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Abstract

Background: Glycosomes are a specialized form of peroxisomes (microbodies) present in unicellular eukaryotes that belong
to the Kinetoplastea order, such as Trypanosoma and Leishmania species, parasitic protists causing severe diseases of
livestock and humans in subtropical and tropical countries. The organelles harbour most enzymes of the glycolytic pathway
that is responsible for substrate-level ATP production in the cell. Glycolysis is essential for bloodstream-form Trypanosoma
brucei and enzymes comprising this pathway have been validated as drug targets. Glycosomes are surrounded by a single
membrane. How glycolytic metabolites are transported across the glycosomal membrane is unclear.

Methods/Principal Findings: We hypothesized that glycosomal membrane, similarly to membranes of yeast and
mammalian peroxisomes, contains channel-forming proteins involved in the selective transfer of metabolites. To verify this
prediction, we isolated a glycosomal fraction from bloodstream-form T.brucei and reconstituted solubilized membrane
proteins into planar lipid bilayers. The electrophysiological characteristics of the channels were studied using multiple
channel recording and single channel analysis. Three main channel-forming activities were detected with current
amplitudes 70–80 pA, 20–25 pA, and 8–11 pA, respectively (holding potential +10 mV and 3.0 M KCl as an electrolyte). All
channels were in fully open state in a range of voltages 6150 mV and showed no sub-conductance transitions. The channel
with current amplitude 20–25 pA is anion-selective (PK+/PCl2,0.31), while the other two types of channels are slightly
selective for cations (PK+/PCl2 ratios ,1.15 and ,1.27 for the high- and low-conductance channels, respectively). The anion-
selective channel showed an intrinsic current rectification that may suggest a functional asymmetry of the channel’s pore.

Conclusions/Significance: These results indicate that the membrane of glycosomes apparently contains several types of
pore-forming channels connecting the glycosomal lumen and the cytosol.
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Introduction

Trypanosoma brucei is a parasite that belongs to the Trypanoso-

matidae family of the Kinetoplastea order of protists. The biology

of T. brucei is under intensive investigation because of the medical

and economical importance of these parasites as the causative

agents of African trypanosomiasis, also known as sleeping sickness

in humans and Nagana disease in cattle [1–3]. The complex life

cycle of T. brucei involves its alternation between the insect vector

(tsetse fly), where the replicative stage of the parasite is called

procyclic form, and the blood of the mammalian host where the

parasites differentiate into the so-called long-slender bloodstream

form. The parasite’s life cycle requires drastic metabolic changes in

order to adapt to the environments encountered in the respective

hosts [1]. It has been demonstrated that the glycolytic pathway is

essential for T. brucei’s bloodstream form, since glycolysis is its only

source of ATP synthesis. Remarkably, the first seven enzymes of

glycolysis in the Trypanosoma species are localized in specific

cellular organelles, glycosomes, where these enzymes may

represent up to 90% of the total protein content [1,4–6]. This is

in contrast to cells of higher eukaryotes where all glycolytic

enzymes are found in the cytosol. Glycosomes are members of the

microbody family of organelles that also includes peroxisomes

from mammals, plant leaves and yeasts as well as glyoxysomes

from oil seeds [1,6,7]. All microbodies share common morphology

and biogenesis, as well as some other properties, such as the

absence of DNA and involvement in the metabolism of certain

lipids [7]. However, the overall enzyme composition of the

particles is different and in many cases varies depending on the

nutritional source.

Usually in cells, the enzymes catalyzing the two steps in which

ATP is invested at the beginning of the glycolytic pathway,
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hexokinase and phosphofructokinase, are allosterically regulated

by their reaction products or other effectors. This regulation limits

the so-called ‘turbo effect’, i.e. the uncontrolled activation of

glycolysis by the net ATP that is produced at later steps of

glycolysis. In contrast, an allosteric regulation of the activity of

glycolytic ATP-consuming enzymes in Trypanosomatidae has not

been detected [5,6,8,9]. Instead, as has been shown recently [10],

compartmentalization of glycolytic enzymes within the glycosomes

of Trypanosomatidae prevents from the detrimental ‘turbo effect’

of an uncontrolled consumption of ATP at the initial steps of

glycolysis. This is apparently achieved by formation of the two

pools of ATP – glycosomal and cytosolic. The glycosomal pool of

ATP needs to be strictly balanced by action of glycolytic enzymes

consuming and producing ATP in glycosomes. The net produc-

tion of ATP in glycolysis is catalyzed by the last enzyme of the

pathway, pyruvate kinase, which is located in the cytosol

[1,2,6,10]. Separation of the first and second part of the glycolytic

pathway between the two compartments thus predicts an

important role for the glycosomal membrane in preventing free

diffusion of ATP between the cytosol and the glycosomal lumen.

How the glycosomal membrane is involved in the transfer of

different metabolites, including ATP and other solutes such as

glycolytic intermediates, is an unresolved issue.

As has been shown recently, some representatives of the

microbody family, such as peroxisomes from plants, mammals,

and yeasts, contain proteins that are able to form a general

diffusion pore in the membrane [11–15]. In addition, experiments

in vitro have revealed that the mammalian peroxisomal membrane

is open to small solutes such as inorganic ions and most

hydrophilic cellular metabolites, but selectively prevents diffusion

of ‘bulky’ solutes, including cofactors (NAD/H, NADP/H and

CoA) and ATP [16,17]. One of the mammalian peroxisomal

membrane channels, formed by the protein Pxmp2 from rodents,

has been characterized at the molecular level [18]. The diameter

of the channel’s pore was estimated at 1.4 nm. This size is lower

than the dimensions of ‘bulky’ metabolites but far above the

diameter of small solutes. Therefore, the sieve properties of the

peroxisomal membrane may be well determined by the pore size

of the channel molecules. Considering the evolutionary relation-

ship of peroxisomes and glycosomes one can predict the presence

of channel-forming proteins also in the glycosomal membrane.

These channels may allow an easy movement across the

membrane of small solutes, including all intermediate metabolites

of glycolysis, but prevent transfer of ATP and cofactors and thus

promoting the maintenance of separate pools of these compounds

in the cytosol and the glycosomal lumen.

Here we report results of an investigation of the channel-

forming activities in purified glycosomal preparations isolated from

bloodstream-form T. brucei. Three distinct activities were detected

and their electrophysiological characteristics were analyzed using

the planar lipid bilayer technique.

