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Abstract

Background: General anesthesia is a reversible state of unconsciousness and depression of reflexes to afferent stimuli
induced by administration of a ‘‘cocktail’’ of chemical agents. The multi-component nature of general anesthesia
complicates the identification of the precise mechanisms by which anesthetics disrupt consciousness. Devices that monitor
the depth of anesthesia are an important aide for the anesthetist. This paper investigates the use of effective connectivity
measures from human electrical brain activity as a means of discriminating between ‘awake’ and ‘anesthetized’ state during
induction and recovery of consciousness under general anesthesia.

Methodology/Principal Findings: Granger Causality (GC), a linear measure of effective connectivity, is utilized in automated
classification of ‘awake’ versus ‘anesthetized’ state using Linear Discriminant Analysis and Support Vector Machines (with
linear and non-linear kernel). Based on our investigations, the most characteristic change of GC observed between the two
states is the sharp increase of GC from frontal to posterior regions when the subject was anesthetized, and reversal at
recovery of consciousness. Features derived from the GC estimates resulted in classification of ‘awake’ and ‘anesthetized’
states in 21 patients with maximum average accuracies of 0.98 and 0.95, during loss and recovery of consciousness
respectively. The differences in linear and non-linear classification are not statistically significant, implying that GC features
are linearly separable, eliminating the need for a complex and computationally expensive non-linear classifier. In addition,
the observed GC patterns are particularly interesting in terms of a physiological interpretation of the disruption of
consciousness by anesthetics. Bidirectional interaction or strong unidirectional interaction in the presence of a common
input as captured by GC are most likely related to mechanisms of information flow in cortical circuits.

Conclusions/Significance: GC-based features could be utilized effectively in a device for monitoring depth of anesthesia
during surgery.
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Introduction

General anesthesia is a drug-induced reversible state of

unconsciousness and depression of reflexes to afferent stimuli

[1]. The precise mechanisms by which anesthetics disrupt

consciousness are difficult to identify. This is partly down to the

fact that general anesthesia is a multi-component process, whereby

additional desirable components are immobility, analgesia and

amnesia. In modern surgery this multi-component process of

anesthesia is achieved through the administration of a combina-

tion of chemical agents. For example, neuromuscular blocking

agents cause muscle paralysis through inhibition of neuronal

transmission to muscles. The chemical agents administered have

different molecular targets and different effects on the brain.

Therefore, this co-administration of such diverse chemical agents,

with different methods of action, constitutes the identification of

the exact mechanism of anesthesia-induced unconsciousness

difficult.

An insight into the complex process of general anesthesia can be

obtained through studying how the administration of this chemical

‘‘cocktail’’ affects the observed brain activity. The action of the

anesthetic agents causes measurable effects on the brain activity,

which can be observed through methods such as the electroen-

cephalogram (EEG). The use of EEG monitors during anesthesia

has allowed the identification of some characteristics that are

related to the administration of anesthetic agents. For example,

anesthesia causes characteristic changes in the spectral content of

the EEG: as the depth of anesthesia increases, the faster a (8–

12 Hz) and b (12.5–30 Hz) brain rhythms are replaced by slower d
(1.5–3.5 Hz) and h (3.5–7.5 Hz) activity. In very deep anesthesia

the EEG may develop a peculiar pattern of activity known as burst

suppression, during which alternating periods of normal to high
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activity and low voltage (or even isoelectricity) are observed [2].

Despite the usefulness of such observations, they still do not help us

understand the physiological mechanisms behind these observed

changes, as some of these characteristics are not unique to

anesthesia. For this purpose, one must use measures that capture

the underlying interactions within the brain as these are manifest

in the observed brain activity. One such example is the use of

coherence to reveal how the patterns of interaction in the brain are

altered during anesthetic-induced loss of consciousness (LOC): it

was found that anesthetics disrupt the coherence of neural signals

in the c band [3,4]. Other similar studies reveal that anesthetics do

not block incoming sensory information from reaching the brain,

but their administration disrupts the process by which our

perceptions are combined into a unified experience (cognitive

binding) [4]. Specific brain structures that are integral to this

process have been identified through imaging (positron emission

tomography – PET) studies using different anesthetic agents [5,6].

These studies place the thalamus and the neural networks that

regulate its activity into a key role in anesthetic-induced

unconsciousness, independent of the type of agent utilized.

In addition to studying the mechanisms of general anesthesia

and the effects of different anesthetic agents, the use of brain

activity has an additional and more direct clinical application: it

provides a means of monitoring the depth of anesthesia (DOA)

during surgery. The combination of agents and the doses at which

these are administered are very much dependent on patient

characteristics and surgery requirements, therefore each case is

unique. As a result, there are no direct instructions that the

anesthetist can follow, but only rough guidelines. Thus, DOA

monitors provide an objective method of assessing the state of

hypnosis of the patient and provide a useful and welcome aid for

the anesthetist. The main concerns of the anesthetist are over- and

under-dose of anesthetic agents. Both could have serious

implications for the patient. Over long periods over-administration

can be costly in terms of agent usage and because of increased

patient recovery time. In the worst case, overdosage can lead to

death. Underdosage can lead to regaining of consciousness during

surgery, which is extremely traumatic. Costs involved with

underdosage are related to post-traumatic stress therapy and

compensation claims. Intra-operative awareness has been con-

firmed in a number of cases, with incidence ranging from 0.11–

0.8% [7]; however, due to the amnesic effect of certain anesthetics,

some patients have no recollection of regaining awareness,

therefore it is likely that the actual incidence of awareness is

higher than that reported. The incidence of awareness is affected

by a number of factors, including the type of surgery, patient

characteristics and equipment failure [8,9]. The use of DOA

monitors during surgery could provide a valuable means of

identifying awareness during surgery, particularly since the patient

himself cannot communicate this to the anesthetist due to

immobility from the co-administration of neuromuscular blocking

agents.

Currently EEG-based DOA monitors are being introduced for

routine patient monitoring during surgery. The most commonly

used commercially available devices include the BISH monitor

(Aspect Medical Systems, Natick, MA) [10] and Datex-Ohmeda

S/5TM Entropy Module (originally by Datex-Ohmeda Division,

Instrumentation Corp., Helsinki; now with GE Healthcare) [11].

