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Abstract

Objective: To investigate the usefulness of single-shot spin-echo echo-planar imaging (SSEPI) sequence for quantifying mild
degree of hepatic iron stores in patients with viral hepatitis.

Methods: This retrospective study included 34 patients with chronic viral hepatitis/cirrhosis who had undergone
histological investigation and magnetic resonance imaging with T2-weighted gradient-recalled echo sequence (T2-GRE) and
diffusion-weighted SSEPI sequence with b-factors of 0 s/mm2 (T2-EPI), 500 s/mm2 (DW-EPI-500), and 1000 s/mm2 (DW-EPI-
1000). The correlation between the liver-to-muscle signal intensity ratio, which was generated by regions of interest
placed in the liver and paraspinous muscles of each sequence image, and the hepatic iron concentration (mmol/g dry liver),
which was assessed by spectrophotometry, was analyzed by linear regression using a spline model. Akaike information
criterion (AIC) was used to select the optimal model.

Results: Mean 6 standard deviation of the hepatic iron concentration quantified by spectrophotometry was 24.6616.4
(range, 5.5 to 83.2) mmol/g dry liver. DW-EPI correlated more closely with hepatic iron concentration than T2-GRE (R square
values: 0.75 for T2-EPI, 0.69 for DW-EPI-500, 0.62 for DW-EPI-1000, and 0.61 for T2-GRE, respectively, all P,0.0001). Using the
AIC, the regression model for T2-EPI generated by spline model was optimal because of lowest cross validation error.

Conclusion: T2-EPI was sensitive to hepatic iron, and might be a more useful sequence for quantifying mild degree of
hepatic iron stores in patients with chronic viral hepatitis.
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Introduction

Abnormalities of iron metabolism are frequently observed in

patients with chronic liver diseases such as viral hepatitis,

nonalcoholic fatty liver disease, and cirrhosis [1,2]. Iron excess,

which increases oxidative stress via the formation of hydroxyl

radicals and other highly reactive oxidizing molecules, leads to

hepatotoxicity; it is related to the fibrogenesis and hepatocarcin-

ogenesis associated with chronic viral hepatitis [1,3].

In recent years, several research groups have reported on the

efficacy of iron reduction therapies by phlebotomy [4–10]. Yano et

al. [6] reported that phlebotomy therapy contributed to improve-

ment of biochemical markers in patients with hepatitis C virus

infection. Kato et al. [10] stated that phlebotomy therapy may

potentially lower the risk of progression to hepatocellular

carcinoma (HCC) in patients with hepatitis C virus infection.

Therefore, precise quantification of hepatic iron overload might be

beneficial for managing iron reduction therapy in patients with

chronic viral hepatitis.

Assessment of body iron stores by measurement of serum

ferritin concentration has poor specificity [11]. Liver biopsy, the

most reliable method to measure hepatic iron stores, is an invasive

procedure. Magnetic resonance imaging (MRI) is sensitive to

hepatic iron because iron leads to a decline of MR signal due to

T2-shortening effect related to paramagnetic properties. MRI has

recently been recognized as a suitable noninvasive technique for
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quantifying hepatic iron overload [12]. Quantification of hepatic

iron overload by MRI is useful in that it obviates the need for

invasive liver biopsy and allows for repeat performance.

Generally, it is accepted that gradient-recalled echo (GRE)

sequences are the most sensitive sequence to quantify mild degree

of hepatic iron overload [13–20]. However, many studies

evaluating GRE sequence with different echo-time and flip angle

report variable results in the quantification of hepatic iron

overload. Although the reproducibility of the technique and the

quantification algorithm has been validated in various centers,

these results are complicated.

Diffusion-weighted (DW) single-shot spin-echo echo-planar

imaging (DW-EPI) has become a sequence used routinely in

many institutions since the image quality was improved by recent

technical progress such as parallel imaging and respiratory

triggering [21–23]. In previous studies, it was reported that

single-shot spin-echo EPI (SSEPI) sequence also had a high

susceptibility effect [24,25].

