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Abstract

The characterization and the definition of the complexity of objects is an important but very difficult problem that attracted
much interest in many different fields. In this paper we introduce a new measure, called network diversity score (NDS), which
allows us to quantify structural properties of networks. We demonstrate numerically that our diversity score is capable of
distinguishing ordered, random and complex networks from each other and, hence, allowing us to categorize networks
with respect to their structural complexity. We study 16 additional network complexity measures and find that none of
these measures has similar good categorization capabilities. In contrast to many other measures suggested so far aiming for
a characterization of the structural complexity of networks, our score is different for a variety of reasons. First, our score is
multiplicatively composed of four individual scores, each assessing different structural properties of a network. That means
our composite score reflects the structural diversity of a network. Second, our score is defined for a population of networks
instead of individual networks. We will show that this removes an unwanted ambiguity, inherently present in measures that
are based on single networks. In order to apply our measure practically, we provide a statistical estimator for the diversity
score, which is based on a finite number of samples.
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Introduction

Complexity is a general notion that triggered a large number of

studies in a variety of different fields, ranging from biology,

chemistry and mathematics to physics [1–9]. Despite this

attraction, up-to-now a generally accepted description of the

complexity of an object that would allow the establishment of

a quantitative measure for its characterization is still absent.

Probably the best studied objects with respect to the character-

ization of their complexity are one- and two-dimensional strings or

symbol sequences. For such objects, many approaches have been

suggested to define or assess complexity quantitatively [3,8,10–18].

However, an intrinsic problem of any complexity measure is that

there are alternative ways to perceive and, hence, describe

complexity leading inevitably to a multitude of different

complexity measures [19]. For example, Kolmogorov complexity

[2,3,8,20] is based on algorithmic information theory considering

objects as individual symbol strings, whereas the measures effective

measure complexity (EMC) [16], excess entropy [21], predictive information

[22], thermodynamic depth [17] or statistic complexity [14] relate objects

to random variables and, hence, are ensemble or population

based.

In the context of networks, graph complexity measures have

been suggested to investigate the complexity of chemical graphs

representing molecules and chemical compounds [23–25].

Different types of graph complexity measures have been de-

veloped which can be broadly divided into information-theoretic

and non-information-theoretic measures. Because so far it is

largely unclear what structural features of a network to emphasize,

hierarchical approaches for the chemical complexity consisting of

several hierarchical levels of molecular complexity have been

developed. One of the first attempts was due to Bertz [26]

developing a hierarchical model containing both topological (i.e.,

branching, rings, multiple bonds) and non-topological (molecular

size, symmetry, functionality, elemental composition) features; for

a detailed discussion see [25]. Later, Bonchev and Polansky [27]

furthered this system and described the total complexity of

a chemical system by a vector approach. The components of this

vector represent various features of complexity, e.g., the system

size, graph topology, physical nature, metric of a system and its

symmetry [27].

Also for general networks there are many network complexity

measures that have been suggested [24,28]. Many of these are

based on information-theoretic principles [29–31]. A classical,

non-information-theoretic approach is the so-called combinatorial

complexity, introduced by Minoli [32]. This measure represents

a monotonically increasing function of the factors which

contribute to the complexity of a network, e.g., the number of

vertices and edges, vertex degrees, multiple edges, cycles, loops,

and labels [33]. Other techniques rely on determining particular
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substructures in graphs [24,28]. Also Constantine et al. [34]

defined the complexity of a graph to be the number of its

containing spanning trees. An operator approach has been

developed by Jukna [35] who defined graph complexity as the

minimum number of union and intersection operations required

to obtain the entire set of its edges starting from star graphs.

Approaches to define the complexity of graphs based on

Kolmogorov’s complexity paradigm [3] can be found in [36,37].

Particularly, Bonchev [37] compared the Kolmogorov complexity

of a graph with other measures and tackled the problem whether

all these techniques can detect branching in graphs.

The major purpose of this paper is to introduce a network

measure, called the network diversity score and to demonstrate that

this measure allows to categorize networks with respect to their

structural complexity. Specifically, we demonstrate that the

diversity score allows to distinguish ordered, random and complex

networks from each other. Further, we study 16 additional

network complexity measures and find that none of these measures

has similar good categorization capabilities with respect to the

structural complexity of networks. In contrast to many other

measures suggested so far, the network diversity score is different

for a variety of reasons. First, our score is multiplicatively

composed of four individual scores, each assessing different

structural properties of a network. That means our overall score

reflects the structural diversity of a network. Abstractly, this may

be seen as the dimension of the complexity of a network. Second,

our score is defined for a population of networks instead of

individual networks. We will show that this removes an unwanted

ambiguity, inherently present in measures that are based on single

networks. To enable a practical application of the network

diversity score we provide a statistical estimator for this score that

is based on a finite number of networks sampled from the

underlying population of networks.

This paper is organized as follows. As the definition for

a structural complexity of networks suffers from similar problems

as for one-dimensional symbol strings, several heuristic criteria

have been proposed, with which a complexity measure should be

conform [25,27]. In order to clarify what we mean by a complex

network we provide in section ‘Characterizing the complexity of

networks’ a description of this, on which we rely in this paper.

