

Assuming constant impact of research funding on YLL over the

duration of p years, the measure of the ROI that accrues to funds

allocated in year t is then given by:
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Figure 2. YLL data. Panel (a): Raw YLL categorized by disease group (http://wonder.cdc.gov/). Panel (b): Population-normalized YLL (with base year
of 2005), categorized by disease group. Both panels are based on data from 1979 to 2007.
doi:10.1371/journal.pone.0034569.g002

Figure 3. Return summary statistics. Summary statistics for the ROI of disease groups, in units of years (for the lag length) and per-capita-GDP-
denominated reductions in YLL between years t and t+4 per dollar of research funding in year t–q, based on historical ROI from 1980 to 2003.
doi:10.1371/journal.pone.0034569.g003
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Rtzq : {

1
p

Pp{1
i~0 (YLLtzqzi{YLLtzqzi{1)|GDPtzqzi

Appropriationt
ð2Þ

where the minus sign reflects the focus on decreases in YLL, and

the multiplier GDPtzq is per capita real gross domestic product

(GDP) in year t+q (http://www.bea.gov/national/index.

htm#personal), which is included to convert the numerator to

a dollar-denominated quantity to match the denominator. This

ratio’s units are then comparable to those of typical investment

returns: date- (t+q) dollars of return per date-t dollars of

investment.

Given the definition in equation (2) for the ROI of each of the

disease groups, the ‘‘optimal’’ appropriation of funds among those

groups must be determined, i.e., the appropriation that produces

the best possible aggregate expected return on total research

funding per unit risk. Denote by R:½R1R2 � � �Rn�’ the vector of

returns of all n groups for a given appropriation date t (where time

subscripts have been suppressed for notational simplicity), and

denote by m and S the vector of expected returns and the

covariance matrix, respectively. If the weights of the budget

allocation among the groups are v , the ROI for the entire

portfolio of grants, denoted by Rp, is given by Rp~v 0R, and its

expected value and variance are v 0m and v 0Sv , respectively.

The objective function to be optimized is then given by the

expected value minus some multiple of the variance which reflects

risk tolerance, and this quadratic function of v is maximized using

standard quadratic optimization techniques (see Text S1), subject

to the constraint that the weights sum to 1.

In some financial applications, a variation of this optimization

problem is employed in which the objective function is augmented

to include penalty for allocations that deviate from some pre-

specified vector of target weights vo such as a ‘‘benchmark’’

portfolio. Accordingly, we also consider a ‘‘dual-objective’’

optimization problem in which the additional penalty term is

proportional to deviations from existing NIH allocations vNIH,

and the proportionality constant is given by the coefficient c.
When c~0, the augmented objective function reduces to the

single-objective function described above; when it is positive, the

dual-objective function will yield optimal weights that are closer to

vNIH.

Results

Summary Statistics
Summary statistics of the ROI for the period 1980–2003 are

presented in Figure 3. An example of the ROI calculation for HLB

for 1986 when the return was 18.6 is given in Table S4, summary

statistics of the ROI with AMS and HIV groups included are given

in Table S5, and the correlation matrix of the ROIs is given in

Table S7. Large differences in mean ROI for different Institutes

are evident in Figure 3, ranging from small negative values ( e.g., –

1.7 for CNS) to large positive values ( e.g., 9.8 for HLB). Large

differences in standard deviation also exist, ranging from 0.3 for

NMH to 3.8 for CHD, implying important risk/reward tradeoffs

across Institutes.

Negative mean ROIs are counterintuitive–implying that in-

creasing investment is counterproductive to easing the burden of

disease–yet they occur in three disease groups: AID, CNS, and

DDK. There are several reasons for this phenomenon. First, and

foremost, unlike investments in financial assets, there is significant

randomness in the relation between NIH spending and subsequent

impact on YLL. Many factors other than the amount of funding

affect the success or failure of pure and translational research, and

average ROI values reflect the impact of all of those factors. For

example, in the case of CNS–in which the negative return is more

than two standard deviations away from 0–there is a large non-

stationary effect due to the rapid growth of a group of dementias.