Results

Characterization of the isolated glycosomal fraction
Glycosomes were purified from bloodstream-form cells of T.

brucei using a two-step isolation procedure (Figure 1). Differential

centrifugation was applied to obtain a large granular fraction

enriched in glycosomes and mitochondria. This fraction was then

subjected to Optiprep density gradient centrifugation to separate

glycosomes from other cellular organelles. As has been shown

previously, Optiprep is a highly effective medium for isolation of

peroxisomes from different sources [17,19] and glycosomes from

T. brucei [20]. To preserve intactness of glycosomes we used

poly(ethylene)glycol PEG 1500 (PEG 1500) as an osmoprotector

expecting that, like in the case of mammalian [17] and yeast [13]

peroxisomes, this compound may effectively prevent damage of

the particles. Indeed, our preliminary experiments revealed that

addition of PEG 1500 to the isolation medium significantly

reduced the leakage rate of the glycosomal matrix enzyme

hexokinase from the organelles (data not shown). Localization of

glycosomes in the gradient fractions was monitored just after

centrifugation by measuring hexokinase activity. According to the

results obtained, the particles are detected near the bottom of the

gradient and are also localized in the middle gradient fractions

(Figure 1A, panel a). This broad distribution of glycosomes may

reflect an appearance of the glycosomal ‘ghosts’ which, similar to

the peroxisomal ‘ghosts’ [17], are formed due to the partial leakage

of matrix proteins from damaged particles. The expected density

of the glycosomal ‘ghost’ is lower than that of the intact organelle

[17]. Purity of the glycosomal preparations was routinely

estimated by analysis of the activity of marker enzymes and by

immunodetection of marker proteins for different organelles

(Figure 1). A significant portion of glycosomes (fractions 2–4 of

the gradient, see Figure 1A) was well separated from the other

cellular organelles although the yield was relatively low. This was

an expected result since our isolation protocol was aimed to

achieve the maximal purity of glycosomes that inevitably resulted

in the lower yield of the particles. Enrichment of the glycosomal

preparations as determined by hexokinase assays was about 10-

fold relative to the specific enzyme activity in the granular fraction

loaded on the gradient. In the glycosomal preparations we found

only traces of the activities of markers for mitochondria (FAD-

dependent glycerol-3-phosphate dehydrogenase) and flagellar

membranes (acid phosphatase), indicating a low contamination

of glycosomes by membrane fragments of these organelles which

may be considered as the main potential sources of the

contaminating channel-forming activities (Figure 1A, panel c).

According to the distribution of marker enzymes activity, the

glycosomal preparations contain less that 2% of the total amount

of lysosomes (mannosidase) and endoplasmic reticulum (a-

glucosidase) loaded on the gradient (Figure 1A, panel d).

Considering the latter data, it is important to emphasize that the

fraction loaded on the Optiprep gradient was obtained as a result

of differential centrifugation of the postnuclear homogenate (see

‘Methods’ section). It is known that this procedure leads to partial

purification of glycosomes especially to separation of these

particles from endoplasmic reticulum and to a less extent from

lysosomes [4,21]. We also analyzed the purity of the glycosomal

fraction by immunodetection of marker proteins for different

organelles (Figure 1B, panel a). As expected, the glycosomal

marker (aldolase) was detected in the bottom gradient fractions

and in the other fractions containing glycosomes, while markers

for mitochondria (heat shock protein 60, HSP60) and acidocalci-

somes (vacuolar pyrophosphatase) were found exclusively in the

top gradient fractions. The pyrophosphatase immunosignal was

very weak even after long blot exposure (fractions 16–18, see

Figure 1B, panel a). This is a predictable result since the bulk of

acidocalcisomes was not sedimented with the large granular

fraction during differential centrifugation. Indeed, immunodetec-

tion of pyrophosphatase at the same conditions of blotting revealed

a strong signal at the corresponding protein size only in the

postnuclear homogenate and no signal was found in the

mitochondria-enriched fraction (compare lines 1 and 2 in

Figure 1B, panel b). The purity of isolated glycosomes was also

verified by electron microscopy (EM) (Figure 2). Consistent with

the biochemical data, the EM images demonstrate that the

preparations of glycosomes are highly enriched with these particles

Channel-Forming Activities in Glycosomes
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(Figure 2A). Most glycosomes are well preserved; they are filled

with an electron-dense matrix and surrounded by a single

membrane (Figure 2B). In the same preparations some fragments

of the flagellar apparatus (paraflagellar rods and axonemes) can be

detected. As shown by a careful analysis of the images, these

structures are not connected to the flagellar membranes, which

corroborate the data obtained in the enzyme activity assays

performed for the flagellar membrane marker, acid phosphatase

(see Figure 1A, panel c). One may therefore expect that the low

contamination of the glycosomal fraction by protein fragments of

the flagellar apparatus should not affect the results of the detection

of channel-forming activities since these activities belong to

proteins which are localized in the membrane structures. We also

conducted EM of fractions in the middle (fractions 8–11, see

Figure 1) and the top (fractions 15–18) of the Optiprep gradient.

The middle fractions showed a high enrichment of fragments of

the flagellar apparatus (Figure 2C and 2D), whereas the top

fractions contained a complex mixture of different membrane-

bounded organelles with mitochondrial vesicles as a predominant

constituent (Figure 2E and 2F).

Multiple channel recording (MCR) of the isolated
organelles

MCR is a useful analytical tool to describe an overall pattern of

channel-forming activities in certain membrane preparations. This

method is especially suitable for samples containing several types

of pore-forming proteins. It also helps to establish optimal

experimental conditions for revealing activity of the channels.

We initially attempted to conduct MCR using 1.0 M KCl as a

bath solution. While the activity in the glycosomal fraction was

evident, the amount of insertion events was relatively low and the

inserted channels were mainly unstable, frequently showing an

intensive flickering (data not shown). Therefore, we increased the

ionic strength of the bath solution up to 3.0 M KCl. This led to the

appearance of more stable channel-forming activities (Figure 3A)

that allowed quantitative analysis of the whole set of insertion

events using histograms which indicate insertion frequency relative

to current amplitude at a certain holding potential (Figure 3B).

This approach was applied for comparative analysis of pore-

forming activities in the preparations of glycosomes (Figure 3B,

upper panel), flagella (Figure 3B, middle panel) and mitochondria

(Figure 3B, lower panel). The conductance pattern registered in

the glycosomal preparations was clearly different from that of the

mitochondrial fraction containing in addition to mitochondria

some other membrane-bounded organelles. This may indicate that

glycosomes contain their own pool of channel-forming proteins

and the registered activities are not caused by contaminating

proteins from other organelles. Comparative MCR of glycosomal

and flagellar preparations revealed similar patterns of current

amplitudes, whereas the frequency of insertion events with the

flagellar fraction was much lower. Remarkably, we did not register

any noticeable number of current increments with amplitudes

characteristic for only flagellar preparations. These observations

are in line with the prediction that the channel-forming activity in

the flagellar fractions is due to their contamination with

glycosomes.