Then we describe 16 network complexity measures used for our

analysis and characterize their computational complexity. In order

to present the network complexity measures used in this paper, we

roughly categorize them into two classes: information-theoretic

and non-information-theoretic measures. Clearly, each group can

be further subcategorized. For instance, we could subsume the

class of pure distance-based and eigenvalue-based measures under

the category of non-information-theoretic measures. As known,

information-theoretic graph complexity measures [23,38] rely on

inferring a probability distribution by taking structural features of

a graph into account. More precisecly, so-called partition-based

and non-partition-based measures can be derived by using

Shannon’s entropy, see [23,39]. Other graph entropy measures

based on using subgraph-relations can be found in [28]. Non-

information-theoretic complexity measures are mostly based on

transforming simple graph invariants such as vertex degrees and

distance-based quantities [40] into real numbers [41,42]. For

instance, the first zagreb index [41,42] transforms vertex degrees

into a positive measure for characterizing the structure of the

graph. Another class of non-information-theoretic complexity

measures is based on deriving subgraphs and then transforming

them into measures finally leading to a graph complexity measure,

see [28]. In section ‘Network diversity score’ we define our

measure and clarify conceptual differences to other approaches. In

the results section we investigate all 17 network measures for

a variety of different settings and compare them with each other.

The paper finishes with a ‘Conclusion’ section, summarizing the

obtained results.

Methods

In this section we, first, provide a characterization for the

complexity of networks as used in this paper. Then, we describe 16

network complexity measures we are using in our analysis and

characterize their computational complexity. Thereafter, we

introduce a new complexity measure, called network diversity score

(NDS), and provide a motivation for its definition.

Characterizing the Complexity of Networks
As outlined in the introduction, so far there is no universally

accepted definition of complexity available that would be

applicable to general objects, including networks. However, it is

generally believed that a complexity measure should be capable of

distinguishing complex objects from random and ordered objects.

For objects generated by a physical process this complexity

characterization has been given in [4,19]. However, also for the

complexity of biological systems similar assertions have been made

[43]. In the following we adopt this perspective. Figure 1 A

provides a visualization of this characterization, placed in the

context of networks. In this figure the x-axis corresponds to an one-

dimensional variable q(G) that represents networks G from the

network space G[G, and the y-axis gives the value of the

complexity measure M(q). Here, the variable q is assumed to

represent networks of a similar type smoothly. That’s why certain

regions of the x-axis have been labeled as, ordered, complex or

random. Concrete examples for such a variable is Langton’s l [44]

for one-dimensional cellular automata or the mean connectivity K

in random boolean networks [45].

It is important to clarify the relation between three different

entities: the network G, the variable q representing a network

and the complexity measure M. A network is an abstract object

which possesses a multitude of different properties, e.g., number

of nodes, degree distribution, mean path length between all

nodes, to mention just a few. For this reason, a network is not

easily quantifiable by a singe variable because a mapping,

G?q, is usually not unique. For example, if we identify q(G)
with the (global) clustering coefficient of network G [46], then

there are many networks that have the same value of q. For this

reason, when one maps a network G to q, the value of q

represents actually a set of networks that map to the same value

of q, i.e., fGig?q with Gi[G. Similar arguments hold when we

map a network to its complexity value, i.e., G?M. Also in this

case, usually, many networks map to the same complexity value,

fGjg?M with Gj[G. It is interesting to note that after networks

have been identified as complex, random or ordered, by using the

complexity measure M, the entity q can serve itself as

a complexity measure, if it exhibits a smoothness property with

respect to the underlying networks. Here, smoothness means

that similar networks lead to similar values of q. This

smoothness property allows the identification of continuous

regions (intervals) of q values, which represent specific types of

networks, as shown in Fig. 1 A.

The particular problem we want to study in this paper differs

from the above. Instead of using a complexity measure M to

categorize networks into the groups complex, random or ordered,

we assume that such a categorizations for the networks is already

known. From the above discussion we know that if we find

a smooth measure q(G), representing sets of networks that assigns

Exploring Aspects of Network Complexity
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to similar network types, similar values of q, then q can serve as

a complexity measure. That means for networks that are labeled

according to certain categories they belong to and a measure q,

one can quantitatively assess the quality of such a measure with

respect to the given labels of the networks. Hence, by using the

knowledge of the labeling of different networks we can investigate

the categorization abilities of a measure q.

In Fig. 1 B we show an alternative behavior of a complexity

measure in dependence on networks. In this case, we called the

values on the y-axis ‘score’ and not complexity measure because

here a score for complex networks does not lead to the highest

possible values but to intermediate values. However, the

advantage of such a score, compared to the ones illustrated in

Fig. 1 A, is that it allows to discriminate between all three

network types, complex, ordered and random networks,

considering the score of the networks only. Hence, there are

three continuous regions of values of the score that allow to

distinguish the three types of networks unambiguously. Other

configurations may be possible and helpful, however, in the

following, we base our analysis on this basic characterization of

complexity and apply it to networks. As our numerical results

will demonstrate, the principle behavior of the score sketched in

Fig. 1 B is of practical relevance for our analysis (see Fig. 8 and

its discussion).

Definition of Complexity Measures
In the following we provide a brief description of the complexity

measures we are using in our study. We denote by G a network

having vertex set V and edge set E. The number of vertices is

n~DV D and the number of edges e~DED. Table 1 gives an overview

of the 16 complexity measures we use.
Information-theoretic Complexity Measures. A variety

of entropic measures determining their structural information

content have been developed to characterize networks structurally

[38]. The following measures are based on Shannon’s entropy.

N Topological information content:

One of the first measures was the topological information

content introduced by Rashevsky [58] given by

Ia(G) : ~{
Xk
i~1

DNi D
n

log
DNi D
n

� �
: ð1Þ

Here, DNi D denotes the number of topologically equivalent

vertices in the i-th vertex orbit of G and k is the number of different

orbits. Ia is a measure of symmetry in graphs. This measure

vanishes for a fully symmetric graph such as regular graphs and
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Figure 1. A: Visualization of the properties of a complexity measure with respect to different networks. B: Alternative complexity
measure with different characteristics.
doi:10.1371/journal.pone.0034523.g001
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attains its maximum value for asymmetric graphs. Importantly,

Trucco [59] also investigated this measure and Mowshowitz [56]

generalized it to determine the structural information content of

graphs and studied mathematical properties thereof [56,60,61].

