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Abstract

Although praised for their rationality, humans often make poor decisions, even in simple situations. In the repeated binary
choice experiment, an individual has to choose repeatedly between the same two alternatives, where a reward is assigned
to one of them with fixed probability. The optimal strategy is to perseverate with choosing the alternative with the best
expected return. Whereas many species perseverate, humans tend to match the frequencies of their choices to the
frequencies of the alternatives, a sub-optimal strategy known as probability matching. Our goal was to find the primary
cognitive constraints under which a set of simple evolutionary rules can lead to such contrasting behaviors. We simulated
the evolution of artificial populations, wherein the fitness of each animat (artificial animal) depended on its ability to predict
the next element of a sequence made up of a repeating binary string of varying size. When the string was short relative to
the animats’ neural capacity, they could learn it and correctly predict the next element of the sequence. When it was long,
they could not learn it, turning to the next best option: to perseverate. Animats from the last generation then performed the
task of predicting the next element of a non-periodical binary sequence. We found that, whereas animats with smaller
neural capacity kept perseverating with the best alternative as before, animats with larger neural capacity, which had
previously been able to learn the pattern of repeating strings, adopted probability matching, being outperformed by the
perseverating animats. Our results demonstrate how the ability to make predictions in an environment endowed with
regular patterns may lead to probability matching under less structured conditions. They point to probability matching as a
likely by-product of adaptive cognitive strategies that were crucial in human evolution, but may lead to sub-optimal
performances in other environments.
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Introduction

In economics, politics, and the social sciences, it is often

assumed that humans make rational decisions, especially in simple

situations that repeat themselves [1]. The so-called rational choice

theory models human beings as agents who go about achieving

their self-interested goals in the best possible way, maximizing

their expected utility [2]. This theory, often in conjunction with

game theory, is used to predict the behavior of individuals.

Yet consider a simple decision making task, wherein a subject

has to choose between two alternatives – a binary choice problem.

When asked to predict the next element in a sequence of coin

tosses, for instance, many people believe that the chance of getting

a tail increases after several heads in a row [3]. This belief, known

as the gambler’s fallacy, is incorrect and may lead to sub-optimal

performance.

Similarly, in a different task widely studied since the 1940’s [1]

and known as the repeated binary choice experiment, an individual has to

choose between two repeatedly presented alternatives and a

reward is randomly associated, with probability greater than 0.5

and lesser than 1, to one of the alternatives. For instance, at each

trial, a light may flash either on the left or on the right of a screen

and the subject is asked to predict which side the light will flash

and is rewarded if the prediction is correct. The side where the

light will actually appear is chosen by a computer program

independently at each trial, with a constant probability for each

side; for instance, the light may flash on the left with 2/3 (67%)

probability and on the right with 1/3 (33%) probability. This

makes it impossible to predict correctly all the time where the light

will flash. Instead, once the subject has realized the light flashes on

one side (the majority side) more frequently than on the other (the

minority side), the optimal strategy is to perseverate with choosing

the majority side. This strategy is called perseveration, and subjects

that perseverate will be correct on about two thirds (67%) of the

trials, which is the best anyone can do.

Human adults, however, don’t perseverate as a rule [1]. They

tend to choose a given side with about the same frequency with

which the light is flashed on that side. This strategy, known as

probability matching, is sub-optimal: in the previous example, subjects

that employ probability matching will be correct only in about five

ninths (56%) of the trials ((1/3)2+(2/3)2), one ninth (11%) below

perseveration (2/3 = 6/9). Surprisingly, other animals such as rats

[4], monkeys [5], pigeons and fish [6] tend to perseverate,

maximizing their returns. Thus, in a repeated binary choice

experiment, human beings not only do not maximize their

expected utility, but they are also outperformed by rats and fish.
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It has been previously suggested that human subjects do

probability matching because they look for patterns or rules that

might be determining the sequence of outcomes [1,7]. Indeed,

when asked to describe what strategy they employed in the

experiment, they have themselves reported that they look for

patterns. In searching for a putative underlying pattern, humans

might be playing around with different alternatives, eventually

doing probability matching. However, evidence supporting this

view is sparse and indirect [8–14] and alternative explanations

have proliferated, such as mistaken mathematical intuition [15],

insufficient motivation and practice [16], adaptation to uncertainty

[17,18], adaptation to foraging in a competitive environment

[19,20], and probability matching as a consequence of nearly

optimal structure learning [21].