These devices operate by converting some specific combination of

EEG characteristics into a single number from 0–100 representing

the level of hypnosis (with 100 denoting ‘fully awake’ and 0

denoting ‘isoelectricity’). Despite the potential usefulness of such

monitors, current technology still suffers from a number of

reliability issues. Some monitors are unable to differentiate

between the EEG of somebody who is either anesthetized or

asleep [12,13,14], while others remain unresponsive to specific

anesthetic agents [15,16] or are affected by the administration of

other drugs, such as neuromuscular blocking agents [17,18].

This is due to the fact that the operation of current monitors is

based on features that are characteristic of the observed changes in

the EEG activity, which may not be a direct reflection of the actual

physiological process underlying general anesthesia and which are

not unique to anesthetic-induced LOC. However, the measures

utilized must be based on ‘neurobiologic phenomena that

represent the necessary and sufficient conditions for consciousness

in a specific individual’ [16]. A number of measures that can

capture deeper interactions within the brain as these are manifest

in the observed brain activity have been developed. More

specifically, measures that can reliably capture the changing

interactions between different brain areas can provide important

insight into how the administration of anesthetic agents affects

information flow in the brain. The identification of interruption of

cognitive binding as a general mechanism of action of anesthetic

agents, independent of the type of agent utilized, implies that

measures reflecting this mechanism would result in more reliable

and generalized monitors.

In this work Granger Causality (GC), a measure quantifying

causal interactions between two time series, is utilized as a feature

for discriminating awake from anesthetized state. The main focus

of the study was the use of GC as a discrimination feature to

capture reversible changes with loss and recovery of consciousness,

regardless of the anesthetic protocol used. Our previous investi-

gations showed that GC captures such reversible anesthetic-

induced changes in brain activity [19,20]. These observations

support the use of GC as a feature for discriminating between

awake and anesthetized state in a DOA monitor.

Methods

Dataset
The dataset used in this study was collected from 21 male

patients (mean age 37.6619.1) who underwent routine general

surgery at the Nicosia General Hospital, Cyprus. The adminis-

tration of general anesthesia was not confined to a particular

anesthetic regime. The study was approved by the National

Bioethics Committee of Cyprus and the patients gave written

informed consent for their participation. Participants were not

previously taking any medication that influences the central

nervous system and were of normal weight. One patient was

diagnosed with multiple sclerosis (very early stage). However, the

data of this patient were not excluded from the study as the

findings were similar with other patients. General anesthesia was

induced by the on duty anesthetist using the regular procedures of

the hospital. Standard monitoring devices, including pulse

oximetry, electrocardiogram, and non-invasive blood pressure,

were utilized. All patients were preoxygenated via a face mask

prior to anesthesia induction with a Diprivan (propofol 1%,

10 mg/ml) bolus. The induction dose varied from 2 mg/kg to

4 mg/kg depending on patient characteristics. During induction

some patients also received boluses of neuromuscular blocking

agents (cisatracurium, rocuronium, or atracurium) and analgesic

drugs. Depending on patient characteristics and surgery require-

ments maintenance of anesthesia was achieved with an intrave-

nous administration of propofol at concentrations ranging between

20–50 ml/h (200–500 mg/h). For 2 patients (S12 and S15)

maintenance was performed with an inhalational administration

of sevoflurane (1–2%). In most patients this was titrated with an

intravenous administration of remifentanil hydrochloride (UltivaH;
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2 mg, dissolved in 40 ml) throughout surgery at a rate ranging

between 2–15 ml/h (0.1–0.75 mg/h). Following induction of

anesthesia the patients’ trachea was intubated and surgery

commenced. Lungs were ventilated with an air-oxygen or air-

oxygen-N2O mixture. During surgery boluses of neuromuscular

blocking agents and other drugs, such as antibiotics, were

administered as required and depending on surgery requirements.

EEG data were collected using the TruScan32 system (Deymed

Diagnostic) at a sampling rate of 256 Hz. Electrodes were placed

at positions Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5,

P3, Pz, P4, T6, O1 and O2, according to the International 10/20

system, and were recorded with an FCz reference. No filtering was

performed during or after data collection; this is to ensure that the

timing relations on which GC depends on are not disrupted by the

introduction of causal artifacts from filtering [21]. Data recording

usually commenced while patients were still awake prior to

administration of the anesthetic agents and continued throughout

the entire surgery, until the patient regained consciousness (ROC).

For the purpose of this study, the point at which the anesthetic

bolus for induction was administered was defined as ‘loss of

consciousness’ (LOC); the point at which the patients stopped

responding verbally to commands by the anesthetist occurred

approximately 10–30 s after administration of the anesthetic

bolus, depending on patient characteristics. The main reasoning

for specifying LOC in this way is that, firstly, defining the exact

point at which patients lose consciousness is a subjective process (as

opposed to the point at which the anesthesia bolus is physically

administered); and, secondly, loss of consciousness occurs relatively

rapidly when induction is performed with a bolus of anesthetic.

However, ROC must be defined as the point at which the patient

responds to verbal commands or tactile stimuli by the anesthetist,

as there is no other precise marker that defines it. Patient response

was expressed either as voluntary muscular movement in response

to a command by the anesthetist or a verbal response. Throughout

the recording, timestamps indicating important events, such as

LOC, ROC and bolus agent administration, were manually

inserted in the digital EEG record. These markers are necessary

for subsequent data analysis and aligning the occurrence of the

same events in different EEG recordings.

Data analysis
The main function of a depth of anesthesia (DOA) monitor is to

alert the anesthetist when a subject becomes aware during surgery.

Therefore, a minimal requirement for a DOA monitor is the

ability to distinguish between the two states ‘Awake’ and

‘Anesthetized’. The ability to classify these two states using GC

as a feature was investigated following the methodology described

below.

EEG segment extraction. Data from 21 subjects were

available for analysis (S1–S21). Using the dataset described

above, segments of a few minutes duration corresponding to the

two classes were extracted from the continuous EEG recordings.

Such data is available both at initial loss of consciousness at

induction, and recovery of consciousness at the end of surgery.