N Bertz index:

A more general graph complexity measure is due to Bertz and

expresses the total structural information content of a graph:

B(G)~2DX D log (DX D){
Xk
i~1

DX D log DX Dð Þ: ð2Þ

X is an arbitrary graph invariant such as its vertices, edges,

degrees etc. DX D refers to its cardinality. For example, if X

corresponds to the vertices of a network than DX D corresponds to

the number of vertices. If we choose X~n, we get

B(G)~2n log (n){
Xk
i~1

DNi D log DNi Dð Þ, ð3Þ

as special case.

N Bonchev-Trinajstić index:

By defining weighted probability schemes, one generalizes

classical measures of Rashevsky and Mowshowitz [56,58], see Eq.

1. A special measure thereof is given by

IWt (G)~W (G) log (W (G)){
Xr(G)
i~1

iki log (i): ð4Þ

This measure is based on the Wiener-Index [57],

W (G)~
Xr(G)
i~1

iki: ð5Þ

Note that the Wiener index is the sum of all distances in a graph

G. The distances can be computed by using Dijkstra’s algorithm or

any other method for calculating shortest paths in a graph [62,63].

Here, r(G) is the diameter of network G and ki is the number of

the shortest paths having length i.

N Information-theoretic complexity measure based on
information functionals:

The following measure belongs to a family of graph entropy

measures based on using information functionals [39]. A special

measure thereof is the degree-degree association index as it is

based on the special information functional f D, see [52]. The

functional is defined by

f D(vi) : ~a
c1D

G (vi ,1)zc2D
G (vi ,2)z���zcr(G)D

G (vi ,r(G)),

ckw0,1ƒkƒr(G),aw0:
ð6Þ

The detailed explanation and definition can be found in [52].

The degree-degree association index is defined by

Il
fD
(G) : ~l log (n)z

Xn
i~1

f (vi)Pn
j~1 f

D(vj)
log

f D(vi)Pn
j~1 f

D(vj)

 ! !
: ð7Þ

l is a scaling constant. Note that Il
f D

is not based on determining

partitions of graph elements in a classical sense (such as Ia) as

probability values are assigned to each vertex of G.

N Offdiagonal complexity:

To define Offdiagonal complexity (OdC) [54], let (cij)ij be the

vertex-vertex link correlation matrix, see [54]. cij denotes the

number of all neighbors possessing degree jwi of all vertices with

degree i [28]. �kk : ~maxv[V kv stands for the maximum degree of

G. If one defines [28]

an : ~
X�kk{n

i~1

ci,izn, ð8Þ

and

bn : ~
anP�kk{1
n~0 an

, ð9Þ

Table 1. Overview of the network complexity measures we
use in our analysis.

Nr. Label Name of the measure Reference

1. balabanJ Balaban J index [42,47]

2. bertz Bertz index [26]

3. bonchev2 Bonchev-Trinajstić index [48]

4. complexityIndexB Complexity index [24]

5. efficiency Efficiency complexity [49,50]

6. energy Graph energy [51]

7. InfoTheoGCM Information-theoretic complexity
measures

[39,52]

8. lapEnergy Laplacian energy [53]

9. mDistDev Mean distance deviation [40,42]

10. nEdgeComplexity Normalized edge complexity [24]

11. offdiagonal Offdiagonal complexity [54]

12. randic Randić connectivity index [55]

13. sTreeSens Spanning tree sensitivity [28]

14. tInfoContent Topological information content [56]

15. wiener Wiener index [57]

16. zagreb Zagreb index [41,42]

The label (second column) refers to a short name we use to refer to a particular
measure.
doi:10.1371/journal.pone.0034523.t001
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OdC can be defined by [28]

OdC : ~
{

P�kk{1
n~0 bn log (bn)

� �
log (n{1)

[½0,1�: ð10Þ

N Spanning tree Sensitivity:

The following measure is based on determining substructures in

graphs. The spanning tree sensitivity [28] is defined by

STS(G) : ~
{
P

l al log al

logmcu

, ð11Þ

with mcu~n1:68{10, al~
Sl
ijPk
r
Sr
ij

, Sij~sij{(minfsijg{1) and

fS1
ij ,S

2
ij , . . . ,S

k
ijg being an ordered list of all k different Sij . sij is the

number of spanning trees in the graph minus the number of

spanning trees of the subgraph with the edge fvi,vjg deleted.

Analogously, the spanning tree sensitivity differences measure is

defined as

STSD(G) : ~
{
P

l bl log bl

logmcu

, ð12Þ

with bl~
LdlPd
r
Ldr

, where fLd1,Ld2, . . . ,Lddg is the ordered list of

all unique differences Sm
ij {Sm{1

ij .

Non-information-theoretic Complexity Measures. Non-

information-theoretic complexity measures for networks can be

defined by using arbitrary graph invariants such as distances

between nodes or their degrees. In the following, we describe some

important measures which have already been used in a variety of

different disciplines.

N Balaban J:

The Balaban J index is defined as [42,47]

J(G) : ~
e

mz1

X
(vi ,vj )[E

½DSiDSj �{
1
2: ð13Þ

DSi denotes the sum of distances from vertex vi[V to all other

vertices, i.e.,

DSi~
X
j[V

dij ð14Þ

whereas D is the distance matrix containing the shortest path

lengths between all vertices measured by the Dijkstra distance [63]

and m : ~ez1{n is the cyclomatic number [64].