Next, we studied conditions favourable for detection of the

channel-forming activities and tried to register these activities

using different bath solutions (NaCl, LiCl, NH4Cl, potassium

acetate, sodium glycolate, and sodium phosphate, pH 7.4). The

best results were obtained using NH4Cl as the electrolyte

(Figure 3C). A high frequency of insertion events was observed

not only at 3.0 M NH4Cl (Figure 3C, upper panel), but also at

1.0 M NH4Cl (Figure 3C, lower panel). The overall patterns of

insertion events registered at +10 mV using 3.0 M KCl and 3.0 M

NH4Cl as bath solutions were similar (compare Figure 3B, upper

panel and 3C, upper panel). They showed two predominant types

of channel-forming activities with average current amplitudes of

20–25 pA and 70–80 pA, respectively. As expected, lowering of

the ionic strength of the electrolyte from 3.0 M to 1.0 M NH4Cl

was accompanied by a corresponding decrease in the registered

conductance levels (compare Figure 3C, upper panel and

Figure 3C, lower panel). This is a characteristic feature of non-

selective channels forming water-filled pores in the membrane

[22,23].

To proof a membrane localization of the channels, the

glycosomal preparations were treated by sonication and the

membrane fragments were separated from matrix proteins by

sucrose density gradient centrifugation. As expected, the channel-

forming activity was only detected in the membrane preparations

(data not shown). To analyze a potential role for protein SH-

groups in modulation of the channels activity, glycosomal

preparations were pre-incubated with 5 mM dithiothreitol

(DTT) or the reducing agent was added into the bath solutions

(2 mM DTT, final concentration). We did not detect any effect of

DTT on the conductivity pattern of analyzed channels (data not

shown). Nevertheless, we performed standard activity measure-

ments in the presence of 2.0 mM DTT to preserve any SH-groups

from oxidation during prolonged incubation periods. A moderate

increase in the applied potentials (up to 60 mV) did not influence

the conductivity pattern of glycosomal preparations, but strongly

reduced the amount of high-conductance insertion events

registered in the mitochondrial fraction (data not shown). More

detailed investigation of this phenomenon using single channel

analysis (SCA) showed that, contrary to high-conductance activity

in glycosomal preparations (see below), the mitochondrial channel

is spontaneously gated at holding potentials above 40–50 mV

(Figure 3D). This difference in properties of high-conductance

channels was routinely used in the following experiments to

distinguish them from each other.

Single channel analysis (SCA) of a high-conductance
channel

We applied SCA for detailed electrophysiological characteriza-

tion of the channel-forming activities registered using MCR (see

above). The most prominent of these activities was a high-

conductance channel (Figure 4A) which comprises more than 25%

of the total number of insertion events registered by MCR (see

Figure 3B, upper panel). The channel inserted in the membrane

was usually stable in the fully open conformation during the entire

period of registration (minutes) at different holding potentials. This

was confirmed using voltage-ramp (Figure 4B) and voltage-step

(Figure 4C) protocols. The results indicate a near linear

dependence of the channel current on the voltage with a slope

conductance of L= 9.260.6 nS, n = 8 (3.0 M KCl on both sides

of an artificial membrane). The conductance of a single channel

was linearly decreased following dilution of the bath solution from

3.0 M KCl to 2.0 M then1.0 M KCl (Figure 3D). The high

conductance of the channel and linear dependence on the KCl

concentration suggest an electrochemical current flow through a

porin-like structure forming a hole in the membrane which is filled

with water [22,23]. The channel was resistant to gating even at

extreme holding potentials (Figure 4E), distinguishing it from the

voltage-dependent anion channel of the outer mitochondrial

membrane [24]. The probability of the channel to be open was

Popen<0.9 between Vhold = +150 mV and Vhold = 2150 mV. Only

a single conductance state was detected. The reversal potential of

the channel in asymmetric KCl solutions (3.0 M KCl trans/1.5 M

Channel-Forming Activities in Glycosomes
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KCl cis) was Erev = +1.14 mV indicating that this channel has only

limited preference for cations over anions, PK+/PCl2ratio ,1.15.

Low-conductance channel showing current rectification
In addition to high-conductance channel-forming activity, the

MCR experiments revealed an abundant low-conductance activity

in glycosomal preparations (see Figure 3, upper panel). Similarly,

the insertion events with current amplitudes 20–25 pA at a

holding potential +10 mV and an electrolyte concentration of

3.0 M KCl were frequently detected by SCA. Surprisingly, a

switch of the applied voltage from +10 mV to 210 mV was

accompanied by a significant decrease in the current flow through

a single channel (Figure 5, upper panel). However, in a few cases

the same change in the holding potential led to the opposite result

– an increase in the current amplitude (Figure 5A, lower panel).

These results may indicate that the low-conductance channels

show current rectification. Indeed, analysis of the current-voltage

relationships using voltage-ramp (Figure 5B) and voltage-step

(Figure 5C) protocols confirmed this prediction. Within the whole

set of the activities registered by SCA, 48 out of 56 low-

conductance channels displayed rectification at negative voltages

(Figure 5B and 5C, upper panels). The mean chord conductance

Figure 1. Isolation of glycosomes. A large granular fraction enriched in glycosomes and mitochondria as obtained by differential centrifugation
was subjected to Optiprep density gradient centrifugation and the contents of the fractions obtained were analyzed by (A) marker enzyme activity
measurements and (B) immunoblot analysis of marker proteins. (A) Activities of hexokinase (a, filled bars), FAD-dependent glycerol-3-phosphate
dehydrogenase (c, filled bars), acid phosphatase (c, gray bars), mannosidase (d, gray bars), and a-glucosidase (d, filled bars) were measured. Protein
content (a, gray bars) and density of the gradient (panel b) were also determined. The results obtained are expressed as the activity in each fraction
relative to the total activity in the whole gradient. Enzyme (protein) recoveries varied between 78–112%. (B) Panel a: Proteins from equal volumes
(70 ml) of each fraction (fractions 1–7, 9–11, and 13–19, see Figure 1A) were separated by SDS/PAGE and analyzed by western blotting using
antibodies against markers for different organelles [aldolase as a glycosomal marker and heat shock protein 60 (HSP60) as a mitochondrial marker].
Panel b: Immunodetection of the acidocalcisome marker pyrophosphatase in the post-nuclear homogenate (line 1) and in the mitochondrial fraction
(line 2). Molecular mass markers are indicated.
doi:10.1371/journal.pone.0034530.g001
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of this channel, as deduced from the results in Figure S1A, was