A sensitivity analysis confirms that the negative returns are largely

due to the dementia effect as is indicated in sub-panels (c) and (d)

of Figure 4.

A more subtle effect comes from the fact that favorable ROIs in

one area can impart negative bias in other groups, since all deaths

must be assigned to one cause or group. Consider a simple thought

experiment in which only two lethal diseases, A and B, exist. If

a cure for A is discovered, then those who would otherwise have

died of A must necessarily die of B eventually. This yields an

increase in the YLL for B, even if the treatment of B diseases has

not worsened. Similar, if less-extreme, dynamics can emerge with

more disease groups and less-dramatic progress that merely

reduces rather than eliminates the YLL burden of a specific

disease group.

Finally, and perhaps least likely, the dissemination of erroneous

research results [17] could, in principle, increase YLL until the

error is identified and remedied.

Rather than ‘‘correcting’’ these counterintuitive empirical

relations, we view them as important anomalies that deserve

further scrutiny and analysis. In some cases, e.g., CNS, the

anomaly can be traced to a specific external factor that can either

be accepted as legitimate or set aside as an extreme outlier that is

not representative of the true relation between funding and

subsequent YLL. In the latter case, one alternative to using an

empirically estimated mean ROI to compute the efficient frontier

is to impose a Bayesian prior on this parameter (see Text S1 for

details).

To develop intuition for possible patterns between funding

allocation and improvements in YLL, the cumulative sums of these

two variables are plotted in Figure S5 and the eigenvalues and

eigenvectors of the estimated covariance matrices are provided in

Figure S6. These results suggest that dimension-reducing strategies

such as linear factor models may be useful in this domain.

However, without a more detailed understanding of the common

drivers of progress (if any) among the groups, dimension reduction

via principal components or factor analysis may yield misleading

results due to overfitting.

Efficient Frontiers
In Figure 4, efficient frontiers for the single- and dual-objective

(see equation 2 in Text S1) optimization problems are plotted in

mean-standard deviation space for the 7-group cases with and

without taking into account the dementia effect. Figure S4 depicts

the corresponding 9-group frontiers. For each of these frontiers, in

addition to the mean-standard deviation points for the different

disease groups, the corresponding points for the following funding

allocations are also plotted:

(i) historical average NIH allocation for years 1996–2005;

(ii) equal-weighted (1=n) allocation;

(iii) minimum-variance allocation;

(iv) the allocation on the efficient frontier that has the same

mean as the average NIH allocation (the ‘‘NIH-mean’’

allocation);

(v) the allocation on the efficient frontier which has the same

variance as the average NIH allocation (the ‘‘NIH-var’’

allocation);

NIH Efficient Frontier
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(vi) the allocation on the efficient frontier that is 25% of the

distance from the minimum variance allocation to the

maximum expected-return allocation;

(vii) the allocation on the efficient frontier that is 50% of the

distance from the minimum variance allocation to the

maximum expected-return allocation;

(viii) the allocation on the efficient frontier that is 75% of the

distance from the minimum variance allocation to the

maximum expected-return allocation.

The region bounded by the horizontal segment (i–iv), the

vertical segment (i–v), and the efficient frontier (marked ‘‘DP’’) is of

special interest because all portfolios in this region offer lower

variance, higher expected return, or both when compared to the

average NIH allocation, hence from a mean-variance perspective

such allocations are unambiguously preferable. These allocations

are called ‘‘dominating’’ portfolios relative to the average NIH

allocation (i). Figure 5 contains the portfolio weights corresponding

to portfolios depicted in Figure 4, and Figure 6 provides a relative-

performance comparison of these portfolios in terms of their

expected returns, volatilities, and ratios of the two.

Figure 4A shows that a number of the disease groups appear to

be concentrated in a relatively low-risk sector of the risk/reward

universe, which may be evidence of active variance-minimization

strategies by various stakeholders. Further, Figure 6 suggests that

NIH appropriations are lower volatility than the 1=N portfolio,

while returns are maintained.

A sensitivity analysis is conducted by estimating the efficient

frontier with (Figure 4A) and without the dementia effect

(Figure 4C), and the upper and lower panels of Figure 5 contains

the portfolio weights to these two cases.