We postulate that DW-EPI sequence might be superior to GRE

sequence for quantifying mild degree of hepatic iron stores. To our

knowledge, the investigation of hepatic iron overload by DW-EPI

sequence has not been examined. The aim of this study was to

investigate the usefulness of SSEPI sequence for quantifying mild

degree of hepatic iron stores in patients with viral hepatitis.

Materials and Methods

Patients
The institutional review board (the Ethics Committee of

Kurume University) approved this retrospective study (Approval

No. 09112), which complied with the principles of the Declaration

of Helsinki (2008 version). All included patients gave written

informed consent to participate.

Our study was targeted at patients with viral chronic hepatitis/

cirrhosis and HCC because such patients with chronic liver

impairment may have increased liver iron and would have

undergone both liver MR imaging and hepatic surgery.

We reviewed the patients who admitted use of both liver

specimens and MR images before hepatic surgery at our

institution between January 2007 and April 2008 and identified

patients who met the following inclusion criteria: (a) patients had

both chronic viral hepatitis/cirrhosis and HCC; (b) patients

underwent abdominal MR imaging with T2-weighted GRE

sequence and DW-EPI sequence with b-factors of 0 s/mm2,

500 s/mm2, and 1000 s/mm2 (these sequences were part of our

standard abdominal MR imaging protocol during this period); and

(c) patients underwent an operation for HCC and received a

histopathologic diagnosis of either chronic hepatitis or cirrhosis

that was based on findings at surgical resection, performed within

a month after MR imaging.

Forty-six patients fulfilled these criteria. Twelve of these 46

patients were excluded on the basis of the following reasons: (a)

Available imaging data did not correspond to available histopath-

ologic data because of interval surgery (n = 5), (b) MR studies were

incomplete (n = 3), (c) an artifact was observed on MR images and

precluded accurate measurement of signal intensity (n = 1), and (d)

other causes of chronic liver disease such as alcoholic hepatitis

(n = 2) and non-alcoholic steatohepatitis (n = 1). Thirty-four

patients formed the final study group (21 men and thirteen

women; median age, 65 years; range, 52–83 years). Histopatho-

logic sampling of all patients included in the study was performed

after MR imaging (median, 5 days; range, 1–30 days). The cause

of chronic liver disease was hepatitis C virus infection (n = 26) or

hepatitis B virus infection (n = 8). None of the patients had a

clinical diagnosis of hemochromatosis that was based on review of

medical records.

Hepatic iron concentration and histological analysis
A partial hepatic resection was performed in all patients with

HCC. For each patient, 50 mg of wet liver tissue was extracted

from the surgically removed specimen by a MLS1200 MEGA

microwave digestion system (Milestone General Co. Ltd.,

Kawasaki, Japan) for 1 min at 250 W, 1 min at 0 W, 5 min at

250 W, 5 min 400 W, and 5 min at 500 W. For determination of

hepatic iron concentration (mmol/g dry liver), the resulting extracts

were analyzed by spectrophotometry with a graphite atomic

absorption camera (Polarized Zeeman Atomic Absorption Spec-

trophotometer, Hitachi, Ltd., Tokyo, Japan) and were converted

to the units shown above [26].

For histological analysis, fibrosis stage and necroinflammation

grade were evaluated semiquantitatively using the METAVIR

scoring system [27]. Fibrosis stage graded on a scale of 0 to 4, as

follows: F0 = no fibrosis; F1 = portal fibrosis without septa;

F2 = portal fibrosis and few septa; F3 = numerous septa without

cirrhosis; and F4 = cirrhosis. The necroinflammatory activity score

was graded on a scale of 0 to 3, as follows: A0 = none; A1 = mild;

A2 = moderate; A3 = severe. Distribution of steatosis was also

retrospectively evaluated as the overall impression of the

percentage of fat-containing hepatocytes on hematoxylin and

eosin–stained specimens [28,29]. Steatosis grade was scored on a

scale of 0 to 2, as follows: grade 0 = absence of steatosis; grade

1 = steatosis ,5%; and grade 2 = steatosis $5%.