N Complexity index B:

The complexity index B is a more recently developed measure

due to Bonchev [24]:

B(G) : ~
Xn
i~1

kvi
m(vi)

, ð15Þ

where

m(vi) : ~
Xn
j~1

d(vi,vj): ð16Þ

Here, kvi is the degree of a vertex vi[V .

N Efficiency:

Latora et al. [49,50] developed a measure called the Efficiency

complexity Ce of a graph G. Starting from

E’(G) : ~
2

n(n{1)

X
i

X
jwi

1

d(i,j)
, ð17Þ

expressing the arithmetic mean of all inverse path lengths and

Epath(G) : ~
2

n(n{1)

Xn{1

i~1

(n{i)

i
, ð18Þ

the Efficiency complexity Ce yields to

Ce(G) : ~
E’{Epath

1{Epath

� �
1{

E’{Epath

1{Epath

� �
[½0,1�: ð19Þ

N Mean distance deviation:

In general, distance-based measures are straightforward to

calculate with polynomial time complexity [62]. Hence, a variety

of distance-based indices have been developed to characterize

networks based on their topology [40,65]. The mean distance

deviation introduced by Skorobogatov and Dobrynin is defined as

[40,42]:

Dm(G) : ~
1

n

Xn
i~1

Dm(vi){�mmD, ð20Þ

where

m(vi) : ~
Xn
j~1

d(vi,vj), ð21Þ

and

�mm : ~
2W

n
: ð22Þ
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N Normalized edge complexity:

The normalized edge complexity using the elements of the

adjacency matrix has been introduced by Bonchev [24]:

En(G) : ~
A(G)

n2
, ð23Þ

where

A(G) : ~
1

2

Xn
i~1

Xn
j~1

aij : ð24Þ

Here, aij denotes the entry in the i-th row and j-th column of the

corresponding adjacency matrix A.

N Randić connectivity index:

The Randić connectivity index [55]

R(G) : ~
X

(vi ,vj )[E

½kvikvj �
{1
2, ð25Þ

has been sucessfully used as branching index. Also, R has been

explored extensively, e.g., bounds and other extremal properties

have been invesitagted in an interdisciplinary manner [66].

N Wiener index:

One of the first structural graph decsriptors was the Wiener-

Index [57],

W (G)~
Xr(G)
i~1

iki~
1

2

Xn
i~1

Xn
j~1

d(vi,vj): ð26Þ

d(vi,vj) denotes the shortest distance between vi and vj .

N Zagreb index:

A classical degree-based index based on the vertex degree is the

first Zagreb index [41,42] defined as

Z1(G) : ~
Xn
i~1

kvi : ð27Þ

Z1 is just the sum of the vertex degrees of G.

Eigenvalue-based Measures. By determining the

eigenvalues of graph-theoretical matrices such as the adjacency

matrix or the Laplacian, various measures can be obtained

[51,67].

N Graph energy:

Gutman [51] defined the sum of the absolute values of

eigenvalues of the adjacency matrix of a graph and called the

resulting quantity graph energy.

E(G)~Dl1DzDl2Dz � � �zDlkD, ð28Þ

where l1,l2, . . . ,lk are the non-zero eigenvalues of the adjacency

matrix of G.

N Laplacian energy:

Instead of using the eigenvalue of the adjacency matrix of

a graph, several other graph-theoretical matrices can be used. By

using the Laplace matrix, we obtain the laplacian energy [42]

defined by

LE(G)~
Xn
i~1

Dmi{
2e

n
D: ð29Þ

Here li are the eigenvalues of the adjacency matrix and mi those

of the Laplacian matrix of the graph.

Computational Complexity
Calculating the complexity of networks can be computationally

intense and many algorithms are even NP-complete [68]. For

instance, determining the automorphism group of a general graph

to compute the graph entropy measure Ia is computationally

demanding as the computational complexity can be exponential

[69]. In contrast, the time complexity of some information-

theoretic graph complexity measures such as B, OdC, Il
f D
(G) and

IWt is polynomial, see [70]. Particularly the time complexity of the

Bonchev-Trinajstić index IWt and the degree-degree association

index Il
f D
(G) is O(n3) as we need to calculate all shortest paths

between all vertices in the graph leading to O(n2n). Similar

statements [28,70] for the time complexity of J, Dm and Ce can be

obtained as the complete distance matrix needs to be calculated.

Simple topological network measures, such as the Wiener and

Randić index also possess polynomial time complexity as their

calculation rely on matrix computations based on graph

invariants.

The time complexity of determining the zeros (eigenvalues) [71]

of graph polynomials [51] such as the characteristic or distance

polynomial is polynomial too. For instance, by using the adjacency

matrix to calculate the characteristic polynomial of a graph, we

obtain its eigenvalues l1,l2, . . . ,ln in polynomial time. From this,

measures such as the graph energy E and the laplacian energy LE

can be calculated efficiently.

Network Diversity Score
In the following we define a network measure we call the network

diversity score (NDS). Our score is based on 4 variables:

amodule~
M

n
ð30Þ

vmodule~
var(m)

mean(m)
ð31Þ

vl~
var(L(L))

mean(L(L))
ð32Þ

rmotif~
Nmotif (3)

Nmotif (4)
ð33Þ

Exploring Aspects of Network Complexity
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Here, M is the number of modules in a network G and n is the

number of vertices of this network. The vector m~(m1,m2 . . . )
contains the size of the modules, i.e., mi gives the size of the i-th

module, which corresponds to the number of nodes in this module.