The top left sub-panel of Figure 5 shows that the single-objective

optimization does yield sparse weights as expected. For example,

the minimum-variance portfolio allocates to only three groups:

58% to NMH, 25% to CNS, and 16% to ONC. By minimizing

variance, irrespective of the mean, this portfolio allocates funding

to groups with least variability in YLL improvements. The

efficient-25% portfolio allocates non-zero weights in four groups

(41% to NMH, 33% to ONC, 13% to HLB, and 13% to CHD),

and yields 26% better expected return with 28% less risk (Figure 6).

With still more emphasis on expected return, the efficient-50%

portfolio gives non-zero weights only to three successful groups:

42% to ONC, 32% to the higher risk, higher expected-return

HLB, and 27% to CHD. This portfolio has 172% higher expected

return but only 27% more risk than the NIH portfolio. The

efficient-75% portfolio gives an even higher weight of 55% to

HLB, 36% to CHD, and 9% to ONC, yielding 318% higher

expected return and 148% more risk, a diminishing risk-adjusted
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Figure 4. Efficient frontiers. Efficient frontiers for (a) all groups except HIV and AMS, c~0; (b) all groups except HIV and AMS, c~5; (c) all groups
except HIV and AMS without the dementia effect, c~0; and (d) all groups except HIV and AMS without the dementia effect, c~5; based on historical
ROI from 1980 to 2003. The region labeled ‘‘DP’’ indicates portfolios that dominate the historical average NIH portfolio.
doi:10.1371/journal.pone.0034569.g004

NIH Efficient Frontier

PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e34569



expected return as compared to portfolios with lower volatility.

Given the greater emphasis on expected return for this portfolio, it

is not surprising to see HLB getting a bigger role due to its

apparent historical success in reducing YLL. Of course, whether

or not past success is indicative of comparable future success

hinges on the science and associated translational efforts un-

derlying the diseases covered by HLB. This underscores the

importance of incorporating research and clinical insights into the

funding allocation process, especially within a systematic frame-

work such as portfolio theory.

However, the dementia effect may underestimate the perfor-

mance of the CNS disease group, hence the lower panel of Figure 5

reports corresponding optimal-portfolio results without the de-

mentia effect. In the single-objective case, the efficient-50% and

75% portfolios are still sparse, with non-zero weights in 3 groups,

while the lower risk efficient-25% portfolio is less concentrated

with non-zero weights to 4 groups and significant weight (27%) to

the CNS group.

Figure 5 also contains the optimal portfolios for the dual-

objective case (with c~5) in the right sub-panels (see Figure 4B

and 4D). These cases correspond to portfolios that trade off

closeness to the average NIH allocation policy with better risk-

adjusted expected returns. Now we observe that for both upper

and lower sub-panels corresponding to the 7-group with/without

the dementia effect optimization, respectively, the weights are less

concentrated than in the single-objective case. For example, the

minimum-variance portfolio without the dementia effect now

allocates funding to all the groups, with weights ranging from 5%

to 31%. However, even in this case, the efficient-75% portfolio is

still extreme, allocating weights only to HLB, CHD and ONC.

Therefore, special care must be exercised in selecting the

appropriate point on the efficient frontier. We also observe from

the NIH-var or NIH-mean portfolios that slight changes to the

average NIH policy apparently yield superior performance in

mean-standard deviation space (Figure 6 indicates 28% to 89%

relative improvement, depending on the assumptions). Table S6

contains the portfolio weights when the HIV and AMS groups are

included in our analysis.

Discussion

Portfolio theory is a systematic framework for determining

optimal research funding allocations based on historical return on

investment, variance, and correlation between appropriations and

reductions in disease burden. The optimization results suggest that

significant YLL improvements with respect to a mean-variance

criterion may be possible through funding re-allocation. To our

knowledge, this is the first time such an approach has been

empirically implemented in this domain.