MRI technique and analysis
Within one month prior to surgery, MR imaging was performed

at field strength of 1.5 T (Magnetom Symphony Advanced;

Siemens, Erlangen, Germany) with use of a body phased-array

surface coil. A series of DWIs and T2-weighted GRE sequence

were obtained using parallel imaging with generalized auto

calibrating partially parallel acquisition (GRAPPA) of acceleration

factor 2 in all patients. DWI was performed in the transverse plane

by respiratory-triggered combining SSEPI sequence with a

chemical shift–selective pulse (CHESS). Any antiperistalsis drug

was not used.

The imaging parameters for DW-EPI were as follows: repetition

time (TR), 2000 msec; echo time (TE), 81 msec; directions of the

motion-probing gradient, three orthogonal axes; gradient factor b

values of 0 sec/mm2 (T2-weighted SSEPI, hereafter T2-EPI),

500 sec/mm2 (DW-EPI-500), and 1000 sec/mm2 (DW-EPI-

1000); 2170-Hz per pixel bandwidth; 350-mm field of view;

128688 rectangular matrixes; 9-mm-thick sections; 1-mm inter-

section gap; six signals acquired; and acquisition time of

approximately 1 minute 30 seconds.

T2-weighted GRE sequence (hereafter, T2-GRE) was per-

formed in the transverse plane by fast low angle shot (FLASH)

with one signal acquired during a 22-second breath hold. The

imaging parameters for T2-GRE were as follows: TR, 246 msec;

TE, 9.5 msec; flip angle (FA), 30u; 350-mm field of view; 9-mm-

thick sections; 1-mm intersection gap; 16-number of sections;

2566192 matrix; and 130-Hz per pixel bandwidth.

Quantitative image analysis was conducted by measuring the

signal intensities of the liver parenchyma and paraspinous muscles.

Image analysis was performed by two independent radiologists

using plug-in software developed in-house by one of the authors

[30,31] (Figure 1). Five separate regions of interest (ROIs) were

carefully placed manually in the anterior and posterior segments of

the right hepatic lobe at the level of the porta hepatis (whenever

possible) on each sequence; care was taken to avoid focal lesions,
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major vascular structures, and artifacts such as chemical shifts,

magnetic susceptibility, and cardiac motion. Liver signal intensities

were recorded as the mean values generated from the five

measurements (total liver ROI area sampled, 500 mm2). The

procedure was repeated to measure muscle signal intensity by

placing two separate ROIs on the right and left paraspinous

muscles in the same slice section used to measure liver signal

intensity; care was taken to avoid artifacts such as chemical shifts,

magnetic susceptibility, and motion on each sequence.

Muscle signal intensities were recorded as the mean values

generated from the two measurements (total muscle ROI area

sampled, 200 mm2). We calculated the liver-to-muscle signal

intensity ratio (LMR) by dividing mean liver signal intensity by

mean muscle signal intensity for each sequence [15].

Statistical analysis
A Bland-Altman plot was used to analyze the 95% limits

of interobserver agreement for the LMR on each sequence [32].

The correlation of the LMR obtained by the two observers on

each sequence was determined using the Pearson correlation

coefficient (r).

The relationship between the LMR on each sequence and

hepatic iron concentration was analyzed by means of scatter plots.

These results were inspected for linearity and goodness of fit. The

relationship between the LMR on each sequence and hepatic iron

concentration was modeled by regression techniques using a spline

model. Details of spline models are given in the next section.

To investigate effects of each LMR on hepatic iron concentra-

tion, we applied the linear models containing not only a main term

but also knot terms which play a role as an inflection point. The

Akaike information criterion (AIC) was used to evaluate these

alternate models [33]. The number and location of knots were

determined objectively with the minimum AIC among their

prespecified candidates, which were 20, 40, 60, and 80 percentiles

of each LMR. To evaluate the predictive accuracy, a leave one out

cross validation (CV) error [34] was computed.

The Kruskal–Wallis test was used to determine significant

differences in the LMR on each sequence among category

classification in each histological finding (i.e. necroinflammation

grade, fibrosis stage, and steatosis grade). All analyses were

performed using SPSS statistical software (version 12.0 J; SPSS,

Inc., Chicago, IL, USA). P,0.05 was considered statistically

significant.