It could also be questioned how a sub-optimal behavior could

arise from evolutionary constraints favoring the selection of

cognitive resources capable of detecting regularities in a seemingly

unruly world. Given our evolved cognitive apparatus, instead of

being trapped in a maladaptive behavior, we should be able to

switch to the maximizing strategy and perseverate with the most

frequently rewarding alternative as soon as the unfeasibility of

finding any regular underlying pattern had been detected.

Here we propose an artificial life model that helps us understand

how being selected for learning structured patterns may lead to

probability matching, and how failure to learn them leads to

perseveration. Also, we demonstrate that the cognitive ability to

detect underlying patterns in a scenario of prevailing regularities

can compensate, in an evolutionary sense, for the sub-optimal

performance that results from the persistence in seeking for

patterns when none are present.

Results

In our simulations, artificial animals (animats) had to perform a

task, called the pattern matching task. It consisted of predicting

repeatedly the next element of a binary sequence formed by a

repeating string. An example string is 101, leading to the sequence

101101101… During their lives, at each time-step, animats had to

choose between 0 and 1. When their choices matched the next

element of the sequence, they won fitness points. The length of the

repeating string, and thus its difficulty to be learned, varied in

different simulations among 3, 9, 27, 81, 243 or 729 digits (six

different lengths). The frequencies of the digits 0 and 1 in the

repeating strings were always 1/3 and 2/3 respectively, and the

strings were repeated until total sequence length was 2916. We

tested twelve randomly generated strings of each length, and each

was individually presented to a group of 100 animats in separate

simulations, adding up to a total of 144 evolving scenarios (6

lengths 6 12 permutations 6 2 neural network architectures),

taking into account the two kinds of neural network architectures

employed in the simulations (see below). Although there are only

three possible strings of length 3 (011, 101 and 110), we still ran

twelve simulations by repeating four times each of the three

possible patterns.

Animats were endowed with neural networks to model a simple

nervous system. Artificial neurons were based on a simple model of

biological neurons, the perceptron [22], and were connected into

neural networks with one input node, one or two hidden layers of

four nodes, totaling four or eight hidden nodes, and one output

node (Figure 1). The number of hidden nodes correlates with

computational power, with these networks exhibiting lower (4

nodes) or higher (8 nodes) learning potentials.

Depending on the network output, we considered that the

animats had predicted the next element of the sequence to be 0 or

1. The input node delivered a feedback signal from the

environment to the neural network at time t about the animat’s

response at time t 2 1 (see Methods for details), analogous to the

feedback received by subjects in a repeated binary choice

experiment (usually a message on a computer screen – ‘‘You

won!’’ or ‘‘You lost.’’ – or a reward). The synaptic weights, which

measure the strength of the synapses between neurons, could

change through Hebbian learning, thus enabling the animat to

have different responses to the same stimuli depending on the

previous state of the network, which is necessary for the network to

repeat the patterns.

Populations of animats evolved through a genetic algorithm,

which models biological evolution according to a simplified

version of Darwin’s theory. At generation zero, one hundred

chromosomes were generated randomly (a chromosome was a set

of genes representing all the synaptic weights, biases and learning

parameters – see Methods for details). Neural networks were

constructed based on these chromosomes and the animats

performed the pattern matching task described above. The

number of correct answers was the fitness value, a measure of

evolutionary fitness and performance in the task. Then a new set of

animats – the next generation – was created through selection,

mutation and crossover. The populations evolved for 1000

generations.