Figure 5. Portfolio weights. Benchmark, single- and dual-objective optimal portfolio weights (in percent), based on historical ROI from 1980 to
2003.
doi:10.1371/journal.pone.0034569.g005

Figure 6. Relative performance. Relative volatility (s), expected return (m) and risk-adjusted returns (m/s) for different scenarios (see text) for both
c~0 and 5 compared, including dementia: NIH with uniform allocation, and scenarios with NIH historical performance. A value of 1.00 implies the
same performance, 0.92 implies 8% worse, while 1.12 implies 12% improvement.
doi:10.1371/journal.pone.0034569.g006
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Our method identifies optimal portfolios which, for a given

degree of risk, are efficient in reducing YLL. However, some

optimal allocations may allocate no funds to certain disease groups

(typically those with low expected return and high volatility). While

this may be reasonable from a mean-variance optimization

perspective, it is obviously an extreme and impractical outcome.

A first step toward recognizing the trade-off between reallocation

costs and efficiency is the dual-objective optimization procedure

which penalizes allocations away from a pre-specified ‘‘bench-

mark’’ allocation, e.g., the current NIH policy. This more-

conservative approach increases diversification with less realloca-

tion cost than the single-objective procedure. For instance, in the

dual-objective optimization, the NIH-mean portfolio is relatively

close to the current allocation (see Figure 5), yet the risk-adjusted

returns are 28% higher as seen in Figure 6. The method is also

sufficiently flexible to add further constraints reflecting other policy

goals such as imposing lower or upper bounds on expenditures for

disease groups.

Our findings must be qualified in at least three respects: (1) YLL

as a measure of burden of disease, which is clearly incomplete and

less than ideal; (2) the definition of ROI and the challenges of

relating research expenditures to subsequent outcomes such as

burden of disease; and (3) the known limitations of portfolio theory

from the financial context. Each of these qualifications is discussed

in greater detail in Text S1, and while they can all be addressed to

varying degrees through additional data and analysis, the

empirical conclusions are likely to depend critically on the nature

of their resolution. In this section, we provide a short synopsis of

these qualifications, and also consider other objections to this

framework and directions for future research.

YLL captures only the most extreme form of disease burden;

more refined measures such as disability-adjusted or quality-

adjusted life years are clearly preferable. However, time series

histories for such measures are currently unavailable. Therefore,

YLL is the most natural starting point for gauging the impact of

biomedical research funding, and is directly aligned with the NIH

mission to ‘‘lengthen life’’.

Our definition of ROI can also be challenged as being

imprecise and ad hoc in several respects. NIH funding is typically

focused on basic research rather than translational efforts,

therefore, NIH spending may not be as directly related to

subsequent YLL improvements. We have not accounted for

other expenditures that may also affect YLL, and to the extent

that NIH appropriations are systematically used to complement

private spending [6], the relation between NIH allocations and

YLL improvements may be even noisier. Also, the standard

portfolio-optimization framework implicitly assumes a constant

multiplicative relation between dollars invested today and dollars

returned tomorrow (so that doubling the investment will typically

double the ROI of that investment), whereas the return to

biomedical investments may be non-linear and will likely exhibit

diminishing returns. Furthermore, returns are bounded–the best

we can hope for is a cure, beyond which further improvement is

impossible. In addition, translational research takes time and

significant non-NIH resources, further blurring the relation

between NIH allocations and subsequent changes in YLL.

Finally, other factors may contribute to YLL improvements,

including changes in cultural norms, economic conditions, and

public policy.

While all of these qualifications have merit, they are not

insurmountable obstacles and can likely be addressed through

additional data collection and more sophisticated metrics, perhaps

along the lines of Porter [18] or Lane and Bertuzzi [19].

Moreover, the portfolio-optimization approach provides a useful

conceptual framework for formulating funding allocation decisions

systematically, even if its empirical implications are imprecise.

There are also several limitations of portfolio theory that are

well-known in the financial context (e.g., estimation error,

parameter instability, and exogenous constraints such as non-

negativity restrictions on portfolio weight), all of which can be

addressed to some degree through statistical techniques such as

resampling, Bayesian analysis, and robust optimization [20].