2.860.4 nS at +50 mV and 1.460.3 nS at 250 mV. Most

channels showed an intensive flickering at holding potentials over

+40 mV. However, we did not detect any sub-conductance states

of the channel that preserved an open conformation at a range of

voltages 6150 mV (Figure S1B). Interestingly, at holding

potentials below 2100 mV the channels partially lost their

rectification ability (see Figure S1, panel B2). The dependence of

current amplitudes on the strength of an electrolyte solution

deviated moderately from a linear curve towards lower conduc-

tance rates especially at high KCl concentrations (Figure 5D). At

asymmetric electrolyte conditions (3.0 M KCl trans/1.5 M KCl cis)

the reversal potential of the channel was Erev = 9.0 mV, indicating

anion selectivity with PK+/PCl2 ratio 0.31 (Figure 5E). Rectifica-

tion by the low-conductance channels may indicate a longitudinal

asymmetry of the channel’s pore especially regarding the

distribution of charged amino acids [22,23,25]. The fact that

most channels show rectification at negative voltages suggests that

incorporation of the channels is a directional process. To verify

this prediction we tried to introduce the channels not from the trans

side (standard conditions), but from the opposite, cis side of an

artificial membrane. This was accompanied by predominant

insertion of channels showing rectification at positive voltages

(Figure S1C).

Electrophysiological properties of a very-low-
conductance channel

The third abundant group of channel-forming activities in the

glycosomal preparations besides the high- and low-conductance

channels was represented by channels showing current amplitude

of 8–11 pA (3.0 M KCl, +10 mV; see Figure 6A). This activity

comprises more than 15% of the total number of insertion events

registered by SCA in glycosomal preparations. The activity is near

linearly dependent on the KCl concentration (data not shown).

The current-voltage relationship measured at symmetric salt

conditions (3 M KCl) revealed a slope conductance of

L= 0.9860.4 nS, n = 4 (data not shown). Contrary to the low-

conductance activity (see above), this very-low-conductance

channel showed no signs of current rectification. When applying

both voltage-ramp (Figure 6B) and voltage-step (Figure 6C)

protocols, the response of the channel’s current to voltage

modulations was close to linear. We did not detect gating of the

channel and appearance of any sub-conductance states at low-

speed linear change of the holding potential from zero to 150 mV

in both, positive and negative, directions (data not shown). The

reversal potential of the very-low-conductance channel in

asymmetric salt concentrations (3.0 M KCl trans/1.5 M KCl cis)

was Erev = +2.0 mV that gives the PK+/PCl2 ratio ,1.27.

Therefore, the channel is slightly cation-selective.

Super-large-conductance channel-forming activities
During MCR of glycosomal preparations at standard conditions

(3 M KCl or 3 M NH4Cl, +10 mV) channel-forming activities

with current amplitudes over 180 pA were occasionally detected

(Figures 3B and 3C). The activities mainly with conductance of

,24.0, 32.0, and 50.0 nS (3 M KCl) were also registered by

means of SCA (Figure S2). Some of these channels were stable in

their open confirmation (Figure S2A), but most of the activities

displayed an irregular flickering (Figure S2B), indicating fast

transition between open and closed states. The average mean

lifetime of the fully open, unstable channels was remarkably low

(topen,50 ms). Attempts to apply a voltage-ramp protocol to the

stable super-large-conductance activities usually led to the

appearance of multiple sub-conductance levels (Figure S2C),

indicating that several channel-forming molecules may form

clusters which are more or less resistant to treatment with

detergents. Low abundance of the super-large-conductance

channels precluded a detailed analysis of their properties.

Discussion

Glycosomes of T. brucei are highly specialized subcellular

organelles focused on the conversion of the main nutrient for

the bloodstream form of the parasite, glucose, into 3-phospho-

glycerate and under anaerobic conditions, also glycerol. The 3-

phosphoglycerate is further metabolized in the cytosol to pyruvate,

a metabolic end-product for this parasite, with concomitantly a net

production of ATP [1]. However, the spectrum of metabolic

Figure 2. Electron microscopy of cellular organelles separated
by Optiprep gradient centrifugation. Fractions enriched in
glycosomes (fractions 2–5, see Figure 1A), fragments of flagella
(fractions 8–11) or mitochondria and other organelles (fractions 15–
18) were combined and processed for EM examination (see the
Materials and methods section). (A and B) Isolated glycosomes shown
at lower (A) and higher (B) magnifications. The fraction consists mostly
of glycosomes. Some contamination by fragments of flagella is also
visible. Importantly, fragments of flagella (paraflagellar rods and
axonemes) show no sign of attachment to the flagellar membrane.
Note the presence of intact glycosomes as electron-dense vesicles
surrounded by a single membrane (marked by arrows in panel B). (C
and D) Fractions enriched in flagella at low (C) and high (D)
magnifications. One can see many paraflagellar rods in longitudinal
section (C) and recognize flagellar axonemes (marked by arrows in
panel D). Some glycosomes are also visible in panel C. (E and F)
Composition of the fraction from the top of the Optiprep gradient that
is enriched with mitochondria. Several types of organelles – mitochon-
dria, lysosomes, lipid droplets, clathrin-coated vesicles, and components
from the flagellar apparatus – can be observed. Note the shrinking of
the mitochondrial inner membrane (see panel F) apparently due to
osmotic misbalance. Scale bars: 2 mm (C and E); 1 mm (A); 0.5 mm (D
and F), and 0.1 mm (B).
doi:10.1371/journal.pone.0034530.g002
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activities of glycosomes is not limited to only glycolysis but also

includes such diverse pathways as b-oxidation of fatty acids, ether-

lipid and squalene biosynthesis, the pentose-phosphate shunt,

purine salvage, synthesis of pyrimidines, energy homeostasis, and

others, although many of these non-glycolytic activities are largely

or entirely repressed in the bloodstream-stage of these trypano-

somes [1,26]. The diversity of metabolic pathways in glycosomes

raises questions concerning the ability of the glycosomal

membrane to cope with the transfer of different metabolic

intermediates between glycosomal lumen and cytosol. Like other

membranes impermeable to solutes, such as the inner mitochon-

drial or the plasma membranes, the membrane of glycosomes may

contain many transporter proteins specific for certain metabolites.