To identify the modules in a network we use a method called

Walktrap [72] which finds modules based on random walks similar

to [73,74]. An advantage of this method over many others is its

efficient computational complexity, given by O(e|n2) (e: number

of edges, n: number of vertices). The vector L(L)~(l1,l2 . . . ) in

Eqn. 32 represents the eigenvalues of the Laplace matrix L of

network G [75], whose components are defined by

Lij~

d(i) if �i ~ �j

{1 if �i = �j and �i is directly connected with �j

0 other wise

8><
>: ð34Þ

Here, d(i) is the degree of node i in G. Finally, Nmotif (3) and

Nmotif (4) correspond to the number of motifs of size 3 and 4 found

in network G [76]. That means Nmotif (i) is the number of different

motifs one can find in G having i nodes.

Based on the above four variables, we define the individual

diversity score for a network G by

d(G)~
amodulermotif

vmodulevl
: ð35Þ

We call this measure individual diversity score because it can be

calculated for a single network G. The individual diversity score

d(G) assesses one network G and assumes values in ½0,?). Based

on d(G) we define the network diversity score (NDS), Dp(GM ), for

a population of networks G[GM by

Dp(GM )~

ð
GM

PGM (G) d(G) dG: ð36Þ

Here, GM denotes the population of networks that belong to the

same network model and PGM
is a probability density over this

population. For example, this could correspond to the random

network model generated with the Erdös-Réyni model [77,78]. Or

it could be the set of all scale-free networks generated with the

preferential attachment algorithm [79,80]. Or the population

could contain all networks that have the same degree, e.g., a lattice

with periodic boundary conditions. That means the population of

networks GM can be either defined by a stochastic process that

generates the networks in the population or by structural

properties of the networks themselves.

In order to obtain an approximation of the measure Dp(GM ),
which can be applied to a finite set of networks, we define the

network diversity score for a sample of size Sw0 from the population

GM by the estimator,

Ds(fGigS DGM )~
1

S

XS
Gi[GM

d(Gi): ð37Þ

Assuming that the S networks are independently sampled from

the population GM than, according to the central limit theorem

[81],

Ds(fGigS DGM ) �?
S??

Dp(GM ): ð38Þ

For our numerical investigations we use the estimator given in

Eqn. 37.

The diversity score represents the idea that a network is a high-

dimensional object. Specifically, we consider the 4 variables

amodule,vmodule,vl and rmotif as important. The variable amodule

provides information about the module density of a network. For

complex networks we would expect to find more modules than

for random networks because modules are an expression of

a general organizational principle of a network. The variable

rmotif is a rate about the growth of motifs within a network. From

numerical results we observed that ordered networks have the

highest, complex network have intermediate and random

networks have the lowest values of rmotif . The variable vmodule

is similar to a CV (coefficient of variation) value which measures

the variability of network sizes with respect to the mean size of

a module. Random networks are expected to have a low

variability of module sizes but also a low mean module size

whereas complex networks should have a higher variability of

module sizes but also a higher mean module size. The variable

vl is similar to vmodule but for the eigenvalues of the Laplace

matrix L. We studied many combinations of these 4 and other

variables and found from numerical investigations that the

individual density score in Eqn. 35 results in the best separation

of random, complex and ordered networks.

Motivation for the network diversity score. The

underlying rational of our measure is based on the following

observations. First, studies investigating the complexity of various

types of objects, e.g., one-dimensional strings, led to the

introduction of a large number of different complexity measures.

However, up-to-now there is no general agreement that the right

measure is among the introduced ones. For networks, we are

facing a similar situation that may be potentially even more severe.

For this reason, we are proposing a composite measure that is not

just based on the evaluation of one structural principle, but on the

combination of several ones. Hence, their combinatorial usage abates

the need for each individual measure to represent the right

complexity measure. In the results section, we will numerically

demonstrate that such a composite measure leads in fact to very

good results.

A second reason that motivated us to introduce our measure is

best described by the following illustration. Suppose, one defines

networks as ‘random’ when they have been generated with the

random network model, suggested by Erdös-Réyni and Gilbert

[77,78], and as ‘complex’ when they have been generated with the

preferential attachment algorithm [79,80]. Then, there exists

a non-vanishing probability to generate a random network with

the random network model that is also complex. However, this is

counter intuitive. Let us consider an example for this problem.

Suppose, a network GR has been generated with the random

network model and a second network GC has been generated with

the preferential attachment algorithm. Then, with a certain

probability, GR~GC (with the meaning E1~E2) holds, because

the random network model can, in principle, generate all possible

network structures. More precisely, if the undirected network GC

contains e edges (denoted by GC ½e�) and n vertices then it contains

�ee~(n2{n)=2{e missing edges (non-edges). That means the

probability, w, for the random network model to generate

a particular network with e edges is given by
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w~P(GC ½e�D Erd€oos{R�eeyni model)~pe(1{p)�ee: ð39Þ

Here, pe is the probability to have e edges in GC and (1{p)�ee is

the probability to have �ee non-edges in GC . That means, assigning

a complexity value to individual networks leads to a loss of the

unique connection between the complexity of the network and the

underlying network model that generated this network. This is

visualized in Fig. 2 A. In this figure, w corresponds to the

probability that the random network model generates a complex

network GC . Starting from the complexity value of a network,

right hand side of the figure, one sees that it is possible to conclude

that Gc has been either generated with a random network model

or with a complex network model. For reasons of simplicity, we

used in the above explanation only two network models, however,

an extension to more models is straight forward, but makes the

explanations more laborious. It should be clear that in such an

extended scenario, the potential for an ambiguity between the

complexity of individual networks and the network generating

models is even amplified.