The segments were extracted based on the manual markers

inserted in the EEG record during surgery, indicating anesthetic

induction and recovery of consciousness. Loss of consciousness

after anesthetic induction is patient-dependent and occurs 10–30 s

after administration of the anesthetic bolus. In the following

analysis we did not use the first 5 minutes of data after the marker

for anesthetic induction; this ensured that the data used

corresponded to the patient being fully unconscious, and did not

contain any artifacts caused from tracheal intubation.

Dimensionality reduction. The original data space is 19-

dimensional (number of electrodes). In order to reduce this, five

brain areas were defined as the average activity of specified

electrode grids. The five brain areas defined were: left frontal (LF:

electrodes Fp1, F7, F3, T3, C3), right frontal (RF: Fp2, F8, F4, C4,

T4), left posterior (LP: T5, P3, O1), right posterior (RP: T6, P4,

O2), and midline (Z: Fz, Cz, Pz). The rationale behind these

groupings was that fronto-posterior interactions appear to play an

important role in (un)consciousness, thus we performed grouping

of activity from frontal and posterior areas in order to investigate

such fronto-posterior interactions. Electrode impedance is

measured automatically by the EEG hardware. Electrodes with

high impedance resulting from bad contact or no contact were

subsequently excluded from estimation of the average activity.

Feature extraction. The great interest in investigations

of causal relationships, particularly when dealing with

neurophysiological data, has motivated the development of

measures that capture such relationships. One such measure is

Granger Causality (GC). GC has been developed explicitly to

allow inferences about causality between two time series to be

made [22]. Wiener defined causality as: ‘‘for two simultaneously

measured signals, if one can predict the first signal better by

incorporating the past information from the second signal than

using only information from the first one, then the second signal

can be called causal to the first one’’ [23]. Granger later gave this a

mathematical formulation by using univariate and bivariate

autoregressive models (AR): for two time series, X1, and X2, if

X1 is influenced by X2, then the addition of past values of X2 in

the regression of X1 will improve its prediction. Thus, the basic

idea of GC is: for the two time series, X1 and X2, we try to predict

x1(t+1) using (i) only past samples of X1 (univariate AR model), and

(ii) past samples of both X1 and X2 (bivariate AR model). Causality

can be assessed from the variances of the prediction errors of the

resulting AR models.

In the univariate case,

xj(t)~
Xp

i~1

aixj
xj t{ið Þzexj

(t) ð1Þ

where aixj
are the estimated univariate AR coefficients for the AR

model of order p, exj
are the residuals (prediction errors) of the AR

process, and j = 1,2.

Similarly, for the bivariate AR model:

x1(t)~
XP

i~1

aix1x2
x1 t{ið Þz

XP

i~1

bix1x2
x2 t{ið Þzex1x2

(t) ð2Þ

where aix1x2
, bix1x2

and ex1x2
are as for the univariate AR;

similarly for x2(t).

Let us denote the variance of the prediction errors as

s2
X1=X1{

~var ex1
ð Þ and s2

X1=X1X2
~var ex1x2

ð Þ for the bivariate and

univariate case respectively. Granger Causality can then be

defined as:

GCX2?X1
~ ln

s2
X1=X1

s2
X1=X1X2

ð3Þ

If s2
X1=X1X2

vs2
X1=X1{

then it is implied that the prediction of

X1 is improved by using past values of X2 in its prediction;

thus, GCX2?X1
will increase. If, however, the past of X2 does
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not improve the prediction of X1, then s2
X1=X1{

&s2
X1=X1X2

,

and GCX2?X1
will be close to zero. Thus, by definition,

GCX2?X1
~0 when the signals are independent, and

GCX2?X1
w0 otherwise. However, in practice the latter also

depends on the signals investigated and any amplitude

limitations they may have. Similarly, GCX2?X1
is defined

accordingly. If both GCX2?X1
and GCX1?X2

are high, then

this indicates a bidirectional coupling or feedback relationship

between X1 and X2. However, the existence of a strong

bidirectional GC could also be due to exogenous factors, such

as a common driver acting on both X1 and X2. In such a case,

the remaining interdependence (instantaneous causality) be-

tween X1 and X2 is captured by the covariance of the bivariate

prediction errors, based on Geweke’s theorem of time series

decomposition [24].

Other considerations during feature extraction included:

(1) Stationarity: Granger Causality was estimated over 4-second

EEG windows (window sliding by 1-s). Segments with such

short duration were chosen for two reasons. Firstly, to identify

cases of impending awareness as quickly as possible; and,

secondly, this is common practice in EEG analysis to ensure

the stationarity of the EEG segments analyzed [25].

Stationarity was specifically assessed using the Kwiatkowski–

Phillips–Schmidt–Shin (KPSS) test (at a critical level of 0.01)

[26], using the GCCA toolbox [27]. The segments which were

found to be non-stationary were excluded from further

analysis.

(2) AR Modeling: The Durbin-Watson test was used to assess the

residual variance [28] (function ‘dwtest’ in MatlabH). Any

segments with autocorrelated residuals were excluded from

the analysis. We also performed a consistency check [29] on

the estimated AR models and excluded segments for which

the fitted AR models had a consistency less than 70%. The

AR model order was estimated for each patient using the

Bayesian Information Criterion (BIC), which is more

appropriate for neural applications [30]. However, from

additional investigations, we found that utilizing a fixed AR

model order of 6 for all patients did not degrade performance,

as measured through the consistency of the fitted AR model.

Therefore, a 6th order AR model was used for all patients.

(3) Artifacts: The main sources of artifacts during anesthesia are

artifacts during tracheal intubation at anesthetic induction,

and diathermy noise during surgery. We removed intubation

artifacts by excluding the first 5 minutes following anesthetic

induction; this also served the purpose of ensuring that the

patient was fully unconscious. Segments which were contam-

inated with diathermy were excluded from further analysis.

We also investigated the application of a 50-Hz notch filter for

removing line noise (using the MatlabH function ‘iirnotch’);

details can be found in the Discussion. No other artifact

removal was performed.

To estimate the GC values for each 4-s EEG segment, X1 and

X2 corresponded to one pair from the five predefined brain areas.