However, to our knowledge, only one of the 24 solute transporters

of the mitochondrial carrier family of trypanosomes with still

unidentified substrate specificity, MCF6, has been documented in

Figure 3. Detection of channel-forming activities in subcellular fractions. Fractions 2–4 (glycosomes), 8–11 (fragments of flagella), and 15–
18 (mitochondria) from Optiprep density gradients (see Figure 1A) were combined and treated with Genapol X-080 to solubilize membrane proteins
(see the Materials and methods section). After sedimentation of insoluble material, aliquots of the resulting supernatants were used for MCR (A–C) or
SCA (D). (A) Traces of the current monitoring in the presence of glycosomal (upper panel) or mitochondrial (lower panel) preparations. The middle
trace represents a timescale-expanded current recording of the upper trace. The bath solution contained 3 M KCl and the applied voltage was
+10 mV. (B) Histograms of insertion events registered in subcellular fractions (see panel A). Bin size is 4.0 pA. The total number of insertion events
(I.e.) is indicated. Here and in Figure 3 C (upper panel) all insertion events with current increments over 180 pA (for Figure 3C, lower panel 290 pA)
are combined in one bin (180 pA or 90 pA, respectively). Note that the amount of insertion events in the flagella fraction (see B, middle panel) is
lower than that observed in other fractions. This is mainly due to low channel-forming activity (per protein content) in the preparations of this
fraction. For the sake of compatibility we used the same amounts of protein for measurements in different fractions. (C) Histograms of insertion
events detected for glycosomal preparations using NH4Cl as the electrolyte. Bin size: 4 pA (upper panel) or 2 pA (lower panel). See legend to
Figures 3A and 3B for other details. (D) Trace of the current monitoring using the glycosomal fraction (initial holding potential +10 mV) indicating the
insertion (marked by one asterisk) of a large-conductance channel that spontaneously closed (marked by two asterisks) after stepwise (each step is
+10 mV) increase in the holding potential up to 50 mV.
doi:10.1371/journal.pone.0034530.g003
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the glycosomal membrane of bloodstream-form cells, whereas in

procyclic cells it was located in the mitochondrial membrane

[27,28]. Information about some other solute transporters requires

further clarification since the isolated glycosomal fraction where

these transporters were detected by using a proteomic approach

may have been contaminated by mitochondria [20]. In contrast, if

the glycosomal membrane is open to solutes, it should, like the

outer mitochondrial membrane or outer membrane of Gram-

negative bacteria, contain pore-forming channels with low

selectivity towards the chemical nature of the transported

metabolites. Indeed, as shown in this report, such channel-forming

activities were readily detected in solubilized membranes from

preparations of glycosomes isolated from bloodstream-form T.

brucei. It nevertheless should be emphasized that any researcher

who use an isolated fraction of certain organelles faces a problem

of contamination of this fraction by other subcellular particles.

Figure 4. SCA of a high-conductance channel. (A) Current trace of a single high-conductance channel. The insertion event (marked by an
asterisk) was registered at +10 mV and the applied voltage was then switched to 210 mV. The dashed line indicates the current level (zero) before
insertion of the channel. The data in panels A, B, and C were collected using 3 M KCl as the electrolyte. (B) Current trace of the channel in response to
the indicated voltage-ramp protocol. Note the near linear dependence of the current on the applied voltage. (C) Single channel currents in response
to the indicated voltage-step protocol. (D) Dependence of the single channel conductance on the KCl concentration. After detection of a single
channel insertion using 3 M KCl as bath solution (holding potential +10 mV), the electrolyte was diluted and registration of the current amplitudes of
the same channel was conducted at 2.0 M and 1.0 M KCl, respectively. Data points are mean6SD for at least 4 independent measurements. (E)
Current traces of a single channel in response to a low-speed linear increase (upper trace) or decrease (lower trace) of the holding potential. The bath
solution contained 1.0 M NH4Cl, 20 mM Tris-Cl, pH 7.8, and 2 mM DTT at both sides of the membrane. Note that the channel was still open even at
hyperpolarizing holding potentials of 6150 mV. (F) Current-voltage relationship of the high-conductance channel under asymmetric salt conditions:
3.0 M KCl trans/1.5 M KCl cis compartment. The insertion of a single channel was detected at 3 M KCl at both sides of the membrane and at a voltage
of +10 mV, then the electrolyte concentration in the cis compartment was decreased by dilution and an initial current recording was conducted at
zero potential followed by stepwise (610 mV) change of the applied voltage. Data points are mean6SD, n = 4–5. Bars in some cases are smaller than
symbols.
doi:10.1371/journal.pone.0034530.g004
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Therefore, we tried to exploit additional approaches to verify link

between the detected channel-forming activities and glycosomes.

In this context it is important that the conductivity pattern of the

channels in glycosomal preparations determined by MCR was

distinctly different from that obtained with membrane protein

preparations from the mitochondrial fraction which harbours,

among other channels, the mitochondrial outer membrane

voltage-dependent anion channel (VDAC). Due to its abundance,

this channel is usually considered as a major mitochondrial

contaminant of different subcellular fractions. Interestingly, we

detected in our mitochondrial preparations a high-conductance

channel-forming activity with gating properties similar to VDAC

Figure 5. SCA of a low-conductance channel. (A) Current traces of two low-conductance channels. The bath solution (A–C) contained 3 M KCl
at both sides of the membrane. See legend to Figure 4A for other details. Note that two types of channels were registered. Most of them showed a
larger current amplitude at +10 mV than at 210 mV (upper trace). In contrast, some channels displayed an opposite trend (lower trace). (B and C)
Current traces of the channels in response to the indicated voltage-ramp (B) and voltage-step (C) protocols. Most detected channels displayed a
current rectification at negative holding potentials (upper panels). However, in a few cases the rectification was observed at positive holding
potentials (lower panels). (D) Dependence of the low-conductance channel activity on the electrolyte concentration. The channel insertion was
registered at a holding potential of +10 mV using 3 M KCl as a bath solution. After confirming that the channel shows current rectification at negative
voltages by application of a voltage-ramp protocol, the electrolyte in the chambers was diluted to 2.0 M or 1.0 M KCl and the current amplitudes
were measured at +10 mV. Data are mean6SD, n = 4–5. (E) Ion selectivity of the low-conductance channel. See legend to Figure 4F for details. The
current-voltage relationship of channels (rectification at negative voltages) was validated using a voltage-ramp protocol.
doi:10.1371/journal.pone.0034530.g005
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(see Figure 3D). However, only traces of this activity were found in

the glycosomal preparations. This observation coincides with the

results of the purity analysis of the glycosomal fraction that showed

very low contamination by membrane-bounded organelles other

than glycosomes such as mitochondria, lysosomes, and acidocalci-

somes as well as fragments of the endoplasmic reticulum and

flagellar membranes (see Figure 1). As was revealed by EM

examination, the purified preparations of glycosomes contain

some fragments of the flagellar apparatus (paraflagellar rods and

axonemes). However, these fragments are not connected to the

flagellar membrane which might have been a potential source of

the channel-forming activity contamination. As a whole, our

experiments have revealed the channel-forming activities in

purified glycosomal preparations. This can be considered as an

indication on the presence of channel proteins in glycosomal

membrane. However, further investigation is required to reveal

the molecular nature of the channel-forming activities described

here.