In order to avoid this problem, we base our network score on

the principle visualized in Fig. 2 B. Due to the fact that the

complexity is assessed for a network population, generated by

a network model, there is no confusion with respect to the

underlying network model that generated the population,

because the complexity measure can rely on the information

provided by the whole population and not only by an instance

thereof. Practically, we approximate such a population measure

by using a finite sample of networks, as shown in Fig. 2 C. For

a finite sample consisting of S networks, there is also a non-

vanishing probability to result in an ambiguous connection

between the complexity C(fGC
1 ,G

C
2 , . . .G

C
S g) and the underly-

ing network model that generated the network sample,

visualized in Fig. 2 C. However, this probability is only wS ,

compared to w for a complexity measure relying on a single

network. In the limit for S?? this probability goes to zero

and model C becomes model B for any 0vwv1. Hence, using

a sample of size S reduces the potential for an ambiguity

leading to a miscategorization by a factor of F~1=wS{1. For

example, if w~10{5 and the sample size is only S~3 than this

factor is already F~1010.

random network model

complex network model

{G1
R, G2

R , G3
R, ...}

network model network population

{G1
C, G2

C , G3
C, ...}

network complexity

C({G1
R, G2

R , G3
R, ...})

C({G1
C, G2

C , G3
C, ...})

B

random network model

complex network model

GR

network model individual network

GC

network complexity

C(GR)

C(GC)

A

1-w

w

random network model

complex network model

{G1
R, G2

R , ...GS
R}

network model network sample

{G1
C, G2

C , ...GS
C}

network complexity

C({G1
R, G2

R , ...GS
R})

C({G1
C, G2

C , ...GS
C})

C

wS

Figure 2. Connection between network model, networks and a complexity measure assessing either the complexity of individual
networks (A), a population of networks (B) or a sample of networks (C).
doi:10.1371/journal.pone.0034523.g002
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We would like to emphasize that the above explanations are

intended as a motivation of our approach and not as a numerical

analysis of the most general situation conceivable. In this respect,

the probability w given in Eqn. 39 needs to be adapted for more

general situations. However, regardless of its precise value, w will

be always larger than zero and the principle discussion above

translates seamlessly to more involved conditions. In the next

section, we provide a numerical analysis for a large variety of

different networks.

Results

We begin our analysis by investigating the statistical variability

of the 16 network complexity measures listed in Tab. 1. In Fig. 3

we show results for 100 networks generated with the random

network model [77,78] for the parameters n~100 and pr~0:02.

Here n corresponds to the number of nodes in a network and the

parameter pr is the probability with which two nodes are

connected by an edge. Each histogram shows the result for one

complexity measure, as indicated by the name in the legend. The

x-axis corresponds to the value of the respective complexity

measure and the y-axis gives the frequency of observed values. It is

important to note that despite the fact that all random networks

have been generated for the same network parameters, n and pr,
the resulting complexity measures do not provide identical results

but fluctuate. We repeated this analysis for different parameters of

the random network model and also for different network types,

i.e., for complex networks. For all studied cases, we found

qualitatively similar results. This reveals a common conceptual

drawback of all these network measures because none of the

measures is considered as a random variable. However, due to the

fact that a network is sampled from an underlying population, this

network varies structurally, and, hence, also the network measure,

as seen in Fig. 3. That means ignoring this fact is counter

productive and results in a loss of interpretability of these network

measures, as will be demonstrated later in this section (see Fig. 7).

As explained in section ‘Network diversity score’, a random

network model is in principle capable of generating all possible

types of networks, including ordered and complex networks,

however, only with a certain probability. Due to the fact that all

measures assess only one network, which has been randomly

sampled from the underlying population of a network model, the

sampled network conveys the variability of network structures of

the population to the network measure itself.

In the Figs. 4 to 5 we show results for two different network

models and the influence of model parameters on the 16

complexity measures. In Fig. 4 we show results for a random

network model with a connection probability between nodes of

pr~(0:01,0:02,0:05,0:1,0:2) (x-axis). Fig. 5 shows results for

a small-world network model [82] for a rewiring probability of

ps~(0:0,0:0001,0:001,0:005,0:01,0:05,0:1,0:5,1:0) (x-axis). In

these figures, the mean value and the standard deviation of

a complexity measure (y-axis) is shown in dependence of the model

parameter (x-axis).

Fig. 4 demonstrates that among the 16 complexity measures, one

can observe four qualitatively different types of behavior. The four

observed behavior are: (1) a monotonous increase in the complexity

value (complexityIndexB, efficiency, energy, lapEnergy, randic,

sTreeSens, tInfoContent, zagreb1), (2) a monotonous decrease in

the complexity value (infoTheoGCM), (3) increasing complexity

values followed by decreasing values (bonchev2, mDistDev,

wiener), (4) decreasing complexity values followed by increasing

values (balabanJ, nEdgeComplexity, offdiagonal). This indicates

that different network measures have entirely different character-

istics due to different structural features of the network they

capture. Further, we observe that all measures, except in-

foTheoGCM, result in non-overlapping values for different model

parameters which means that different values of pr lead to

significantly different values of the corresponding complexity

values. This is important to note since all networks generated with

the random network model for different values of pr are random

networks.

The results for the small-world network model, shown in Fig. 5,

are principally different to the results shown in Fig. 4, because for

different values of ps we obtain different network types.

Specifically, we obtain ordered (ps~0), complex

(ps~(0:0001,0:001,0:005,0:01,0:05,0:1)) and random networks

(ps~(0:5,1:0)). This is different to the results for the random

network model because different model parameters result always

in a random network, whereas for a small-world network model,

different model parameters lead to a different type of a network.

Among the 16 network measures, 5 demonstrate a discriminative

behavior with respect to the three different network types

(balabanJ, complexityIndexB, energy, mDistDev and sTreeSens).

That means these 5 measures exhibit for complex networks

(ps~(0:0001,0:001,0:005,0:01,0:05,0:1)) noticeably different va-

lues than for ordered and random networks.