The animats from the last generation performed an additional

task, which we called the random sequence task. It was similar to the

pattern matching task in that the animats had to predict the next

element of a binary sequence of length 2916, but the binary

sequence was no longer formed by a repeating string. Instead, its

elements were randomly shuffled, destroying any regularity but

keeping unchanged the digit frequencies that characterized the

repeating string sequences previously employed. Performance in

this task was compared to the performance in the pattern

matching task for all animats from the last generation of all the

simulations by calculating the prediction accuracy (the ratio of the

number of correct predictions to the total number of predictions)

and average response (or average prediction). Thus, we could test

if animats with more neurons, which were able to learn longer

patterns, were also more prone to do probability matching when

confronted with random sequences.

The results are shown in Figure 2 for both tasks (pattern matching

and random sequence). An average response close to 0.67 indicates

the animats did probability matching. When it is close to 1, it

Figure 1. Neural Network Architectures Used in the Simula-
tions. Two different neural network architectures were used in the
simulations. Networks had one input node, one or two layers of four
hidden nodes, and one output node.
doi:10.1371/journal.pone.0034371.g001
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indicates they perseverated. To illustrate the range of strategies

employed by animats, Table 1 shows sample responses from three

individuals that belonged to the last generation.

It can be observed that animats endowed with more hidden

neurons and which evolved under input sequences composed of

shorter repetitive strings were able to learn the repeating string

and achieved a higher accuracy in the pattern matching task,

approaching a 100% correct prediction rate. But when animats

from the last generation performed the random sequence task,

their accuracy was below the optimal value of 67% that they could

have achieved if perseveration had been adopted; instead, their

accuracy was close to the 56% expected for probability matching.

Indeed, they matched the presentation probabilities of the digits in

both tasks, but achieved quite different results – a nearly optimal

accuracy in the pattern matching task and a sub-optimal one in the

random sequence task.

At the other end of the spectrum, animats endowed with fewer

hidden neurons and evolving under input sequences made up of

longer repetitive strings relative to the processing power of their

neural networks were not able to learn the repeating string. The

animats showing the fittest behavior – and thus selected along

successive generations – were those adopting a perseverating

strategy, in which the outcome 1 should be predicted with a

frequency close to 100%, reaching an accuracy slightly above

67%. When these animats were tested with a completely random

sequence, they continued to perseverate and their accuracy

remained around 67%, which is nearly optimal under these

circumstances.

Figure 2. Prediction Accuracy and Average Response for Different Pattern Lengths in Both Tasks (Pattern, Random). The prediction
accuracy and average response for different pattern lengths in both tasks: Pattern, when the sequence was formed by a repeating pattern, and
Random, when the sequence was shuffled randomly. In different simulations, the animats had 4 (figure panel A) or 8 (figure panel B) hidden nodes.
The error bars are the standard errors for n = 12. PM = Expected average response for animats that do probability matching. Max = Expected
average response for animats that perseverate. Random PM = Expected accuracy for animats that do probability matching in the random task.
Random Max = Expected accuracy for animats that perseverate in the random task.
doi:10.1371/journal.pone.0034371.g002
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In short, the better an animat performs in the pattern matching

task, the closer to probability matching it gets in the random

sequence task. Animats that perseverate in the pattern matching

task also perseverate in the random sequence task.

Discussion

In the pattern matching task, animats that learn the pattern can

always predict the next element of the sequence correctly – it is

said that they ‘‘broke the code’’ presented to them by their

environment. A superficial analysis of their behavior will lead to

the conclusion that it behaves according to a ‘‘probability

matching’’ strategy (which in fact it does, as a by-product of

breaking the code), but with a performance that reaches

optimality. An animat that is not able to learn the pattern is left

with the next best strategy, perseveration, always choosing the

most frequent outcome; in our experiment, this means that the

next element of the sequence would be correctly predicted in two

thirds of the trials, one third less than the animats that were able to

learn the pattern achieved in accuracy.