Thus, applying GC on the predefined 5 brain areas resulted in 10

pairs of bidirectional GC estimates:

GCLF<RF , GCLF<LP, GCLF<RP, GCLF<Z, GCRF<LP,

GCRF<RP, GCRF<Z,GCLP<RP, GCLP<Z, and GCRP<Z

where LF: left frontal, RF: right frontal, LP: left posterior, RP:

right posterior, and Z: midline. Prior to utilizing the estimated GC

as a feature, the statistical significance of the observed patterns was

verified using the method of phase randomized surrogate data

[31]. In brief, a number of surrogate data is generated by Fourier

transforming the original data, substituting the phases with

random ones, and transforming back to the time domain via an

inverse Fourier transform. This results in data that have the same

second order properties as the measured data, but which are

otherwise random.

Based on our preliminary investigations, the most characteristic

change of the GC index was the significant increase of GC from

frontal to posterior regions when the subject was anesthetized

[19,20]. The GC patterns from these areas were, thus, chosen as

features. This resulted in feature vectors that consisted of the

following 4-dimensional values:

X i
C~ GCi

LF?LP GCi
RF?LP GCi

LF?RP GCi
RF?RP

� �
ð4Þ

where C {Aw,An} corresponds to one of the two classes, and

i = 1,…,NC denotes the ith 4-s segment from all the available

segments of each class (NC). Since no additional pre-processing or

artifact removal was performed, a moving average filter (n = 10

samples) was applied on the estimated GC values to smooth out

any outlier effects from the presence of artifacts.

Volume conduction. An important consideration in EEG

analysis is volume conduction. Even though the Laplacian

transform offers a solution to this problem, this acts as a

bandpass spatial filter, which ‘may remove genuine source

activity associated with very low spatial frequencies’ [32]. Given

the high sensitivity of GC measures to any filtering [21], the use of

a Laplacian transform should be avoided. In order to ensure that

our findings were not simply a confound of volume conduction, we

have used surrogate data to control for such artifacts. This method

was proposed by Shahbazi et al., and the idea is to construct

surrogate data that are a superposition of independent sources that

are statistically as close as possible to the original data [33]. In

summary, the main steps of the method are: (1) decomposition of

the original data into independent sources using Independent

Component Analysis (here SOBI was used [34]); (2) shifting each

n-th estimated source by (n21)*T samples, where T is substantially

larger than any autocorrelation time (here we found T = 100

adequate); and (3) constructing the surrogate data by mixing the

shifted sources using the estimated mixing matrix. The

connectivity measure of interest is estimated for both the original

and surrogate data. If a specified effect is observed in both data

sets, then the observed effect is considered as insufficient evidence

for a true brain interaction. For true directional interactions GC is

attenuated in the surrogate data compared to the original data, but

not removed. According to Shahbazi et al., the effect of volume

conduction can be assessed from the regression line, y = x, where y:

GC of surrogate data, x: GC for original data. If this line describes

the data well, then we cannot exclude that volume conduction

could be responsible for the observed effect. We assessed the

goodness-of-fit of this regression line via the coefficient of

determination, r2:

r2~1{

PN
i~1

yi{ŷyið Þ2

PN
i~1

yi{my

� �2
~1{

SSres

SStot

ð5Þ

where SStot is the total sum of squares, SSres is the residual sum of

squares, my is the mean of the observed data y, and ŷy is the

Granger Causality for Monitoring Anesthetic Depth

PLoS ONE | www.plosone.org 4 March 2012 | Volume 7 | Issue 3 | e33869



prediction from the linear regression y = x. From (5) it can be seen

that if the model does not provide a good fit for the data, then

SSres.SStot, and r2,0.

Performance estimation
Classification performance was obtained for each subject over

B = 200 bootstrap repetitions (sampling with replacement). For

each patient the number of samples (windows) available for the

‘awake’ and ‘anesthetized’ classes were Naw and Nan respectively.

The size of the training set was determined as Ntrain = min{0.8-

Naw,0.8Nan} with maximum Ntrain = 100. Thus, the training set

was composed by randomly choosing Ntrain windows from each

class, while the remaining Naw –Ntrain and Nan–Ntrain windows

composed the test sets for class ‘awake’ and ‘anesthetized’

respectively. The number of windows available for the ‘anesthe-

tized’ class were set to 300 for all patients (this was possible as

data were available throughout the entire surgical duration for

each patient), while the number of windows for the ‘awake’ class

differed from patient to patient. The mean number of available

windows 6 standard deviation were: (i) LOC: Naw = 249.76

295.4, and Ntrain = 77.0628.6; and (ii) ROC: Naw = 142.36114.1,

and Ntrain = 76.5631.4. Classification was performed with simple

Linear Discriminant Analysis (LDA), and a more complex

Support Vector Machine (SVM) [35]. For the SVM classifier

both linear and non-linear (Radial Basis Function with radius 1)

kernels were investigated (denoted as SVML and SVMNL

respectively). Performance was assessed as the specificity (6),

sensitivity (7) and average accuracy (8):

Specificity~SP~
TruP

TotP

ð6Þ

Sensitivity~SE~
TruN

TotN

ð7Þ

Accuracy~Acc~
1

2

1

B

XB

b~1

SPbz
1

B

XB

b~1

SEb

 !
ð8Þ

where TotP(TotN) is the total number of ‘ground truth’ positive

(negative) examples, TruP is the number of ‘ground truth’ positive

examples correctly classified as positive, and TruN is the number of

‘ground truth’ negative examples correctly classified as negative.

In the following investigations, examples of class ‘awake’ were

considered as positive, while examples from the ‘anesthetized’

class were considered as negative.

An additional consideration is that a patient awaking from

surgery does not regain full alertness until some time afterwards;

this time frame is very much dependent on the rate at which each

person is able to metabolize the administered drugs. This implies

Figure 1. Average fronto-posterior Granger Causality patterns. Maroon line: posteriorRfrontal direction. Blue line: frontalRposterior
direction. GC between (a) left frontal – left posterior, (b) right frontal – left posterior, (c) left frontal – right posterior; (d) right frontal – right posterior.
Shaded areas: mean GC 6 standard deviation. An increase in frontoRposterior GC after anesthesia induction is observed. Vertical lines indicate
anesthetic induction (AI) and recovery of consciousness (ROC). As expected, the frontoRposterior GC returns to baseline at recovery of
consciousness. Subjects with no GC over the right posterior area due to bad electrode contact were excluded from the average (2 patients). X-axis in
arbitrary samples.
doi:10.1371/journal.pone.0033869.g001
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that the awareness state of a patient at ROC could be more similar

to the awareness state of the patient in the case that awareness is

experienced during surgery. In order to investigate whether

wakefulness prior to anesthetic administration and wakefulness at

the end of surgery differed, we performed two separate

investigations utilizing data extracted around (a) the marker for

anesthetic administration; and (b) the marker for recovery of

consciousness. Therefore, we performed separate classifications

with different classifiers for these two cases.