In Fig. 6 we show results about the influence of the network size

n, ranging from 100 to 500 nodes, on the complexity measures.

Because the type of a network does not change for a different size

of the network, one would ideally expect constant values of the

network measures for all different network sizes. The only

measures that are approximately constant are offdiagonal and

sTreeSens because their mean complexity values do not change

much if taking the standard deviation of the measure into

consideration. All other measures are significantly effected by the

size of the networks. This hints that the size of a network is an

important parameter. To simplify the following analysis, we study

only networks of a fixed size.

So far, we studied only individual network models for a variety

of different parameters these models depend on. Now, we

investigate a mixture of different network models. More

specifically, we generate a set, Gn~100
m , consisting of 1500 networks,

each with n~100 vertices. This set is composed of 200 ordered

networks, 600 random networks and 700 complex networks. The

set of complex networks is itself a mixture of scale-free networks,

with different parameters of the power of the preferential

attachment model f1:0:1:5,2:0g, and small-world networks, with

a rewiring probability of f0:02,0:05,0:10g. For the set of random

networks we used different parameters to connect vertices with an

edge, namely, p~f0:025,0:03,0:04,0:05g. Also, we generated

random networks with the small-world model by setting the

rewiring probability to 1.0. That means the resulting set of

networks Gn~100
m is heterogeneous with respect to the generation

of the used networks. The median number of edges of these sets of

the ordered, random and complex networks is 200 for each

network type and their standard deviation is 109,43 and 60. The

same data set will later be used to study the network diversity score

(see Fig. 8).

Application of the 16 complexity measures to Gn~100
m leads to

the results shown in Fig. 7. These figures show the probability

density of the complexity values (y-axis) in dependence on the

complexity values of the networks (x-axis). The three different

colors correspond to ordered (red), complex (purple) and random

(green) networks. The ideal behavior of a complexity measure we

would like to observe is a separation of the three different network

types, which means the density of the complexity values for

ordered, complex and random networks should only marginally be
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overlapping to enable a meaningful categorization of the three

network types. Considering the obtained numerical results in Fig. 7

from this perspective we find that only the offdiagonal complexity

allows, at least to a certain degree, to separate the three network

types from each other. The densities of all other measures do not

separate at all. The problem with the density for the offdiagonal

complexity is not only that it is bimodal for complex networks but

also that there is still a considerable overlapping of complex

(purple) and random networks (red).

Next, we investigate the behavior of the network diversity score,

Ds(fGigS DGM ), given in Eqn. 37. In the top row in Fig. 8 we show

the results for the application of the diversity score to Gn~100
m . Due

to the fact that our complexity score depends on the sample size S,

the four columns in Fig. 8 correspond to four different sample sizes

(S~(1,5,25,50)). Hence, the number of different networks used

for these four cases are 1500|S which equals to

1500,7500,37500,75000 networks. We would like to emphasize

that for S~1, the estimator Ds(fGigS DGM ) gives the worst possible

approximation for the density score Dp(GM ). This case is not

included to suggest it is a potential choice of S, instead, it is

included to demonstrate the strength of a population effect for

values of Sw1. For this reason, we highlight the difference of the
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Figure 3. Evaluation of 100 random networks generated with the random network model, n~100 and pr~0:02. Each histogram shows
the results for one network measure; see the legend for the name of the measure.
doi:10.1371/journal.pone.0034523.g003
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case S~1 from the others, by framing the first column in Fig. 8 by

a blue rectangle to indicate that it is not meant as a suggested value

for the sample size.

From Fig. 8 one can see that for increasing values of the sample

size S, the three network types - ordered networks (red), complex

networks (purple) and random networks (green), respectively their

densities become more and more separated from each other, as

desired. But even for the sample size S~5, the results for the

diversity score are improved compared to the offdiagonal

complexity, which was the best performing measure of all 16

network measures. The second row in Fig. 8 shows a similar

analysis, however, for networks having n~500 nodes for which we

generated another set of networks Gn~500
m containing 1500|S

networks. For Gn~500
m we observe an even clearer distinction of the

three network types, which separate for S~50 perfectly from each

other. We would like to emphasize that due to the nature of the

network diversity score, which is population based, a comparison

with any of the 16 network measures is uneven because none of

these measures can be influenced by the sample size S. On the

other hand, a sample of networks of size S contains valuable

information that can be exploited to increase the discriminative

abilities of a measure, as demonstrated in Fig. 8. This provides
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Figure 4. Random network model: Dependence of the complexity measures (y-axis) on pr~(0:01,0:02,0:05,0:1,0:2) (x-axis).
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evidence that the conceptual idea of a population based measure,

proposed in this paper, enhances the performance of a measure to

separate networks from different categories.

On a note of caution, we would like to emphasize that the

discriminating ability of the diversity score is not solely due to its

population character, instead, it is due to the combination of its

population character and the individual diversity score, d(Gi), (see

Eqn. 35), on which Ds(fGigS DGM ) is based. From Fig. 8 one can

learn about the influence of the sample size, but it does not give

information about the influence of the individual diversity score. For

this reason, we investigated the influence of the individual diversity

score by altering its definition. For example, using only a subset of

the four variables on which d(Gi) is based on (see Eqn. 30 to 33),

we found that a population based version of such a measure does

actually not lead to the discrimination of different network types.

Hence, only the combination of an appropriate individual diversity

score with a population approach results in the favorable

characteristics of the diversity score.

In the section ‘Characterizing the complexity of networks’ we

provided a characterization of complexity. The connection

between this characterization, as given in Fig. 1, and our results

in Fig. 8, is given by the cumulative distribution function (CDF)

[81] of the densities in Fig. 8. Exemplarily, we show the CDF for

n~500 and S~25. Hence, the score (y-axis) in Fig. 1 can be
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identified with the cumulative distribution function of the

probability density of the diversity score.