In the present pattern matching task, the theoretical difference

in accuracy between pattern decoding (leading to probability

matching) and perseveration is one third, three times larger than

the difference between probability matching and perseveration in

the random sequence task, which is only one ninth. In fact,

Figure 3 shows that, in a repeated binary choice experiment, for all

frequencies of the most majority digit except the frequency 1.0, the

difference in accuracy between pattern decoding and persevera-

tion is larger than the difference in accuracy between persever-

ation and probability matching without pattern decoding. This

result demonstrates that searching for patterns leads to larger gains

when a pattern exists and to relatively smaller losses when it

doesn’t. Thus, the ability to search for patterns would be

maladaptive only in those scenarios where there are no structured

patterns at all, this being just the case where very little can be

predicted anyway, no matter what strategy one employs. In

scenarios where structured patterns can be found, being able to

search for and learn regular underlying patterns would be far more

advantageous than perseveration.

An important feature of our simulations is that the resulting

animats are experts in reproducing one particular pattern; unlike

humans, they can’t generalize their knowledge to a larger set of

patterns of the same complexity. It is possible, however, to

consider the set of all animats with the same neural network

structure, each trained to reproduce one of twelve patterns of a

given length, as an individual having twelve networks that compete

amongst themselves to generate a response. This individual would

be capable of reproducing twelve different patterns, but it would

still perform poorly with unstructured sequences, as those do not

conform to any of the patterns it can recognize and do not contain

any regularities to be extracted. In fact, even an individual that is

able to reproduce a large number of complex patterns would

perform poorly with unstructured sequences for the same reason –

unstructured sequences do not conform to any of the patterns it

can learn. It is also possible that an individual would be able to

learn short periodic bit strings and at same time perform well when

it detects that the bit string is approximately random. Although

this possibility seems entirely plausible, given the present

constraints, we do not believe that any neural network, no matter

how complex, would detect that a bit string is approximately

Table 1. Example outcomes resulting from repetitive input patterns of length 3 and 729.

Pattern length Task Outcome

3 Pattern matching Input Sequence 10110110110110110110110110

Animat’s Prediction 10110110110110110110110110

Random sequence Input Sequence 11111111001011110000111110

Animat’s Prediction 10011101111111101101111011

729 Pattern matching Input Sequence 01111111110011100111100011

Animat’s Prediction 11111111111111111111111111

Random sequence Input Sequence 11011011011111110010011010

Animat’s Prediction 11101111111111111111111111

Example of outcomes resulting from repetitive input patterns of length 3 and 729 under two task conditions: Pattern matching (when the animat evolved in an
environment where it had to predict the next element of a sequence composed of a repetitive string of length 3 or 729), and Random sequence (when the animat, after
evolving under a repetitive string of length 3 or 729, had to predict the next element of a completely random sequence). For sequences composed by short strings (3
digit long), the animat predicts all the elements correctly (pattern matching), but does probability matching when faced with the prediction of the next element in a
shuffled random sequence. When the input sequence is composed of a very long repetitive string (729-digit long), the animat is not able to learn it, adopting a
perseveration strategy, making many (expected) mistakes; but when the same animat has to predict the next element of a randomly shuffled sequence, it perseverates
as well, achieving a better performance in comparison with the animats that had been able to learn a short-patterned sequence (3-digit long).
doi:10.1371/journal.pone.0034371.t001

Figure 3. Accuracy for Different Strategies and Frequencies of
Majority Digit in the Repeated Binary Choice Experiment.
Predicted accuracy in the repeated binary choice experiment depend-
ing on the frequency of the majority digit and the employed strategy:
PM (probability matching without pattern decoding), Max (persevera-
tion) and Pattern (pattern decoding). For all digit frequencies except the
frequency 1.0, the difference in accuracy between pattern decoding
and perseveration (arrow A) is larger than the difference in accuracy
between perseveration and probability matching without pattern
decoding (arrow B).
doi:10.1371/journal.pone.0034371.g003
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random if the network’s structure had evolved in an environment

where all bit strings were made up of repeating patterns the

network could learn. Distinguishing between a periodic sequence

and an approximately random one is also rather complicated. At

which point should one stop looking for patterns? What if one

decides prematurely that a sequence is random when it is, in fact,

periodic?