Results

Figure 1 shows the average fronto-posterior GC values at LOC

and ROC (a moving average filter of length 10 samples was

applied to the GC values). The increase of GC from frontal to

posterior areas with LOC and its reversal at ROC can be clearly

seen. Even though the actual GC values display large inter-subject

variability, similar patterns are observed for all patients studied.

These changes in the GC observed while the patient is

unconscious (post-LOC and pre-ROC GC values) are statistically

different from the baseline values observed while the subject is

awake (pre-LOC and post-ROC) (ANOVA F-test, a= 0.05, p = 0).

Figure 2 shows the subject-wise average GC values for the two

states ‘Awake’ and ‘Anesthetized’ estimated for 50-second

segments of pre-LOC, ‘anesthesia’ and post-ROC. In addition,

the fronto-posterior increase in GC values was found to be

statistically significant. This can be seen in figure 3, which shows

representative examples of fronto-posterior GC for individual

patients. Statistical significance was assessed using the method of

phase randomized surrogate data and the significance level was

estimated as the maximum GC obtained from the surrogate

datasets at each EEG segment. Testing the estimated GC for

artifacts of volume conduction resulted in negative coefficients of

determination (r2), hence we can deduce that the observed GC

cannot be fully explained as an effect of volume conduction. We

can also rule out that the observed effects are a result of the use of

neuromuscular blockers, as not all patients received neuromuscu-

lar blockers for the entire surgical duration (see tables 1 and 2).

This is common when the surgical duration is relatively short.

Tables 1 and 2 show the average Specificity (SP), Sensitivity

(SE), and Accuracy (Acc) for each subject, as well as total SP, SE

and Acc averaged over all subjects, for data from LOC and ROC

respectively. Classification for LDA, SVML and SVMNL is

displayed on the same table. The average classification perfor-

mance over all subjects can also be seen in figure 4, together with

error bars (standard deviation). The best average performance

obtained is (1) LOC condition: SVMNL with (mean 6 standard

deviation) SP 0.9860.034, SE 0.9860.018 and Acc 0.9860.025;

Figure 2. Patient-wise average GC values ± standard deviation (error bars). 50-second segments of ‘Awake’ (pre-LOC, post-ROC) and
‘Anesthetized’ (mean GC for post-LOC and pre-ROC) states. (a) GCLFRLP, (b) GCRFRLP, (c) GCLFRRP, and (d) GCRFRRP. The differences in GC between
‘Awake’ and ‘Anesthetized’ states are statistically significant (ANOVA F-test, a= 0.05, p = 0).
doi:10.1371/journal.pone.0033869.g002
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and (2) ROC condition: SVMNL with (mean 6 standard deviation)

SP 0.9460.068, SE 0.9660.068 and Acc 0.9560.065. The

nonlinear SVM displays better performance, with differences in

performance being statistically significant only when compared to

LDA (see table 3 for details; statistical significance assessed with

one-way ANOVA F-test, a= 0.05). Statistical differences in

performance between LOC and ROC conditions are shown in

table 4 (statistical significance assessed with one-way ANOVA F-

test, a= 0.05). The goodness-of-fit of the AR models was assessed

via the model consistency, which shows how much of the data

variance is captured by the model (100% indicates an ideal model).

The patient-wise average consistency for all segments used in the

analysis is 98.260.955% (mean 6 standard deviation). The KPSS

test confirmed the appropriateness of using 4-s segments, as the

total number of segments that were excluded from analysis due to

non-stationarity was 2.6% (LOC) and 3.8% (ROC).

Table 5 provides a quantitative comparison with other

work [36,37,38,39,40,41,42,43,44,45]. Performance is reported

as ‘accuracy’ (correct classification of segments corresponding to

LOC and ROC) or ‘prediction probability’ (correlation with

concentration of anesthetic agent or observed anesthetic depth as

scored by experts). From table 5 it can be seen that the

performance achieved with GC features is considerably better

than other techniques and devices that are commercially

distributed.

Discussion

The ability to discriminate between ‘Awake’ and ‘Anesthetized’

state is important for depth of anesthesia monitors. Using GC as

features, we were able to obtain high sensitivity, specificity and

accuracy. Despite the inter-subject variability in the actual GC

values for each subject, the GC patterns displayed the same trend

for all subjects. Even though SVM is a powerful classifier suitable

for complex high-dimensional problems, it was chosen here

specifically for this simpler low-dimensional problem, as it allows

us to study both linear and non-linear classification utilizing a

single technique. Even though linear classification was outper-

formed by non-linear classification, the differences in performance

are not statistically significant. This implies that the GC features

Figure 3. Individual GC values for LOC and ROC conditions with 95% significance level. (a) GCLF«LP for patient S11 at LOC. (b) GCRF«LP for
patient S1 at ROC. (c) GCLF«RP for patient S13 at LOC. (d) GCRF«RP for patient S17 at ROC. (e) GCRF«LP for patient S8 at LOC. (f) GCLF«RP for patient S21
at ROC. Vertical line indicates anesthetic administration ((a), (c), (e)), and recovery of consciousness ((b), (d), (f)). Outlier GC values due to the presence
of artifacts in the raw EEG signal are also visible in (a) and (b).
doi:10.1371/journal.pone.0033869.g003
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utilized are linearly separable and, from a statistical perspective, it

is not necessary to introduce a more complex non-linear classifier

with increased computational cost. Therefore, a much simpler

linear classifier, such as LDA, or even a technique based on some

form of adaptive threshold estimation, could be utilized. The latter

could also be more appropriate for real-time applications and

remains the subject of future investigations.