Finally, we show in Fig. 9 the influence of the sample size S on

the mean individual diversity score d(G), corresponding to

Ds(fGigS DGM ), for networks of size n~100. These results show

that this mean value is largely constant for different values of the

sample size S demonstrating that the unbiased estimator [83] given

by Eqn. 37 provides good estimates in practice, even for small

sample sizes. In addition, this figure demonstrates that very small

sample sizes are not recommendable to use because the expected

variability of the estimates is quite large.

Application to Real Networks
Finally, we apply the network diversity score to four real

networks. We use two social networks representing coauthorship

networks between scientists working in high-energy physics (hep,

n~5835) [84] and network science (net, n~379) [85], a techno-

logical network representing the Western States Power Grid of the

United States (power, n~4911) [82] and a biological network

representing the protein-protein interactions in Helicobacter pylori

(hpylo, n~976) [86], which is a bacterium that can be found in the

stomach. The number in brackets refers to the number of nodes in

the giant connected component of these networks, we use in the

following for our analysis.
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Because we have only one network for each of these four

networks to which we can apply the network diversity score, we

utilize the following property of complexity. It is generally assumed

that one aspect of the complexity of an object is the presence of

a hierarchical organization structure [10,87,88]. This implies that

not only the whole object itself is complex but also a sufficiently

large components of it. For our analysis, we utilize this by

randomly selecting subnetworks from a network G. That means,

we obtain a sample of S networks from one network by generating

randomly subnetworks with n vertices from G. This way we obtain

a sample of networks fGi(n)gSi~1, whereas each network Gi(n) has

been sampled from the network G, i.e.,

Gi(n)*G, ð40Þ

that approximates a sample from an underlying network

model. Practically, we generate the subnetworks by a random

walk. Starting from an initial vertex that is randomly chosen

from all vertices of the network G, a subnetwork is defined by

the first n unique vertices visited by the random walk. This

allows, first, to generate a sample of networks from a network

model although only one network is available. Second, the size of

each network can be set to a fixed value n. This allows the

comparison of networks with a different size, because the size of

the networks in the samples fGi(n)gSi~1 have all the same

number of vertices.
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In Fig. 10 we show the results for these four networks. In

addition, we included results for random networks (red curve)

generated with the Erdös-Réyni model. The x-axis gives the size of

the subnetworks, n. The sample size for this analysis was S~10
and we averaged all results over 100 independent samples. That

means for Fig. 10 we analyzed a total of 10|100|6|5~30,000

networks. Overall, one can see that random networks lead to the

lowest values of the density score and for subnetworks of size

n§125 the distances between the individual networks are largely

constant. This indicates that for the studied networks subnetworks

of size n*125 are sufficiently large to capture the complexity of

the whole networks.

Discussion

In this paper we investigated the behavior of 17 network

measures with respect to their ability to categorize the structural

complexity of networks systematically. Our analysis demonstrates

that constructing a network measure in a way that it averages over

a sample of networks from a population, enhances its capabilities

to categorize different types of networks significantly. From our

numerical results follow that this averaging property of the

diversity score is key in order to achieve a perfect separation of the

three different network types, ordered, complex and random

networks, we investigated in our analysis. The crucial point here is

that this averaging property reduces the importance of finding the

right network measure that quantifies exactly what is meant by the

structural complexity of a network. Due to the fact that the right

network complexity measure is not known, we defined the

diversity score multiplicatively composed of four individual scores,

each one assessing different structural properties of a network.

Hence, the combination of a network diversity score, which does

not focus on a single structural property of a network but on

multiple ones, together with the averaging over a sample of

networks from a population, leads to a network measure that

appears to be well adopted to the proposed task. We would like to

emphasize that there are other complexity measures that also

include the underlying population in the definition of the measure
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[14,16,17,21,22], however, all of these complexity measures have

only been studied in the context of symbol sequences.

On a theoretical note, the averaging over a sample of networks

from a population does not only have a very beneficial influence

on the numerical categorization of different types of networks, but

removes also a conceptual ambiguity present in all measures that

assess only individual networks with respect to their complexity. As

discussed in the ‘Methods’ section, a random network model is

capable of generating complex networks too. Hence, theoretically,

it is possible to generate different types of networks with the

random network model. This leads inevitably to a miscategoriza-

tions of networks. In contrast, the diversity score proposed in this

paper reduces this ambiguity by a factor of 1=wS{1, with S being

the sample size.

The categorization of networks with respect to their structural

complexity is not only interesting for theoretical, but also practical

reasons. For example, in molecular biology it is generally assumed

that molecular interactions between proteins and molecules

generate the biological function of cells and give raise to the

phenotypic appearance of organisms. Due to the fact that

a graphical representation of such molecular interactions is given

by gene networks, it has been suggested to compare these networks

structurally in order to identify aberrations of molecular functions

[89–91]. As an extension of the above approach it seems natural

assessing the structural complexity of gene networks, e.g., of

regulatory networks, to distinguish different stages of complex

diseases, like cancer or cardiovascular disease, from each other.

For example, gene expression data from DNA microarrays could

be used to infer a regulatory network for each patient which

belongs to a certain stage or a grade of a disease. Then such

a disease grade can be considered as a category from which the

patients and their respective networks are sampled. In this way,

our network score can be applied to compare patients from

different disease stages or grades with each other. Given the pace

with which the data in molecular biology increase due to steady

technological innovations, one can expect such data sets to be

available within the near future. Other, potential areas of

application are the categorization of financial networks [92–94]

or neural networks [95,96].
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