However, one limitation that is unique to biomedical applications

is the fact that portfolio theory is silent on which mean-variance-

optimal portfolio to select. In the financial context, the existence of

a riskless investment (e.g., U.S. Treasury bills) implies that one

unique portfolio on the efficient frontier will be desired by all

investors–the so-called ‘‘tangency’’ portfolio [21] (see Figure S3).

Because there is no analog to a riskless investment in biomedical

research, the notion of a tangency portfolio does not exist in this

context. Therefore, decision makers must first determine society’s

collective preferences for risk and return with respect to changes in

YLL before a unique solution to the portfolio-optimization

problem can be obtained, i.e., they must agree on a societal

‘‘utility function’’ for trading off the risks and rewards of

biomedical research.

This critical step is a pre-requisite to any formal analysis of

funding allocation decisions, and underscores the need for

integration of basic science with biomedical investment perfor-

mance analysis and science policy. Such integration will require

close and ongoing collaboration between scientists and policy-

makers to determine the appropriate parameters for the funding

allocation process, and to incorporate prior information and

qualitative judgments [22] regarding likely research successes,

social priorities, policy objectives and constraints, and hidden

correlations due to non-linear dependencies not captured by the

data. In particular, it is easy to imagine contexts in which

funding objectives can and should change quickly in response to

new environmental threats or public-policy concerns. However,

such pressing needs must be balanced against the disruptions–

which can be severe due to the significant adjustment costs

implicit in biomedical research [23]–caused by large unantici-

pated positive or negative shifts in research funding. Although

the end result of collaborative discussion may fall short of a well-

defined objective function that yields a clear-cut optimal portfolio

allocation, the portfolio-optimization process provides a trans-

parent and rational starting point for such discussions, from

which several insights regarding the complex relation between

research funding and social outcomes are likely to emerge.

These qualifications suggest that portfolio theory cannot be

mechanically applied to historical data to yield actionable optimal

allocations. However, our empirical results should be sufficient

proof-of-concept to motivate additional data collection, empirical

analysis, and research to advance the state of the art in this

application area. Any repeatable and transparent process for

making funding allocation decisions–especially one that involves

criteria other than peer-review-based academic excellence–will,

understandably, be viewed initially with some degree of suspicion

and contempt by the scientific community. But if one of the goals

of biomedical research is to reduce the burden of disease, some

tension between academics and public policy may be unavoidable.

Moreover, in the absence of a common framework for evaluating

the trade-offs between academic excellence and therapeutic

potential, other proposed alternatives such as political earmarking

[24] may be even less palatable from scientific and humanitarian

perspectives.

In an environment of tightening budgets and increasing

oversight of appropriations, portfolio theory offers scientists,
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policymakers, and regulators–all of whom are, in effect, research

portfolio managers–a rational, systematic, transparent, and re-

producible framework in which to explicitly balance expected

benefits against potential risks while accounting for correlation

among multiple research agendas and real-world constraints in

allocating scarce resources. Most funding agencies and scientists

have already been making such trade-offs informally and

heuristically. There may be additional benefits to making such

decisions within an explicit framework based on standardized and

objective metrics.

One of the most significant benefits from adopting such

a framework may be the reduction of uncertainty surrounding

future funding-allocation decisions. This alone would greatly

enhance the ability of funding agencies and scientists to plan for

the future and better manage their respective budgets, research

agendas, and careers. By approaching funding decisions in a more

analytical fashion, it may be possible to improve their ultimate

outcomes while reducing the chances of unintended consequences.

Supporting Information

Figure S1 NIH time series flowchart. Flowchart for the

construction of NIH appropriations time series. ‘‘NIH Approp.’’

denotes NIH appropriations; ‘‘PHS Gaps’’ denotes Institute

funding by the U.S. Public Health Service; ‘‘Complete Approp.’’

denotes the union of these two series; ‘‘FY Change’’ allows for the

change in government fiscal years; ‘‘4Q FY’’ time series refers to

the resulting series in which all years are treated as having four

quarters of three months each; and ‘‘CPI’’ refers to the Consumer

Price Index.