Pairwise time-domain GC analysis has received some criticism,

mainly regarding the interpretation of the resulting causality

relationships. A main limitation is that one cannot distinguish

between direct and indirect causal relationships when performing

pairwise GC analysis. This is related to the issue of spurious

causality that can appear between two processes when both are

influenced by external sources that are not taken into account

[46]. In cases when the interdependence between the two time

series cannot be fully explained by their interactions, one can

examine the covariance of the noise terms in the estimated AR

models, which captures the remaining interdependence [30].

Another solution is provided by conditional GC, which conditions

the estimated GC onto external sources [47]. In order to infer a

more precise structural causality, in theory one must include all

sources of influence into the estimation. However, in practice this

is always unfeasible and, as a result, conditional methods will

always be provisional [48]. In a recent study by Wang et al., it was

shown that both pairwise and blockwise approaches to GC

estimation gave consistent results [49]. Pairwise time-domain GC

is a valid methodology with a lot to offer in terms of inferring

causality patterns, as long as the limitations mentioned above are

taken into consideration (for some examples of recently published

articles utilizing pairwise GC analysis see [50,51,52]).

The difference between classification performance for examples

from LOC and ROC indicates that both conditions show some

statistically significant variations (table 4). This could be an

indication of differences between brain activity during wakefulness

before and after administration of the anesthetics.

The marker for ROC indicates that the subject has regained

consciousness. The administration of anesthetics had been

switched off a few minutes prior to this event. Should the

estimated GC features have been a reflection of the metabolic

decrease of the anesthetic agent, the decrease in the values of GC

would be gradual and not sharp as observed. Thus, there would

not have been a clear boundary between the GC features for each

class, leading to lower classification accuracy. However, the high

performance is an indicator that GC features reflect the points at

which consciousness is lost and recovered. This provides strong

support for the use of such features in a DOA monitor as a change

in the patient’s state of awareness would be promptly captured. It

is also possible that some of the segments used in the analysis may

contain data from the start/end of the surgical procedure, and it is

known that surgical noxious stimuli, e.g., tends to lighten the level

Table 1. Average classification performance for each subject at anesthesia induction (LOC).

Specificity Sensitivity Accuracy

Subject SVMNL SVML LDA SVMNL SVML LDA SVMNL SVML LDA

S1 1.000 0.999 1.000 0.989 0.992 0.980 0.995 0.996 0.990

S2 0.948 0.890 0.849 0.979 0.923 0.951 0.964 0.907 0.900

S3 0.902 0.947 0.962 0.928 0.835 0.827 0.915 0.891 0.896

S4 1.000 1.000 1.000 0.999 0.999 0.983 1.000 1.000 0.992

S5 1.000 1.000 1.000 1.000 1.000 0.997 1.000 1.000 0.998

S6 0.891 0.884 0.868 0.953 0.925 0.930 0.922 0.905 0.899

S7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

S8 0.968 0.949 0.953 0.985 0.977 0.973 0.977 0.963 0.963

S9 1.000 1.000 1.000 0.992 0.971 0.864 0.996 0.986 0.932

S10 1.000 1.000 1.000 0.986 0.980 0.977 0.993 0.990 0.989

S111 1.000 1.000 1.000 0.999 1.000 0.966 0.999 1.000 0.983

S122 0.997 0.835 0.845 0.975 0.774 0.764 0.986 0.805 0.805

S131 1.000 1.000 1.000 0.978 0.980 0.970 0.989 0.990 0.985

S14 0.968 0.974 0.973 0.985 0.975 0.990 0.977 0.975 0.981

S151,2 0.997 0.996 0.985 0.981 0.981 0.965 0.992 0.989 0.975

S161 1.000 1.000 1.000 1.000 1.000 0.988 1.000 1.000 0.994

S17 0.925 0.925 0.838 0.978 0.978 0.989 0.951 0.951 0.913

S181 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

S191 1.000 1.000 1.000 1.000 1.000 0.957 1.000 1.000 0.979

S20 0.980 0.940 0.940 0.987 0.962 0.941 0.984 0.951 0.941

S211 0.976 0.978 0.988 0.968 0.962 0.933 0.972 0.970 0.960

TOTAL 0.979 0.968 0.962 0.984 0.963 0.950 0.981 0.965 0.956

1: Patient administered a very small quantity of neuromuscular blocking agent (,4 mg) at induction only to facilitate tracheal intubation.
2: Maintenance with sevoflurane.
Performance estimated with nonlinear and linear Support Vector Machine (SVMNL and SVML respectively), and Linear Discriminant Analysis (LDA). ‘TOTAL’ indicates the
average performance over all patients.
doi:10.1371/journal.pone.0033869.t001
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of hypnosis [53]. However, the observed GC patterns remain

stable from the onset of LOC to ROC and are neither affected by,

nor are a direct result of, the surgery itself. In addition, despite the

large inter-subject variability in the actual GC values, the observed

GC patterns remain robust between subjects and different

anesthetic regimes. This strengthens the belief that GC is related

to the general physiological mechanism underlying anesthetic

administration. This is in contrast to current DOA monitors,

which use EEG activity as a proxy for consciousness, and which do

not take into account the inter-subject variability.

Bidirectional interaction or strong unidirectional interaction

in the presence of a common input as captured by GC are

related to mechanisms of information flow in cortical circuits,

in terms of the anatomical connectivity principle of reciprocity

in the cortex or the collective activation of cortical regions

projecting to the measured sites respectively [54]. Therefore,

the observed GC patterns are particularly interesting in terms

of a physiological interpretation of the disruption of conscious-

ness by anesthetics. It is now believed that anesthetics do not

block incoming sensory information, but interfere with the

coherent interpretation of it by the brain such that it is not

consciously perceived [1,3,4,55,56]. Evidence from various

connectivity measures suggests that the effective connectivity

between lateral antero-posterior networks is an important

mechanism for this information integration and, thus, for

conscious perception itself [5,57,58,59,60]. Both this discon-

nection, as well as the hypersynchronisation of neuronal activity

seen during deeper anaesthesia, leads to loss of the brain’s

integrative capacities [61]. A part of this neurophysiological

mechanism is also common for other unconsciousness-related

states, such as deep sleep and vegetative state [62,63]. Similar

findings were reported in a study of deep sleep by Massimini et

al., where it was shown that the slow oscillations observed

during deep sleep are travelling waves that sweep the cortex in

an antero-posterior direction [64]. It is possible that the slow

waves that characterize anaesthesia are also travelling waves

with a similar underlying physiological mechanism. When

interpreting the observed GC patterns one must remember that

GC is based on a statistical concept. Hence, causality captured

by GC could be mediated either by direct or indirect pathways

through the cortex or subcortical structures and does not in

itself provide proof of a direct activation from one neuronal

structure to another via an axonal pathway. Therefore, the

increase in GC from frontal to posterior regions does not

necessarily imply that this is mediated through a direct

connection between the two regions. The observed changes in

the GC reflect the disruption of information flow in terms of

effective connectivity, as captured non-invasively through the

EEG. In addition, even though the approach of estimating GC

between regional time series is followed in many studies, it is

Table 2. Average classification performance for each subject at recovery of consciousness (ROC).