Three main channel-forming activities (high-, low-, and very-

low-conductance) were detected in the glycosomal preparations.

We did not find evidence for the possibility that any of these

activities are in fact subconductance states of the other registered

channels. In particular, the activities did not show spontaneous

transitions between different conductance levels and were highly

resistant to gating even at extreme holding potentials. This may

lead to suggestion that not only one, but several distinct pore-

forming proteins are apparently localized in the glycosomal

membrane. The same conclusion has been made recently after

analysis of the channel-forming activities in preparations of

mammalian [12,18] and yeast [13,14] peroxisomes. Similar

properties have been previously attributed to the outer membranes

of Gram-negative bacteria and chloroplasts. Both these mem-

branes contain different types of pore-forming proteins [29,30].

The reason for localization of several distinct channels in the same

membrane is not entirely clear. Some of them (so-called specific

porins) show a preference for transfer certain compounds [29].

The function of others is under regulatory control by correspond-

ing metabolites [30]. The latter property is especially evident for

channels displaying an intrinsic rectification. Therefore it is highly

probable that the intrinsically rectifying low-conductance channel

detected in our experiments (see Figures 5 and S1) is formed by an

allosterically regulated protein.

Our observation of the super-large-conductance channel-

forming activities in glycosomal preparations is intriguing since it

may be linked to the formation of a large and highly dynamic pore

by the peroxisomal importomer which is involved in the

Figure 6. SCA of a very-low-conductance channel. (A) Current recording of a single very-low-conductance channel. The bath solution (panels
A, B, and C) contained 3 M KCl. See legend to Figure 4A for other details. (B) Current trace of the channel in response to the shown voltage-ramp
protocol. Dotted line indicates the current level at zero holding potential. Note the near linear dependence of the current on the applied voltage. (C)
Current traces of a single channel in response to the indicated voltage-step protocol. (D) Ion-selectivity of the channel. See legend to Figure 4D for
details.
doi:10.1371/journal.pone.0034530.g006
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transmembrane transfer of the newly synthesized, completely

folded proteins into the matrix of peroxisomes [31]. The high

conductance and the rare appearance of the super-large

conductance channels may indicate that they are indeed the

peroxisomal importomers. On the other hands, these activities

may reflect formation - natural or artificial - of the channel clusters

that is a common feature of hydrophobic, membrane-bound

proteins.

The most intriguing question arising from our study is if and

how the apparent glycosomal channels may be involved in

regulation of glycolysis. The relatively high conductance and the

long-lasting open states of the channels predict that they form

pores in the membrane filled with water, i.e. belong to family of so-

called non-selective channels [22,24,29]. The sieve properties of

each such channel are mainly determined by the dimension of its

pore. Our previous results on mammalian [15] and yeast [13]

peroxisomes revealed that the membrane of these particles is

highly selective towards the size of transported molecules. The

peroxisomal channels allow transmembrane diffusion of solutes

with molecular mass up to 300–400 Da but are unable to transfer

‘bulky’ metabolites such as ATP and some cofactors (NAD/H,

NADP/H, CoA) whose molecular mass exceeds 500 Da. The

sieve properties of peroxisomal channels apparently determine the

formation of two independent pools, peroxisomal and cytosolic, of

‘bulky’ metabolites. In contrast, the peroxisomal lumen and the

surrounding cytosol may share a common pool of small solutes. If

the same rules are applicable to glycosomes, one can suggest a

physical separation of glycosomal and cytosolic pools of ATP by

the glycosomal membrane that might be sufficient and important

to prevent from ‘turbo effect’ of uncontrolled ATP production (see

‘Introduction’ for further details). The proposed model does not

require a multitude of glycosomal transporters specific for each

small solute that has to be translocated, since these solutes would

be able to use the channels to overcome the membrane barrier.

However, transporters specific for at least some ‘bulky’ solutes are

necessary. We are tempted to speculate that the MCF6 protein

[27], if indeed its location in the glycosomal membrane can be

confirmed, is involved in the transfer of some ‘bulky’ solute(s).

The presence of pore-forming proteins with low selectivity

towards small solutes in the glycosomal membrane seems, at first

glance, inconsistent with the systems biology analysis that

demonstrated moiety conservation relations within the glycosomes

not only for adenine nucleotides (ATP+ADP+AMP) and nicotin-

amide adenine nucleotides (NAD++NADH), but also for all the

phosphorylated intermediates involved in the glycolytic reactions

occurring within the organelles [32]. Moreover, pulse-labeling

experiments with radioactive glucose indicated that the exchange

of phosphorylated intermediates between the two cellular pools is

60 times slower than the labeling of pyruvate [33]. Furthermore, it

has been experimentally shown that concentrations of intermedi-

ates can increase to very high levels within the trypanosome if

glycosomal enzymes are relocated from glycosomes to the cytosol

[10]. These are all indications of a low rate of release of these

intermediates out of glycosomes. In view of the results presented in

this paper, one may wonder if this process is not so much the result

of an impermeability barrier created by the glycosomal mem-

brane, but rather the consequence of so-called Donnan equilib-

rium that may exist between glycosomal lumen and surrounding

cytosol. The mechanism of Donnan equilibrium in biological

systems is well known [34] and apparently responsible for the

formation of a pH gradient across the mammalian and yeast

peroxisomal membranes [6,18] and outer mitochondrial mem-

brane [35]. The low release of the intermediates from a

multienzyme complex within the glycosomes in which substrate

channeling might occur can also be considered. Indeed, there are

indications for a strong association of the enzymes found at high

density within the organelles, but so far channeling has not been

demonstrated. This possibility is currently under investigation.

Which protein molecules determine the glycosomal channel-

forming activities remains to be established. One of the channel-

forming proteins in mammalian peroxisomes, Pxmp2, has recently

been described [18]. The isolated protein forms homotrimer

which is active as a channel in in vitro experiments and show a

conductance of 1.3 nS in 1.0 M KCl. The channel is weakly

cation-selective and shows no voltage dependence. An estimated

diameter of the channel’s pore is ,1.4 nm, intermediate between

the dimensions of small and ‘bulky’ solutes. Surprisingly, deletion

of Pxmp2 in mice by disruption of the corresponding gene did not

lead to the development of a severe phenotype, indicating

redundancy of the channel function in mammalian peroxisomes.