Details of the spline models used in statistical analysis
Response and predictor variables are denoted by y and x,

respectively. The general form of the univariate (first order) spline

model is

y~azbxz
Xm

j~1

cj(x{rj)zze ð1Þ

where a, b, and cj (j = 1, 2, …, m) are parameters to be estimated,

(z)z~max(0,z), r1,r2, � � � ,rm are called knots which play a role as

an inflection point, and e is an error following a normal

distribution with mean 0 and a constant variance. Note that in

the case of c1~c2~ � � �~cm~0 the model can be identified as a

simple linear regression model. The parameters in the model (1)

are estimated by an ordinary least squares method to minimize

squared residuals Q in (2) from samples (xi,yi) (i = 1, 2, …, n) from

n patients.

Q~
Xn

i~1

yi{a{bxi{
Xm

j~1

cj(xi{rj)z

 !2

ð2Þ

To illustrate the interpretation of parameters in the spline model,

we consider the model as with only one knot as in (3). This model

contains two lines whose slope and intercept are changed at x~r.

y~azbxzc(x{r)zze ð3Þ

In the range xƒr, the slope is b and the intercept is a. In the other

range xwr, the slope is bzc and the intercept is a{cr.This

modeling can be easily implemented by standard software such as

SAS, SPSS, and R. Supposing that the data set has two columns

corresponding to response (y) and predictor (x) variables, one can

add the computed (x{r)z as the third column. Then, the

multiple regression model can be applied with the response y and

two predictors, x and (x{r)z. If you want more knots, you can

add the corresponding columns and predictors in the regression

model.

The essential point in the use of this spline model is to select the

number and location of knots. As used in this paper, one choice for

candidates for knots is the quantiles for continuous variables taking

into account the sample size. Once one specifies the candidates,

the problem turns to the variable selection for predictor variables

used in the multiple regression model, which can also be

implemented by standard software. One effective method is to

use information criteria such as AIC. This kind of modeling [35] is

useful to investigate the flexible relationship between the response

and predictor.

Figure 1. Illustration of the method used to measure regions of
interest on an MR image. With use of computer software (developed
in-house by the authors), two independent observers freely and easily
selected a region of interest by clicking a mesh unit on the right hepatic
lobe of an image while avoiding the large vessels, focal hepatic lesions,
or artifacts. Seven regions of interest were chosen for liver parenchyma
(1–5, total liver ROI area sampled, 500 mm2) and paraspinous muscles
(6 and 7, total muscle ROI area sampled, 200 mm2) in the same slice
section of each sequence.
doi:10.1371/journal.pone.0033868.g001
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Results

Hepatic iron concentration and histological findings
Mean 6 SD of the hepatic iron concentration quantified by

spectrophotometry was 24.6616.4 (range, 5.5 to 83.2) mmol/g dry

liver. Histological necroinflammation grade was A1 in 21 patients

and A2 in 13 patients. Fibrosis stage was F1 in 13 patients, F2 in 4

patients, F3 in 5 patients, and F4 (i.e. cirrhosis) in 12 patients.

Steatosis grade was 0 in 14 patients, grade 1 in 11 patients, and

grade 2 in 9 patients.

Interobserver agreement for the LMR on each sequence
There was no significant difference between measurements

made by the two observers for the two parameters; the interclass

Pearson correlation coefficients were 0.96 (95% confidence

interval [CI]: 0.86, 1.00) for T2-GRE, 0.99 (95% CI: 0.92, 1.00)

for T2-EPI, 0.97 (95% CI: 0.85, 1.00) for DW-EPI-500, and 0.98

(95% CI: 0.97, 1.00) for DW-EPI-1000; the mean difference (6

standard deviation) was 20.002760.054 for T2-GRE, 20.00696

0.052 for T2-EPI, 0.01760.11 for DW-EPI-500, and 0.01360.16

for DW-EPI-1000; and the coefficients of repeatability were 0.108

for T2-GRE, 0.105 for T2-EPI, 0.213 for DW-EPI-500, and 0.316

for DW-EPI-1000. Bland-Altman plots with 95% limits of

agreement for each sequence are shown in Figure 2. There was

no proportional bias or fixed bias in each Bland-Altman plot for

the two parameters.