The animats also cannot generalize to other probability

distributions. We have chosen this particular distribution (2/3

probability for the majority digit), because (1) it is close to values

commonly used in experiments with human and biological animal

subjects (around 0.7–0.8), (2) it is close enough to the 0.75 point,

where the largest difference in performance between probability

matching and perseveration occurs in the random sequence task,

making the random task most relevant (Figure 2), (3) the selective

pressure to break the pattern rather than perseverate is high (the

difference in accuracy between the two strategies in the pattern

matching task is 1/3, close to the maximum 1/2, when the

probability is 0.5) and, most relevantly, (4) this probability value

can be expressed as a bit string of length 3 (110, 101 and 011),

which is the smallest pattern where the concept of ‘‘majority digit’’

applies. Other distributions, where the probability of the majority

digit lies close to one of the end points of the 0.5–1.0 interval, are

problematic. When the probability of the majority digit is close to

0.5, in the random sequence task, there is no difference in

performance between probability matching and perseveration; in

fact, all strategies are equivalent and therefore, if we had used such

low values, no conclusions could have been drawn from having the

animals perform the random sequence task, as all of them would

have achieved the same level of performance no matter what

strategy they employed. When the probability is close to 1, there is

little difference in performance between pattern decoding,

probability matching and perseveration in both the pattern

matching and the random sequence tasks, and so no conclusions

could have been drawn from such an experiment at all; there is

little selective pressure to break the pattern in the pattern matching

task, and we would expect our simulations to take more

generations to arrive at the point where animals that can repeat

the pattern, or to not arrive there at all, getting stuck at a local

optimum where all animals perseverate.

In humans, pattern decoding may occur consciously or not. Like

some animats, adult humans may never decide to perseverate,

unless they are explicitly taught to. The intrinsic nature of

probability matching may be illustrated by observing that people

do probability matching when they engage in more ordinary tasks

as well: determining the disease given its symptoms [16],

classifying a height measurement as belonging to a man or a

woman [23], taking the appropriate decision in response to alarms

[24], localizing auditory-visual stimuli in space [25]. It has also

been repeatedly pointed out that humans have difficulty in

recognizing randomness and, as the gambler’s fallacy discussed in

the introduction illustrates, have an incorrect intuition of it [3,7].

In any case, humans are known for their ability to detect, in the

surrounding environment, the existence of regularly recurring

patterns that might be interpreted as the underlying structure of

relevant events. If successful, one of the main benefits of this

behavior is, in addition to reacting to sudden stimuli, being also

able to predict upcoming changes in the environment and

anticipate responses to them. Therefore, the ability to build

models of the environment, according to model-based descriptions

of reinforcement learning, appears to be a crucial evolutionar-

y acquisition. In fact, Green and colleagues [26] show that a sub-

optimal, probability matching, behavior can actually be observed

in optimal Bayesian model-based learners, as long as they are

initialized with biologically reasonable but incorrect beliefs about

the underlying structure generating a sequence of events. Their

main conclusion is that ‘‘human decision making is rational and

model based and not consistent with model-free learning’’.

However, the artificial life simulations presented here have

suggested that it is not necessary to bring into play an issue of

‘‘rationality’’ versus ‘‘irrationality’’ in order to explain the non-

optimal behavior associated to probability matching. A simpler

and less involved explanation arises from the analysis of a plausible

set of evolutionary constraints under which neural machinery

responsible for prediction tasks has evolved. The present

simulations employed very simple networks as model-free learners,

bearing no prior beliefs. The non-optimality observed in the

behavior of agents endowed with higher computational power,

when confronted with poorly predictable sequences, results,

according to our interpretation, from the discrepancy between

the environment in which these agents evolved and the rather

artificial task to which they were finally submitted. It has been

observed that our cognition is subject to our need to survive in our

daily lives, until we can generate descendants, and it may not

perform optimally when the problem or the performance criterion

isn’t ecologically relevant [27]. Therefore, if (i) humans were

selected for behaving in a sufficiently patterned world and (ii)