Indeed, in the peroxisomal preparations purified from liver of

Pxmp22/2 mice some of the channel-forming activities were still

registered [18]. Therefore, channel proteins other than Pxmp2

may be expected in the peroxisomal membrane. Good candidates

for this role may be members of the Pex11 family of proteins. The

family consists of three proteins localized in the mammalian and

yeast peroxisomal membranes [36,37]. Remarkably, trypanosomal

homologues of this protein family (PEX11, GIM5A, and GIM5B)

are also main components of the glycosomal membrane [38] that

apparently does not contain proteins detectably homologous to

mammalian Pxmp2 since we failed to find any sequence in the T.

brucei genome with significant similarity to the Pxmp2 gene

(Antonenkov, unpublished results). The Pex11 family members

are usually considered as proteins involved in the biogenesis of

peroxisomes [36–38]. However, knock-out of yeast Pex11 is

accompanied by evident disruption of the transport function of

the peroxisomal membrane [39]. The channel-forming activity of

yeast and mammalian Pex11 proteins has recently been observed

and is currently under investigation (Grunau et al., manuscript in

preparation).

In conclusion, we described here channel-forming activities in

purified glycosomal preparations isolated from the bloodstream

form of T. brucei. The channels which are most probably the

glycosomal membrane constituents may be involved in the

transmembrane transfer of metabolic intermediates and could

play an important role in creating conditions that prevent

deregulation of the glycolytic pathway and energy balance in the

T. brucei cells.

Materials and Methods

Chemicals
Optiprep density gradient medium, a 60% w/v, solution of

Iodixanol in water was from Axis-shield PoC AS. A cocktail of

protease inhibitors was from Fermentas. An artificial lipid bilayer

former, diphytanoyl phosphatidylcholine, was obtained from

Avanti Polar Lipids Inc. Genapol X-080 was from Fluka and

Fos-choline-10 from Affymetrix. Reagents for electron microscopy

were from Electron Microscopy Sciences. All other chemicals were

from Sigma.

Growth and isolation of trypanosomes
Monomorphic long-slender bloodstream-form cells of T. brucei

strain Lister 427 (cell line 449) were grown in 300 g Wistar rats.

Blood was collected from animals showing high parasitaemia

(between 108 and 109 trypanosomes/ml) by cardiac puncture

under ether anesthesia. Trypanosomes were separated from blood

constituents by ion-exchange chromatography on DEAE-cellulose
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[40] and washed twice by centrifugation at 1000 g for 10 min

using phosphate-buffered saline (PBS) containing 50 mM D-

glucose. A final wash step prior to glycosome purification was

performed using homogenization buffer (250 mM sucrose, 1 mM

EDTA, 0.1%, v/v, ethanol, 5 mM MOPS, pH 7.2 and 12%, w/v,

PEG 1500). PEG 1500 was used to prevent osmotic damage of

glycosomes [17]. All animal care and handling procedures were

approved by the committee on animal experimentation of the

Université catholique de Louvain (Belgium): 2006/UCL/MD/

037 BCHM (TROP) ‘‘Etude de la biochimie, de la biologie

cellulaire et de la biologie moléculaire des protozoaires respon-

sables des maladies parasitaires chez l’homme et particulièrement

des protozoaires de la famille Trypanosoma (rats and mice)’’.

Purification of glycosomes
Trypanosomes were harvested by centrifugation for 10 min at

1000 g and the cell pellet (approximately 5.061010 cells) was

subjected to grinding with silicon carbide (325 mesh) [41] in the

presence of homogenization buffer supplemented with a cocktail of

protease inhibitors (total volume 2 ml). The disruption of parasites

was followed by phase-contrast microscopy and continued till at

least 95% of the cells were broken. After dilution of the resulting

mixture with homogenization buffer (final volume 10 ml) the

silicon carbide was removed by centrifugation at 100 g for 3 min.

The homogenate obtained was centrifuged twice at 1500 g for

10 min to remove nuclei and cellular debris. The postnuclear

supernatant was then centrifuged at 17 000 g for 15 min to

sediment mitochondria and glycosomes. The pellet was resus-

pended in homogenization buffer using a Dounce homogenizer

and 5 ml of the suspension were loaded on two preformed linear

20%–35%, v/v, Optiprep gradients (33 ml each) mounted on top

of a 3.5 ml 50%, v/v, Optiprep cushion according to the

manufacturer’s instruction (Optiprep Application Sheet S09,

Axis-shield). The gradients were prepared with homogenization

buffer containing no sucrose and PEG 1500. The samples were

centrifuged in a vertical VTi-50 (Beckman) rotor at 100 000 g for

120 min at the slow acceleration and deceleration mode. Fractions

of 2 ml were collected from the bottom of each tube and were used

immediately for analysis of the activities of marker enzymes or

were frozen at 270uC. Disruption of glycosomes by sonication

and separation of membrane fragments from matrix proteins by

sucrose density gradient centrifugation were performed as

described [17].

Measurement of enzyme activities
Spectrophotometric measurements of the activity of marker

enzymes for different cellular organelles were conducted according

to standard procedures. Activity determination of hexokinase [42]

and FAD-dependent glycerol-3-phosphate dehydrogenase [43]

was used to localize in Optiprep gradient fractions the glycosomes

and mitochondria, respectively. Mannosidase activity (lysosomal

marker) was detected with 4-nitrophenyl-D-mannopyranoside as a

substrate [44]. a-Glucosidase (substrate: 4-nitrophenyl-D-gluco-

pyranoside) [45] and acid phosphatase (substrate: p-nitrophenyl-

phosphate) [41,46] were used as markers for endoplasmic

reticulum and flagellar membranes, respectively. Protein content

was measured by the Lowry assay (Bio-Rad).

Antibodies and Western blotting
Proteins from aliquots of gradient fractions were precipitated

with cold acetone and resuspended in denaturing SDS-PAGE

buffer according to standard procedures. Separation of proteins by

SDS-PAGE was performed under reducing conditions using

12.5%, w/v, acrylamide Criterion Precast gels containing 18 wells

(Bio-Rad). For Western blotting, the proteins were transferred

from gels to nitrocellulose membrane using Bio-Rad Trans-Blot

Turbo equipment and Trans-Blot Turbo Transfer Packs (Midi

Format, 0.2 mm nitrocellulose). The transfers were done using

preprogrammed protocols. The membranes were blocked by 3%,

w/v, bovine serum albumin in Tris-buffered saline (TBS)

containing 0.2%, v/v, Tween 20 for at least 1 h at room

temperature with gentle shaking, and incubated with the

appropriate primary antibodies overnight at +4uC, followed by

detection with horseradish peroxidase conjugated anti-rabbit or

anti-mouse IgG (Santa Cruz Biotechnology). Polyclonal antisera,

raised in rabbits, against aldolase (marker for glycosomes) and

vacuolar pyrophosphatase (marker for acidocalcisomes; a gift by

Dr. R. Docampo, University of Georgia, USA) were used as

secondary antibodies. A monoclonal antibody against HSP60

(marker for the mitochondrial matrix) [47] was a gift by Dr. F.