Specificity Sensitivity Accuracy

Subject SVMNL SVML LDA SVMNL SVML LDA SVMNL SVML LDA

S1 0.996 0.990 0.945 0.920 0.902 0.771 0.958 0.946 0.858

S2 0.878 0.794 0.817 0.869 0.762 0.743 0.873 0.778 0.780

S3 0.943 0.930 0.931 0.989 0.987 1.000 0.966 0.959 0.965

S4 0.917 0.842 0.845 0.899 0.721 0.715 0.908 0.782 0.780

S5 0.797 0.757 0.750 0.853 0.918 0.944 0.825 0.838 0.847

S6 0.761 0.701 0.704 0.734 0.563 0.563 0.748 0.632 0.633

S7 0.988 0.989 1.000 0.993 0.992 0.977 0.990 0.990 0.988

S8 0.950 0.797 0.823 0.846 0.768 0.758 0.898 0.782 0.791

S9 1.000 1.000 1.000 1.000 1.000 0.978 1.000 1.000 0.989

S10 0.999 0.991 1.000 0.909 0.911 0.786 0.954 0.951 0.893

S111 1.000 1.000 1.000 0.995 0.995 0.992 0.998 0.997 0.996

S122 1.000 1.000 1.000 0.962 0.959 0.872 0.981 0.980 0.936

S131 1.000 0.998 1.000 0.976 0.975 0.902 0.988 0.987 0.951

S14 0.939 0.925 0.949 0.928 0.902 0.910 0.934 0.913 0.929

S151,2 1.000 1.000 1.000 1.000 1.000 0.989 1.000 1.000 0.984

S161 1.000 1.000 1.000 0.948 0.948 0.962 0.974 0.974 0.981

S17 0.974 0.973 0.999 0.923 0.896 0.877 0.949 0.935 0.938

S181 1.000 1.000 1.000 0.994 0.988 0.981 0.997 0.994 0.991

S191 0.987 0.998 1.000 0.975 0.953 0.977 0.981 0.976 0.988

S20 0.931 0.874 0.853 0.948 0.887 0.906 0.940 0.880 0.879

S211 0.997 0.998 1.000 0.998 0.998 0.997 0.997 0.998 0.998

TOTAL 0.955 0.931 0.934 0.940 0.906 0.885 0.946 0.919 0.909

1: Patient administered a very small quantity of neuromuscular blocking agent (,4 mg) at induction only to facilitate tracheal intubation.
2: Maintenance with sevoflurane.
Performance estimated with nonlinear and linear Support Vector Machine (SVMNL and SVML respectively), and Linear Discriminant Analysis (LDA). ‘TOTAL’ indicates the
average performance over all patients.
doi:10.1371/journal.pone.0033869.t002
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understood that the process of averaging the spontaneous EEG

over multiple sensors results in loss of some information.

Hence, it is likely that the GC estimated between such regional

averages may present some differences compared to pair-wise

or block-wise GC estimations [65]. One should bear this in

mind when the aim is the precise investigation of effective

connectivity. However, here we are interested in the broad

characteristic changes in the observed GC patterns related to

anesthetic administration, which can be used reliably for

monitoring awareness during surgery.

Figure 4. Average classification performance (mean ± standard deviation) for LOC (top) and ROC (bottom) conditions.
doi:10.1371/journal.pone.0033869.g004

Table 3. Statistical significance of linear Vs non-linear classification.

Perf. LOC ROC

SP SVML LDA SVML LDA

SVMNL F = 0.75, p = 0.39 F = 1.28, p = 0.26 SVMNL F = 0.85, p = 0.36 F = 0.68, p = 0.41

SVML F = 0.11, p = 0.74 SVML F = 0.01, p = 0.93

SE SVML LDA SVML LDA

SVMNL F = 2.5, p = 0.12 F = 6.02, p = 0.02* SVMNL F = 1.1, p = 0.30 F = 2.98, p = 0.09

SVML F = 0.5, p = 0.48 SVML F = 0.35, p = 0.56

Acc SVML LDA SVML LDA

SVMNL F = 1.75, p = 0.19 F = 4.39, p = 0.04* SVMNL F = 1.06, p = 0.31 F = 2.01, p = 0.16

SVML F = 0.36, p = 0.55 SVML F = 0.09, p = 0.76

Statistical significance of differences in performance of the different classifiers at loss and recovery of consciousness (LOC and ROC respectively). Classifiers: linear (SVML)
and nonlinear (SVMNL) Support Vector Machine, and Linear Discriminant Analysis (LDA). Performance (Perf.) estimated as specificity (SP), sensitivity (SE), and accuracy
(Acc). Significance was estimated with one-way ANOVA F-test (a= 0.05; Fcrit(1,41) = 4.079), and significant differences are marked with *.
doi:10.1371/journal.pone.0033869.t003
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Regarding the choice of an appropriate order for the AR

model utilized, this is non-trivial: if the order is too low the

properties of the signals are not captured, however if the order

is too high then any measurement noise or inaccuracies are

also represented and the resulting model is not a reliable

representation of the signal [66]. This is particularly true for

EEG signals, where increasing the model order reduces the

value of the order estimation criteria asymptotically without

observing a true minimum. Here, the optimum AR order was

estimated using the BIC.