gradually acquired a neural machinery able to link a learned

environmental pattern to successful actions, optimal actions should

not be expected when coping with less structured, weakly

predictable, environments. Under these possibly rarer and

biologically less impacting circumstances, a sub-optimal perfor-

mance – in comparison to other species – would be a fair toll to

pay in exchange for a much higher fitness when surviving in a

structured world.

In conclusion, an important reason why humans do not always

maximize their expected utility is possibly that our brain is biased

to make good decisions in the richer environment where we

evolved, but poorer decisions in other, more artificial, situations.

Although the human brain is flexible and can adapt to different

environments in the short term, the strategies that helped our

species survive in the long term also affect decision making today.

The bias discussed here is likely to affect human behavior every

time a sequence of observations is made, thus it may influence not

just the repeated binary choice experiment and its variations, but

also a wide range of experiments in decision-making and other

branches of the cognitive sciences, as well as our daily lives.

Methods

The simulation code, written in the Python and C++
programming languages, can be downloaded at http://www.

fisio.icb.usp.br/˜vinicius/downloads/probmatch.zip.

Artificial neurons were based on the perceptron model [22].

The output oj tð Þ of neuron j at time-step t was determined

according to equation 1:

oj tð Þ~tanh 5 bjz
X

i

wjioi tð Þ
 ! !

ð1Þ

where wji is the weight of the synapse between neuron j and

neuron i and bj is neuron j’s bias. The activation function, f(x) =

tanh(5x), yields a real number in the interval (21, 1), therefore all

outputs also belong to this interval. When the output was greater

than or equal to 0, we considered that the animat had predicted

the next element of the sequence to be 1, otherwise it had

predicted 0.

Evolution and Decision-Making
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The input node delivered feedback from the environment to the

neural network. The feedback was positive (+5 input) if the animat

had guessed correctly the previous element and negative (25

input) otherwise.

The neural network architecture was feedforward with totally

connected layers (Figure 1).

The synaptic weights could change through the Hebbian (or

anti-Hebbian) learning rule: When two nodes fire at the same

time, the synaptic weight between them increases (or decreases).

When they fire at different times, the synaptic weight between

them decreases (or increases). This was implemented according to

equation 2:

Dwji tð Þ~ajioj tð Þoi tð Þ ð2Þ

Where aji is the synapse’s learning parameter. When it is a positive

number, the synapse is Hebbian, and when it is a negative

number, the synapse is anti-Hebbian.

A chromosome was a set of genes representing all the synaptic

weights, biases and learning parameters, which were real numbers

in the interval [21, 1). The initial genes at generation 0 were

randomly generated with uniform distribution. One hundred

chromosomes were generated in this manner and divided into 5

populations of 20 individuals. Neural networks were constructed

based on these chromosomes and the animats performed the

pattern matching task. The fitness number, i.e., the number of

correct answers in the task, was calculated for every animat and

used to select the parents of the next generation’s individuals.

Selection occurred by tournament – two chromosomes were

selected randomly within a population and the winner became a

parent. Two parents were selected within a population to generate

each child for that population in the next generation. Child

chromosomes inherit their parents’ genes by crossover – for each

gene, a parent was randomly selected and its gene was copied to

the child chromosome – and mutation – with 5% probability, a

number from the interval [20.1, 0.1) was randomly generated

with uniform distribution and added to the gene, but always

keeping the gene in the interval [21, 1). The populations evolved

for 1000 generations, and at each 100 generations the fittest

chromosome from each population migrated to a randomly

chosen population, always keeping the number of individuals in

each population at twenty.

The animats from the last generation performed the random

sequence task in addition to the pattern matching task.
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