Bringaud (Université Bordeaux Segalen, France).

Electron microscopy
Aliquots of the corresponding fractions of an Optiprep gradient

were subjected to several rounds of concentration using a

‘Centriprep’ filter (cut-off 10 kDa) device (Millipore) and gradual

dilution by homogenization buffer. This procedure was aimed to

remove the gradient former (Iodixanol) and to concentrate

particles while avoiding osmotic damage of glycosomes (see ref.

[17] for details). The resulting samples were mixed with an equal

volume of 2%, v/v, glutaraldehyde prepared in homogenization

buffer. After fixation overnight at 4uC, the particles were

sedimented at 20 000 g for 30 min, and the pellets were processed

for transmission electron microscopy as described [16,17].

Detection of channel-forming activity
Channel-forming activities of glycosomal and mitochondrial

preparations were registered using a Planar Lipid Bilayer

Workstation equipped with a BP-535 amplifier and 8 pole low-

pass Bessel filter (Warner Instruments). Acquisition and analysis

were performed using pCLAMP software (Axon Instruments). The

method is based on reconstitution of solubilized membrane

proteins into an artificial lipid bilayer followed by detection of

an electrochemical current arising due to insertion of proteins with

channel-forming capability. Fractions collected from Optiprep or

sucrose gradients were diluted 3–5 fold with 20 mM MOPS

buffer, pH 7.2 (final concentration of protein: 0.01–0.05 mg/ml)

and treated with detergents: 0.5%, w/v, Genapol X-080 or 0.2%,

w/v, Fos-choline (final concentrations) by rotating for 2 h at 4uC.

After centrifugation at 100 000 g for 40 min, the resulting

supernatant was immediately used for registration of the

channel-forming activity. Two experimental approaches were

exploited for activity detection: multiple channel recording (MCR)

and single channel analysis (SCA) [48]. MCR allows the

registration of a large number of pore-forming events with

detection of their conductance at a certain holding potential. This

is a useful test for ‘pilot’ quantitative estimation of the presence of

different channel-forming activities in membrane preparations.

SCA was applied for detailed characterization of the properties of

a certain channel type. The method allows an electrophysiological

analysis of a single channel molecule. Measurements were

performed in chambers with two compartments separated by a

wall containing a tiny hole which was covered by an artificial

membrane. The Ag/AgCl electrodes were connected to the

compartments via 3 M KCl-agar bridges. The bath solutions

contained 3 M KCl, 20 mM Tris-Cl, pH 7.8, and 2 mM DTT in

both compartments (unless otherwise stated). The protein sample

was added only into the trans compartment and the membrane
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currents were measured at a holding potential of +10 mV (unless

otherwise stated). The other details of the measurements have

been described [12,13,18] and some modifications are mentioned

in the legends to Figures 3, 4, 5 and 6.

Supporting Information

Figure S1 SCA of a low-conductance channel. (A) Current-

voltage relationship averaged from SCA of five channels showing

current rectification at negative voltages. The current amplitudes

were measured after stepwise changes of the voltage (620 mV).

Bath solution (panels A, B, and C) contained 3 M KCl in both

chambers. (B) The current-voltage relationship of the low-

conductance channel in response to the shown voltage-ramp

protocol (B1) or low-speed linear increase (B2, upper panel) and

decrease (B2, lower panel) of the holding potential. All three

protocols were applied to the same single channel. Note that the

channel is open at all applied potentials. (C) Dependence of the

current-voltage profile of low-conductance channels on the side of

their insertion into an artificial membrane. Upper panel: A typical

current-voltage relationship of the channel inserted from the cis-

side of the membrane. Lower panel: Relative frequency of

insertion of the low-conductance channels depending on the

sample application to chamber compartments facing either the

trans or cis side of an artificial membrane. The current-voltage

relationship of each inserted channel was verified using the

voltage-ramp protocol (see Figure S1C, upper panel). The relative

number of channels displaying current rectification at negative

(filled bars) or positive (gray bars) holding potentials is shown. The

total number of insertion events registered was 56 and 42 for trans

and cis compartments, respectively.

(TIF)

Figure S2 Glycosomal super-large-conductance chan-
nels. (A) Current trace showing the insertion of two low-

conductance channels (marked by asterisks) followed by the

appearance of a stable super-large-conductance channel with

current amplitude over 300 pA (3.0 M KCl, +10 mV). The

dashed line indicates a current level (zero) before insertion of the

channels. (B) Insertion of a highly unstable super-large conduc-

tance channel (1.0 M NH4Cl, +10 mV). The lower trace

represents a timescale-expanded current recording of the upper

trace. Direct transition of the current amplitude from near

maximal to zero (marked by asterisk) indicates insertion of a single

channel or channel cluster rather several separate channels. (C)

Current-voltage relationship of a single super-large-conductance

channel in response to the indicated voltage-ramp protocol (1.0 M

NH4Cl at both sides of the membrane). The current amplitude of

the channel before applying the voltage-ramp protocol was

120 pA at +10 mV. The appearance of multiple current

amplitude transitions indicates the clustered nature of the super-

large-conductance channel.

(TIF)
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Pxmp2 is a channel-forming protein in mammalian peroxisomal membrane.

PLoS One 4: e5090.

19. Van Veldhoven PP, Baumgart E, Mannaerts GP (1996) Iodixanol (optiprep), an

improved density gradient medium for the iso-osmotic isolation of rat liver

peroxisomes. Anal Biochem 237: 17–23.

20. Colasante C, Ellis M, Ruppert T, Voncken F (2006) Comparative proteomics of

glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei

brucei. Proteomics 6: 3275–3293.

21. Steiger RF, Opperdoes FR, Bontemps J (1980) Subcellular fractionation of

Trypanosoma brucei bloodstream forms with special reference to hydrolases.

Eur J Biochem 105: 163–175.

22. Hille B (1992) Ionic channels of excitable membranes. 2nd Ed. Sinauer

Associates, Sunderland, MA, USA.

23. Chen D, Eisenberg R (1993) Charges, currents, and potentials in ionic channels

of one conformation. Biophys J 64: 1405–1421.

24. Ujwal R, Cascio D, Colletier J-P, Faham S, Zhang J, et al. (2008) The crystal
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