Correlation between the LMR on each sequence and
hepatic iron concentration

Figure 3 shows results for the line fit by the selected regression

model. Created simple regression models to estimate the hepatic

iron concentration in each sequence are as follows:

T2{GRE : y ~ 103:7 { 85:7 | LMR z

58:2 | LMR { 1:05ð Þz
T2{EPI : y ~ 131:0 { 139:7 | LMR z

106:5 | LMR { 0:73ð Þz z 27:4 | LMR { 1:24ð Þz
DW{EPI{500 : y ~ 80:2 {

51:8 | LMR z 43:0 | LMR { 1:24ð Þz
DW{EPI{1000 : y ~ 66:7 {

29:3 | LMR z 25:7 | LMR{ 1:76ð Þz

Figure 2. Bland-Altman plots for measurements of T2-GRE (A), T2-EPI (B), DW-EPI-500 (C), and DW-EPI-1000 (D) in liver
parenchyma. Each Bland-Altman plots demonstrates good interobserver agreement and lack of proportional bias or fixed bias. The average of the
measurements made by the two observers is plotted against the difference between the measurements made by the two observers. The thin lines
represent the mean value of all differences between the two observers, and the thick lines represent the 95% limits of agreement. SD = standard
deviation.
doi:10.1371/journal.pone.0033868.g002
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where LMR is the measurement value on each sequence (appendix).

The regression analyses showed an excellent overall negative

correlation on each sequence. Particularly, T2-EPI correlated

most closely with hepatic iron concentration. R square values on

each sequence were as follows: 0.75 for T2-EPI, 0.69 for DW-EPI-

500, 0.62 for DW-EPI-1000, and 0.61 for T2-GRE (F-test,

P,0.0001, respectively).

Using the AIC, the linear regression model on T2-EPI [y =

131.02139.76LMR+106.56(LMR20.73)++27.46(LMR21.24)+]

was chosen as having the best fit, since it had the lowest CV

error. The corresponding CV errors were as follows: 14161.3 for

T2-GRE, 11357.4 for T2-EPI, 12220.0 for DW-EPI-500, and

14376.2 for DW-EPI-1000.

Correlation between the LMR on each sequence and
histological findings

No significant differences were found for the LMR on each

sequence among category classification of histological findings (i.e.

necroinflammation grade, fibrosis stage, and steatosis grade). P

values (Kruskal-Wallis test) were as follows: (a) necroinflammation

grade: P = 0.4 for T2-GRE, P = 0.89 for T2-EPI, P = 0.68 for DW-

EPI-500, and P = 0.6 for DW-EPI-1000; (b) fibrosis stage: P = 0.39

Figure 3. Scatter plots of LMR and hepatic iron concentration (mmol/g dry liver) on T2-GRE (A), T2-EPI (B), DW-EPI-500 (C), and DW-
EPI-1000 (D). Correlation between LMR and hepatic iron concentration for linear regression with spline models are shown as solid lines on each
sequence. The linear regression model [y = 131.02139.76LMR+106.56(LMR20.73)++27.46(LMR21.24)+] on T2-EPI was optimal.
doi:10.1371/journal.pone.0033868.g003
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for T2-GRE, P = 0.29 for T2-EPI, P = 0.19 for DW-EPI-500, and

P = 0.38 for DW-EPI-1000; (c) steatosis grade: P = 0.75 for T2-

GRE, P = 0.77 for T2-EPI, P = 0.69 for DW-EPI-500, and

P = 0.95 for DW-EPI-1000.

Discussion

In the present study, we found good correlation between DW-

EPI and hepatic iron concentration in patients with chronic viral

hepatitis, and also demonstrated that SSEPI sequence was more

sensitive than T2-GRE sequence for quantifying small amount of

hepatic iron overload; this is in concordance with prior studies

reporting a high susceptibility effect with SSEPI sequence [24,25].

A lot of studies have evaluated the correlation between hepatic

iron concentration and MRI measurements [13–20]. Particularly,

GRE sequences, which are more sensitive to field heterogeneities

than spin-echo sequences [15,16,18], were used for quantifying

mild degree of hepatic iron stores in many studies. It was reported

that the best means to evaluate mild degrees of hepatic iron

overload was T2-GRE sequences with long TE (i.e. .15 ms) and

with low FA (i.e. 20u–30u) [15,19]. Alternatively, Bonkovsky et al.