Another important consideration is the presence of 50-Hz

line noise, which can be removed easily using a 50-Hz notch

filter. The use of filtering in GC analysis has raised some

contradictive opinions (see work by Florin et al. [21], Seth [27],

and Barnett & Seth [67]). The general agreement between the

different works is that despite the theoretical invariance of GC

to linear operations, in practice filtering has an effect on GC

estimations: it can induce time-domain causal network artifacts,

and has a substantial impact on statistical significance testing

[67]. The effects on GC estimation are a consequence of

increased empirical AR model order from filtering. The main

motivation for using a notch filter is to remove the non-

stationarity induced by line noise. However, ‘although strictly

speaking the process with an added sinusoid is non-stationary, in finite

sample it may be approximated and modeled’ as a vector autore-

gressive process of order p [67]. Here, we have found that the

application of a 50-Hz notch filter did not remove any non-

stationarities present. In the majority of cases notch filtering did

not affect the underlying GC patterns, however it reduced the

differences in the fronto-posterior GC values (see figure 5),

which resulted in a less effective discrimination between

wakefulness and anesthesia.

An ideal DOA monitor should display 100% SE and SP.

However, it is very difficult to have an ideal monitor and in the

majority of cases a compromise between SE and SP must be

made. But what does this compromise translate to in terms of a

DOA monitor? Let us first consider what SE and SP imply for

a DOA monitor. Ideal SP means that all events of awareness

are captured by the monitor. This implies that an alarm is

raised and, in such a case, appropriate actions, such as

administration of an anesthetic bolus, would have to be taken

by the anesthetist to ensure adequate anaesthesia. Ideal SE

would imply that when the patient is adequately anesthetized,

the DOA monitor reflects this and no further action is needed.

Now let us consider the consequences of non-ideal SE and SP.

In case of low SE, false alarms would be raised by the monitor,

falsely indicating that the patient is awake. If the anesthetist

takes action in such a case, the consequences could be

disastrous. In case of low SP, the monitor would fail to raise

the alarm in some cases of awareness. The anesthetist would

take no action and the patient would continue being aware,

with possible psychological consequences to the patient. It can

be seen that in the case of a DOA monitor, both SE and SP are

equally as important and no sacrifice of one should be made

for the other. Using GC as a feature, even though SE and SP

are not ideal, both are at a similarly high level. Thus, neither is

sacrificed for the other.

The feasibility of utilizing Granger Causality, a measure

quantifying linear bidirectional signal interactions, as a feature

for discriminating between brain activity from awake and

anesthetized subjects has been investigated. Our findings

support the use of GC estimated in the direction of anterior

to posterior brain areas as a feature to discriminate between the

EEG of an awake and anesthetized subject. High sensitivity,

specificity and average accuracy were obtained for both linear

and non-linear classification. The findings suggest that GC-

based features are linear, thus the use of a complex non-linear

classifier is not necessary. Thus, it may even be possible to

employ some form of a more sophisticated and adaptive

threshold for classification purposes, which would perhaps be

more appropriate for the future development of a DOA

monitor. The threshold would need to be adaptive as, despite

the same GC patterns observed in all subjects, there is large

inter-subject variability in the actual GC values that character-

Table 4. Statistical significance of LOC Vs ROC classification.

Perf. SVML SVMNL LDA

Specificity F = 2.37, p = 0.13 F = 2.01, p = 0.16 F = 1.32, p = 0.26

Sensitivity F = 4.19, p = 0.05* F = 9.74, p = 0.003* F = 5.04, p = 0.03*

Accuracy F = 3.6, p = 0.06 F = 5.55, p = 0.02* F = 3.81, p = 0.06

Statistical significance of differences between loss and recovery of
consciousness conditions (LOC and ROC respectively). Classifiers: linear (SVML)
and nonlinear (SVMNL) Support Vector Machine, and Linear Discriminant
Analysis (LDA). Significance was estimated with one-way ANOVA F-test
(a= 0.05; Fcrit(1,41) = 4.079), and significant differences are marked with *.
doi:10.1371/journal.pone.0033869.t004

Table 5. Quantitative comparison with other methods
reported in the literature.

Ref. Accuracy
Prediction
Probability Features

This work 0.98 Granger Causality

[44] 0.92 NarcotrendTM monitor

[36] 0.86 Recurrence quantification analysis

[37] 0.86 Approximate Entropy

0.86 Spectral edge frequency

0.78 Median frequency

0.82 BISH monitor

[41] 0.77 Approximate Entropy

0.87 Permutation Entropy

0.87 Order Recurrence Rate

0.87 Phase coupling of order patterns

[42] 0.85 Approximate Entropy

[40] 0.86 Permutation Entropy

0.79 Approximate Entropy

[38] 0.84 Hilbert-Huang state entropy

[45] 0.69 Time Encoded Signal Processing
and Recognition (TESPAR)

[43] 0.87 BISH monitor

0.89 Datex-Ohmeda S/5 Monitor (State
Entropy)

0.88 Datex-Ohmeda S/5 Monitor
(Response Entropy)

[39] 0.93 Complexity based on Lempel-Ziv

0.89 Approximate Entropy

0.76 Spectral Entropy

0.64 Median Frequency

doi:10.1371/journal.pone.0033869.t005
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ize ‘Awake’ and ‘Anesthetized’ states in each patient. A monitor

based on adaptive classification would be advantageous over

current DOA monitors, whereby the range discriminating the

two states is fixed. Future work will focus on identifying the

location of a small number of electrodes that can be utilized

successfully in a DOA monitor, instead of utilizing the average

activity of all available electrodes.
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Supek S, Sušac A, eds. 2010 28 March–1 April; Dubrovnik, Croatia, 207–210.

34. Belouchrani A, Abed-Meraim K, Cardoso JF, Moulines E (1997) A blind source
separation technique using second-order statistics. IEEE Trans Signal Proc 45:

434–444.

35. Burges CJC (1998) A tutorial on Support Vector Machines for Pattern
Recognition. In: Fayyad U, ed. Data Mining and Knowledge Discovery. Boston:

Kluwer Academic Publishers. pp 121–167.
36. Becker K, Schneider G, Eder M, Ranft A, Kochs EF, et al. (2010) Anaesthesia

Monitoring by Recurrence Quantification Analysis of EEG Data. PLoS ONE 5:

e8876.
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