(EPS)

Figure S2 YLL time series flowchart. Flowchart for the

construction of years of life lost (YLL) time series. ‘‘WONDER

Chapter Age Group’’ refers to a query to the CDC WONDER

database at the chapter level, stratified by age group at death; ‘‘US

Pop.’’ is the United States population from census data as

expressed in the WONDER dataset; and ‘‘US GDP’’ denotes U.S.

gross domestic product.

(EPS)

Figure S3 Efficient frontier illustration. Efficient frontier

(blue) in mean-standard deviation space, indifference curves

(green), and optimal portfolio T which is the tangency point of

the efficient frontier and the highest indifference curve achievable

(U1) by a frontier portfolio. Point A corresponds to the minimum-

variance portfolio.

(EPS)

Figure S4 Empirical estimates of NIH efficient fron-
tiers. Efficient frontiers for (a) all groups, c~0; (b) all groups,
c~10; (c) all groups without the Alzheimer effect, c~0; and (d) all

groups without the Alzheimer effect, c~5; based on historical

ROI from 1980 to 2003, except for AMS ROI which is available

only from 1997 to 2007, and HIV ROI which is available only

from 1996 to 2007.

(EPS)

Figure S5 Learning curves. Each of the seven graphs shows

for each of the disease groups (labeled at the top of each graph),

a curve representing the cumulative spending in millions of dollars

along the horizontal axis and the future cumulative change in

millions of years of life lost (YLL) on the vertical, where the offset q

between current spending and future changes in YLL is given in

Figure 3. The cumulative change in YLL covers the years from

1980 to 2007 for all the disease groups. For each group, the

corresponding NIH appropriations are translated back q years.

(EPS)

Figure S6 Eigenvalues and eigenvectors. Cumulative

eigenvalues and eigenvectors of the sample covariance matrix of

annual returns of the 7 NIH groups, based on historical returns

from 1980 to 2003.

(EPS)

Table S1 IoM recommendations. 12 major recommenda-

tions of the 1998 Institute of Medicine panel in four large areas for

improving the process of allocating research funds.

(EPS)

Table S2 ICD mapping. Classification of ICD-9 (1978–1998)

and ICD-10 (1999–2007) Chapters and NIH appropriations by

Institute andCenter to 7 disease groups: oncology (ONC); heart lung

and blood (HLB); digestive, renal and endocrine (DDK); central

nervous system and sensory (CNS) into which we placed dementia

and unspecified psychoses to create comparable series as there was

a clear, ongoing migration noted from NMH to CNS after the

change to ICD-10 in 1999; psychiatric and substance abuse (NMH);

infectious disease, subdivided into estimated HIV (HIV) and other

(AID); maternal, fetal, congenital and pediatric (CHD). The

categories LAB and EXT are omitted from our analysis.

(EPS)

Table S3 Summary statistics for YLL and funding.
Summary statistics for YLL and NIH-appropriations time series

data. YLL data are from 1979 to 2007, except for HIV YLL data

which are only available from 1987 to 2007. NIH-appropriations

data are from 1965 to 2005, except for AMS and HIV

appropriations data which are only available from 1987 to 2005.

(EPS)

Table S4 ROI example. An example of the ROI calculation

for HLB from 1986.

(EPS)

Table S5 Summary statistics for ROI. Summary statistics

for the ROI of disease groups, in units of years (for lag length) and

per-capita-GDP-denominated reductions in YLL between years

t and t+4 per dollar of research funding in year t–q, based on

historical ROI from 1980 to 2003, except for AMS ROI which is

available only from 1997 to 2007, and HIV ROI which is

available only from 1996 to 2007.

(EPS)

Table S6 Portfolio weights for all groups. Single- and

dual-objective optimal portfolio weights (in percent), based on

historical ROI from 1980 to 2003, except for AMS which is

available only from 1997 to 2007, and HIV which is available only

from 1996 to 2007.

(EPS)

Table S7 Seven-group correlation matrix. Correlation

matrix of ROI (in percent), based on historical ROI time series

from 1980 to 2003.

(EPS)

Text S1 Supporting Information. NIH background and

literature review, details of data construction and analysis, the

analytics of traditional and Bayesian portfolio optimization,

additional empirical results, and limitations and qualifications of

our analysis are included in this file.

(PDF)
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