[18] reported that GRE sequence with shortest TR and TE, which

results in a short breath hold time, was useful to minimize motion

artifact and other sources of noise. Results from studies of GRE

sequence were variable in terms of quantification of hepatic iron

overload [13–20].

The sensitivity to iron on T2-GRE sequences varies significantly

with various different TE and FA [15]. Marked signal loss from

proton dephasing will occur at longer TEs, and once signal

intensity falls to the level of image noise, inaccuracies in signal

intensity measurement can be expected [36]. From these points, in

the routine examination, we employed the conventional TE which

corresponds to second in-phase on T2-GRE sequence for

quantifying mild degree of hepatic iron overload.

SSEPI sequences are very fast and have a high susceptibility

effect, but suffer from limited image quality. This is mostly related

to limited signal to noise ratio (SNR), especially at higher b-values,

and limited spatial resolution, which constitute an obstacle for its

widespread use in clinical practice [37]. However, techniques such

as parallel imaging and pulse triggering improve image quality of

SSEPI sequences by correcting magnetic field heterogeneity [21–

23]. Recent data showed that respiratory triggering improved the

image quality with SNR on SSEPI sequences. This method

attempts to avoid motion artifacts prospectively by using

respiratory signals to synchronize image acquisition with the

patient’s breathing cycle and by acquiring the imaging data during

the relative quite end expiration phase [38–40].

In the present study, we employed SSEPI sequence with

techniques such as parallel imaging and respiratory triggering.

This sequence, which has the advantage of high susceptibility

effects, was useful to assess mild degree of hepatic iron stores in

patients with viral hepatitis. Of DW-EPIs, it was suggested that

T2-EPI was the most suitable sequence because DW-EPI-500 and

DW-EPI-1000 had loss of SNR caused by application of the

motion-probing gradients pulse.

In patients with chronic viral hepatitis, steatosis is a common

secondary phenomenon. Westphalen et al. [41] reported that iron

stores in background liver complicated measurement of steatosis

by opposed-phase MR imaging. Alternatively, a recent study

reported that concomitant steatosis lowers the diagnostic perfor-

mance of T2-GRE sequence and chemical shift imaging for

quantifying mild degree of hepatic iron stores because intravoxel

constructive and destructive interference between fat and water

spins due to chemical shift effect of the second kind potentially

affect the signal intensity measurements for T2-GRE sequence

[36]. Therefore, it might be important to consider the influence of

each factor in background liver tissue in the quantification of

steatosis and iron stores using MR imaging.

On DW-EPI, we found no significant differences in LMR

among histological steatosis grades. Use of fat saturation pulse (i.e.,

CHESS) on DW-EPIs could eliminate the influence of steatosis,

which might support the better utility of this sequence for

quantifying mild degree of hepatic iron stores. On the other hand,

although previous studies reported that liver fibrosis decreased the

diffusion signal [30,42,43], no significant differences were found in

LMR on DW-EPIs among histological fibrosis stages, which

suggest that influence of liver fibrosis to the signal of DW-EPIs was

low as a result. The quantification of iron stores by DW-EPIs may

have suffered potential influence by fibrosis, which might be one of

the reasons that T2-EPI was most accurate sequence for

quantifying mild degree of iron stores. Therefore, we recommend

the T2-EPI with b values of 0 sec/mm2, which is not affected to

the diffusion signal, for quantifying mild degree of iron stores.

Several limitations of the present study warrant mention. First,

the study was conducted retrospectively and sample size was small.

Although a major effort was made to exclude sample bias, there

was limited sample size for examination of liver iron concentration

using spectrophotometry because of its retrospective nature.

Second, all measurements for the LMR were obtained in the

right lobe of the liver to avoid motion-related artifact. Because the

pathologic specimens were obtained at surgery for an HCC,

histologically sampled areas did not completely correspond to

radiologically sampled areas. A prospective study with a

substantially larger sample is needed to further validate our

findings.

In conclusion, DW-EPI (especially, T2-weighted SSEPI) was

sensitive to hepatic iron, and might be a more useful sequence for

quantifying mild degree of hepatic iron stores in patients with

chronic viral hepatitis.
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